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Abstract. Order �ve symplectic explicit Runge-Kutta Nystr�om methods of �ve stages are
known to exist. However, these methods do not have free parameters with which to minimise the

principal error coeÆcients. By adding one derivative evaluation per step, to give either a six-stage

non-FSAL family or a seven-stage FSAL family of methods, two free parameters become available

for the minimisation. This raises the possibility of improving the eÆciency of order �ve methods

despite the extra cost of taking a step.

We perform a minimisation of the two families to obtain an optimal method and then compare its

numerical performance with published methods of orders four to seven. These comparisons along

with those based on the principal error coeÆcients show the new method is signi�cantly more
eÆcient than the �ve-stage, order �ve methods. The numerical comparisons also suggest the new

methods can be more eÆcient than published methods of other orders.

1. Introduction

Time-dependent processes such as those arising in mechanics and chemistry where

dissipation is insigni�cant can often be modelled by a Hamiltonian system of ordi-

nary di�erential equations of the form

p
0 = �

@H(p; q)

@q
; q

0 =
@H(p; q)

@p
; (1)

where 0 � d=dt and H : Rn �R
n 7! R is suÆciently smooth.

A one step numerical method for (1) is called symplectic if it preserves the sym-

plectic structure of the space of variables (p; q), thus reproducing the main qual-

itative property of the solution. Numerical experiments have shown symplectic

methods can be more eÆcient than non-symplectic methods for long intervals of

integration. In order to preserve the symplectic structure, a constant stepsize is

used.

Symplectic Runge-Kutta methods are necessarily implicit. However, for separable

Hamiltonians (those of the form H(q; p) = T (p) + V (q)), explicit Runge-Kutta

Nystr�om (ERKN) methods can be symplectic if the coeÆcients of the method

satisfy certain conditions.

y The work was part of the requirements for the �rst author's M.Sc. thesis. The �rst author
would like to thank the Department of Mathematics, University of Auckland for its �nancial

support.



144 LIN-YI CHOU AND P.W. SHARP

Okunbor and Skeel [6] investigated families of symplectic ERKN methods that

use one, two and three stages. Calvo and Sanz-Serna in [1], [2] and [3] presented and

tested a �ve-stage, order four method with minimised principal error coeÆcients.

The method re-uses the last stage as the �rst stage of the next step, a property

known as FSAL. This means only four derivations evaluations are required on each

step, except for the �rst step. In [4], Calvo and Sanz-Serna presented a 13-stage,

order seven FSAL method with minimised principal error coeÆcients. Okunbor

and Skeel [7] investigated the existence of order �ve and six methods. They per-

formed an extensive numerical search and found four individual �ve-stage, order

�ve methods. They conjectured there were no six-stage methods of order six and

through a numerical search obtained 16 individual seven-stage, order six methods.

For �ve-stage, order �ve methods, there are ten order conditions to satisfy and

ten coeÆcients to satisfy these conditions. Hence, no coeÆcients are available to

minimise the principal error coeÆcients. If one stage is added, and the order is kept

at �ve, two coeÆcients become available, but this is at the expense of increasing

by one the number of derivative evaluations required to take a step.

This trade-o� between decreasing the error and increasing the cost for each step

raises the interesting question of whether the introduction of the sixth stage will

lead to a gain or loss in eÆciency, where eÆciency is measured by the number of

derivative evaluations required to achieve a prescribed global error.

2. The methods

2.1. De�nitions

When a Hamiltonian is separable, (1) can be written as

y
00 = f(y); (2)

where f : Rn 7! R
n.

The ERKNmethods we consider use s-stages and generate order p approximations

yi and y
0

i
to y(xi) and y

0(xi) respectively, i = 1; 2; : : : , according to

yi = yi�1 + hy
0

i�1
+ h

2

sX

j=1

bjfj ; (3)

y
0

i
= y

0

i�1
+ h

sX

j=1

b
0

j
fj ; (4)

where h = xi � xi�1 is constant, and

fj = f(xi�1 + cjh; yi�1 + cjhy
0

i�1
+ h

2

j�1X

k=1

ajkfk); j = 1; : : : ; s:

The prime in b
0

j
denotes the derivative formula and not the derivative of bj .
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In all the methods we consider, the bj are given by

bj = (1� cj)b
0

j
; j = 1; : : : ; s: (5)

For an ERKN method to be symplectic, the ajk must satisfy

ajk = (cj � ck)b
0

k
; k = 1; : : : ; j � 1; j = 2; : : : ; s: (6)

Hence, once cj , bj , j = 1; : : : ; s are known, the remaining coeÆcients of a symplectic

ERKN are known.

For a method to be FSAL, its coeÆcients must satisfy c1 = 0, cs = 1 and

asj = bj ; j = 1; : : : ; s� 1: (7)

If c1 = 0 and cs = 1 and the method is symplectic, (7) is automatically satis�ed.

We decided against using the simplifying assumptions

c
2

j

2
=

j�1X

k=1

ajk ; j = 2; : : : ; s;

because these led to a net reduction in the number of free parameters available for

minimising the principal error coeÆcients.

In the remainder of this paper the term `method' will mean `symplectic method'.

2.2. Six-stage, order �ve non-FSAL methods

There are 13 order conditions up to and including order �ve. However, three of

these order conditions are dependent on the remainder (see, for example [7]). This

means, since six-stage non-FSAL ERKN methods have 12 coeÆcients (cj ; bj ; j =

1; : : : ; 6), we can take two coeÆcients as free parameters and solve for the remaining

coeÆcients. We found it convenient to take c5 and c6 as the free parameters.

Five of the 10 order conditions to satisfy are the quadrature conditions

sX

j=1

bjc
k

j
= (k + 1)�1; k = 0; : : : ; 4; (8)

where we take 00 = 1 and 0k = 0, k > 0. Conditions (8) are easily solved for

b
0

1
; : : : ; b

0

5
in terms of the c and b

0

6
.

The next condition we solve is

6X

j=2

b
0

j

j�1X

k=1

ajk =
1

6
: (9)

When the expressions for b0
1
; : : : ; b

0

5
found from solving (8) are substituted into (9),

the equation becomes a quadratic in b
0

6
. This is solved to give b

0

6
and hence the

other b0 in terms of the c.
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This leaves the following equations to satisfy, where summations are performed

over i and j

biciaij =
1

8
; bic

2

i
aij =

1

10
; biciaijcj =

1

30
; bi(aij)

2 =
1

20
: (10)

When the expressions for the b0 are substituted into the above equations, the equa-

tions become complicated functions of the c. Even with the help of MAPLE we were

unable to solve these equations algebraically and resorted to a numerical approach.

We �rst attempted to use a non-interactive grid method consisting of an outer

and inner grid. The outer grid was over c5 and c6 and was used to minimise the

Euclidean norm of the order six principal error coeÆcients for the solution and

derivative formulae. The inner grid was over c1, c2, c3 and c4 and was used to

generate initial estimates of the solutions of (10). For each point on the inner grid,

we used the package HYBRD (obtained from NETLIB) to solve (10). If a solution

was found, we evaluated the norm of the principal error coeÆcients and updated

our minimum and minimiser if required. As in [4], a solution was accepted only if

�1:5 � cj � 1:5, j = 1; : : : ; 6.

Although the above grid method produced tangible results after several days of

CPU time, there was much duplication of e�ort because HYBRD would converge to

the same solution from di�erent points on the inner grid. In addition, the method

had the air of brute force, something we found unappealing.

We then attempted an interactive grid search consisting of just the outer grid. By

keeping a history stack of the previously converged solutions, we were able, after

gaining some experience, to make rapid progress in the minimisation.

At intermediate points during the grid search, we tested the best ERKN method

we had and compared its performance with published methods on a set of test

problems. On a number of occasions we found the norm of the principal error

coeÆcients signi�cantly over-estimated the eÆciency of the new method. On other

occasions what we thought was a signi�cant decrease in the norm led to little or no

improvement in the eÆciency.

We were unable to ascertain the reason for this sometimes poor correlation be-

tween the predicted and actual performance.

2.3. Seven-stage, order �ve FSAL methods

The derivation and minimisation of seven-stage, order �ve FSAL methods is similar

to that for the six-stage non-FSAL methods, the main di�erence being b
0

7
is now

a free parameter in place of c1. We used the interactive grid method and found

through our testing at intermediate points of the search that methods from the

FSAL family were more eÆcient than those from the non-FSAL family.
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With a grid size of 0:01 for c5 and c6, the best method we found had cj ; bj , j = 1; 7
as follows

c1 = 0:0000000000000000E + 00 c2 = 0:2179621390175646E + 00

c3 = 0:4424703708255242E + 00 c4 = 0:1478460559438898E + 01

c5 = 0:3400000000000000E + 00 c6 = 0:7000000000000000E + 00

c7 = 0:1000000000000000E + 01

b
0

1 = 0:6281213570268329E � 01 b
0

2 = 0:3788983131252575E + 00

b
0

3 = 0:2754528515261340E + 00 b
0

4 = �0:1585299574780513E � 02

b
0

5 = �0:1785704038527618E + 00 b
0

6 = 0:3479995834198831E + 00

b
0

7 = 0:1149928196535844E + 00

The remaining coeÆcients can be found using (5) and (6). The error in satisfying

the order conditions is less than 3� 10�16.

The Euclidean norm of the order six principal error coeÆcients for the solution

and derivative formula is 4:0�10�4 and 4:1�10�4 respectively. The corresponding

norms for the four, �ve-stage order �ve methods given in [7] range from 1:7� 10�2

to 2:4�10�2 for the solution formula and 3:3�10�2 to 4:3�10�2 for the derivative

formula.
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Figure 1. Base 10 log-log graph of the number of derivative evaluations against the norm

of the end-point global error for the two-body problem with e = 0:3 and an integration

interval of [0; 10000].
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An estimate of the relative eÆciency of the new method and those in [7] can

be obtained by assuming the global error varies as the �fth root of the Euclidean

norms. The new method is predicted, after scaling by the number of derivative

evaluations on each step, to be approximately twice as eÆcient as those in [7]. As

stated at the end of the previous sub-section, decreasing the norm of the order six

principal error coeÆcients does not always lead to a corresponding gain in eÆciency.

Hence, the statement that the new method is approximately twice as eÆcient as

those in [7] should be taken as a general statement and not as one that holds for

each and every problem.
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Figure 2. Base 10 log-log graph of the number of derivative evaluations against the norm

of the end-point global error for the two-body problem with e = 0:5 and an integration

interval of [0; 10000].

3. Numerical experiments

We performed extensive numerical comparisons of the new method, the order four

method of [3], the order seven method of [4], and the 20 order �ve and six methods

in [7]. Each method was tested on the simple pendulum problem, the Henon Heiles

problem [5], and the two-body problem. For each method and problem we used

stepsizes of 2�i, i = 2; : : : ; 7 and several intervals of integration. For each integra-
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tion we recorded the global error and the error in the Hamiltonian throughout the

interval of integration. The testing was done in double precision Fortran 90.

Here we present a summary of the comparisons with an emphasis on the two-

body problem because this problem is commonly used when comparing symplectic

methods.

Figures 1, 2 and 3 give the log-log graphs of the number of derivative evaluations

against the end-point error in the Hamiltonian for the two-body problem with

eccentricities of 0:3, 0:5 and 0:7. The interval of integration is [0; 104]. Each �gure

contains the graphs for the new method, the methods of order four and seven in [3]

and [4], and an order �ve and order six method from [7] (we chose the last method

in Tables 1 and 2 of [7], the other methods in the tables led to similar conclusions).

The �ve methods are denoted by NEW5, CS4, CS7, OS5 and OS6 respectively, where

the digit is the order of the method.
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Figure 3. Base 10 log-log graph of the number of derivative evaluations against the norm

of the end-point global error for the two-body problem with e = 0:7 and an integration

interval of [0; 10000].

We consider Figures 1 and 2 �rst. The new method is more eÆcient than OS5

which suggests it was advantageous to use an extra stage. The gain in eÆciency

is approximately a factor of two which agrees well with the gain predicted using

the norm of the principal error coeÆcients. We also observe the new method is



150 LIN-YI CHOU AND P.W. SHARP

more eÆcient than CS4 and CS7, and slightly more eÆcient than OS6. We veri�ed

using quadruple precision that the vertical placement of data points for small global

errors was due to round-o� errors in double precision.

The results in Figure 3 provide a caveat to the above conclusions. The new

method has retained much of its eÆciency relative to OS5 except at large global

errors, but CS4 is more eÆcient than the new method at large global errors.

When the �ve methods are compared on the simple pendulum and Henon Heiles

problem, the relative eÆciency of the order �ve methods is similar to that on the

two-body problem but OS6 is more eÆcient than the new method.
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