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Abstract. The variational formulation of boundary value problems is valuable in providing

remarkably easy computational algorithms as well as an alternative framework with which to

prove existence results. Boundary conditions impose constraints which can be annoying from a

computational point of view. The question is then posed: what is the most general boundary

value problem which can be posed in variational form with the boundary conditions appearing

naturally? Special cases of two-point problems in one-dimension and some higher dimensional

problems are addressed. There is a deep connection with self-adjointness for the linear case.

Further cases under which a Lagrangian may or may not exist are explained.

Keywords: natural boundary conditions, self-adjointness, Hamiltonian, Lagrangian.

1. Introduction

1.1. Background

Variational methods provide a conceptual and computational framework for bound-

ary value problems (BVPs). In the paper we derive conditions which guarantee that

a given BVP can be reformulated in variational form. This can be a way of proving

existence for BVPs (Graham-Eagle and Wake [6]) and it also provides a scheme

for determination of a computational algorithm as in Fradkin and Wake [5]. In the

case of nonlinear eigenvalue problems, these can be a way of producing outcomes

like parameter path-following as has been produced by other means by computer

packages like Auto (Doedel [2]).

The question of what precise conditions need to be imposed on boundary value

problems so that they can be written in variational form has been discussed spas-

modically in the literature, see for example Anderson and Thompson [1], Fels [3],
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and Forray [4]. The question as to which boundary value problems have a varia-

tional formulation in which all of the boundary conditions appear naturally is

largely still an open one and is the subject of this paper.

Boundary conditions appear naturally by the addition of suitable terms in the

Hamiltonian (usually surface integrals on the boundary of the region of interest).

It is usually diÆcult and sometimes impossible to determine these in a systematic

way. Problems exist (like the two-point second order boundary value problem in

one dimension with Dirichlet boundary conditions mentioned below) for which this

is impossible. In these cases the boundary conditions need to be imposed on the

space of functions on which the stationary values of the Hamiltonian is found,

and are called \essential boundary conditions". This can be of nuisance value in

the determination of the subspaces of functions on which the optimisation occurs.

Thus it appears useful to be able to write the variational formulation with all of

the boundary conditions appearing naturally. The more fundamental question as

to whether there is even a Lagrangian is mentioned in Section 3.

1.2. Conceptual framework

If a variational formulation of our problem consists of the Hamiltonian functional

T : S ! <, on the space of functions S (suitably chosen), then T , under suitable

conditions, has a stationary value on S. This gives rise to a boundary value problem.

Our question is: how to choose T so that it has the right boundary conditions

which arises in the original problem. If a variational formulation has the boundary

conditions imposed on S, they are said to be essential. However, if T can be

constructed so as to make the boundary conditions automatically satis�ed on S,

then they are said to be natural. The problem below shows, it is possible to have

part, all, or none of the boundary conditions \natural" and the remaining therefore

are \essential".

We initially thought that all self-adjoint problems (see Stakgold [9]) had a varia-

tional form (VF) in which the boundary conditions appear naturally. The simple

problem,

y00 + f(x)y + g(x) = 0; a < x < b; (1a)

y(a) = y(b) = 0; (1b)

is self-adjoint. However, the boundary conditions are essential and it can be con-

sidered as an example of Case 1 (vi) below. Hence not every self-adjoint bound-

ary value problem has a VF in which the boundary conditions appear naturally.

Nonetheless it appears that there is a substantial overlap between the class of

boundary value problems which can be written in VF with natural boundary con-

ditions and those that are self-adjoint. However, counter-examples like that in (1)

provide evidence that there is not an exact correspondence. In Section 2, some of

the conditions obtained are related to those of self-adjointness.

It appears impossible to completely characterise the class of BVPs which have

VF with natural boundary conditions. In this paper we provide conditions on some
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classes of problems for which this is possible and give conditions under which this

is true. The larger question is still open.

2. Second order BVP in one-dimension

Consider the second order ordinary di�erential equation

y00 + g (x; y; y0) = 0; a < x < b; (2)

where g (x; y; y0) is a suÆciently smooth function. We are interested in solutions of

(2) that satisfy the non-homogeneous linear boundary conditions

m11y(a) +m12y(b) + n11y
0(a) + n12y

0(b) = k1; (3a)

m21y(a) +m22y(b) + n21y
0(a) + n22y

0(b) = k2: (3b)

We rewrite (3) in the vector form,

My+Ny0 = k: (4)

where M , N are 2 � 2 matrices and (M : N) has rank = 2 to ensure (3a), (3b) are

independent. Suppose that the BVP consisting of (2) and (3) has a corresponding

functional form,

J [y] =

Z b

a

f(x; y; y0)dx + h(z1; z2); (5)

where z1 = y(a) and z2 = y(b) and h(z1; z2) 2 C2.

The boundary value problem is related to the corresponding functional form by the

Euler-Langrange equation. By setting the �rst variation ÆJ of J to zero,

ÆJ =

Z b

a

�
@f

@y
Æy +

@f

@y0
Æy0
�
dx+

@h

@z1
Æy(a) +

@h

@z2
Æy(b);

=

�
@f

@y0
Æy

�b
a

+

Z b

a

�
@f

@y
�

d

dx

�
@f

@y0

��
Æydx+

@h

@z1
Æy(a) +

@h

@z2
Æy(b);

= 0;

we �nd that the following conditions must be satis�ed by the boundary terms h in

the functional J and the boundary conditions:

@h

@z1
=

@f

@y0

����
x=a

and
@h

@z2
= �

@f

@y0

����
x=b

: (6)

Let q1(z1; z2) =
@f

@y0
jx=a and q2(z1; z2) = �

@f

@y0
jx=b. By partially integrating q1 and

q2 with respect to z1 and z2 respectively, we can �nd the boundary functional terms

h(z1; z2), provided that a certain exactness or integrability condition is satis�ed.

That is

@2h

@z1@z2
=

@2h

@z2@z1
(7)

as we require that h(z1; z2) 2 C2.
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2.1. Case 1: g independent of y0

For simplicity and without loss of generality, we let [a; b] = [0; 1],

y00 + g(x; y) = 0; 0 < x < 1; (8)

My+Ny0 = k:

The corresponding variational formulation is

J [y] =

Z 1

0

�
(y0)2

2
�G(x; y)

�
dx + h(z1; z2); (9)

where G is a partial primitive of g with respect to y, i.e. @G
@y

= g. The �rst variation

of J is

ÆJ = [y0Æy]10 �

Z 1

0

�
@G

@y
+ y00

�
Æydx+

@h

@z1
Æy(0) +

@h

@z2
Æy(1): (10)

There are several types boundary functional terms h(z1; z2) formed in the vari-

ational formulation which are shown as the following. Let [ ~N : ~M ] be the row

reduced echelon form of the augmented matrix [N : M ]. There are only six pos-

sible cases and these are analysed below. Cases (i) � (iv) are BVPs with at least

one natural boundary condition in their variational forms. Cases (v) and (vi) are

impossible to write in this form with any natural boundary condition, that is, they

have to be imposed as essential boundary conditions.

(i) Mixed boundary conditions I

[ ~N : ~M ] �=

�
1 0 �1 �2
0 1 �3 �4

�

The boundary conditions are

�1y(0) + �2y(1) + y0(0) = k1;

�3y(0) + �4y(1) + y0(1) = k2;

which are Neumann boundary conditions if all the �'s are zero. Then putting

ÆJ = 0 in equation (10), we see that the boundary terms yield the conditions,

@h

@z1
= k1 � �1z1 � �2z2; (11)

@h

@z2
= �(k2 � �3z1 � �4z2): (12)

Then integrating equations (11) and (12) partially to get h, we �nd,

h(z1; z2) = �
1

2
�1z

2
1 � �2z1z2 +

1

2
�4z

2
2 + k1z1 � k2z2:
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provided that �3 = ��2, which follows from the exactness condition (7).

(ii) Mixed boundary conditions II

[ ~N : ~M ] �=

�
1 �1 0 �2
0 0 1 �3

�

The boundary conditions are

�2y(1) + y0(0) + �1y
0(1) = k1;

y(0) + �3y(1) = k2:

In this case, we �nd that

h =
1

2
�2�3z

2
2 � �3k1z2;

provided that �1�3 = 1 which again follows from the exactness condition (7). Note

that in this case only the second boundary condition is essential in that it must be

imposed on the space of functions considered.

(iii) Mixed boundary conditions III

[ ~N : ~M ] �=

�
1 �1 �2 0

0 0 0 1

�

The boundary conditions are

�2y(0) + y0(0) + �1y
0(1) = k1;

y(1) = k2;

then h is

h = �
�2

2
z21 + k1z1;

provided �1 = 0 from the exactness condition (7). In this case only the second

boundary condition is essential.

(iv) Mixed boundary conditions IV

[ ~N : ~M ] �=

�
0 1 0 �1
0 0 1 �2

�

The boundary conditions are

�1y(1) + y0(1) = k1;

y(0) + �2y(1) = k2;

then h is

h =
�1

2
z22 � k1z2;
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provided that �2 = 0 from the exactness condition (7). In this case only the second

boundary condition is essential.

(v) Mixed boundary conditions V

[ ~N : ~M ] �=

�
0 1 �1 0

0 0 0 1

�

The boundary conditions are

�1y(0) + y0(1) = k1;

y(1) = k2:

By calculating the �rst variation of J and accepting that the second boundary con-

dition is inevitably an essential boundary condition, we can then �nd the condition

dh

dz1
= y0(0):

It is impossible to get a solution for the boundary functional terms h. Hence neither

boundary condition is natural in this case.

(vi) Unmixed boundary conditions

[ ~N : ~M ] �=

�
0 0 1 0

0 0 0 1

�

With the boundary conditions,

y(0) = k1;

y(1) = k2:

This is the Dirichlet problem and in this case, it is suÆcient to take h � 0. Note

that both boundary conditions are essential in this case.

All cases for which h exists satisfy the condition ~m11~n21 � ~m21~n11 = ~m12~n22 �

~m22~n12 which is equivalent to the condition m11n21 �m21n11 = m12n22 �m22n12
because the equation is invariant for elementary row operations on [N;M ]. Hence

we obtain the following theorem.

Theorem A boundary value problem of the form

y00 + g(x; y) = 0; a < x < b;

My+Ny0 = k;

with non-zero matrix N has the corresponding variational formulation with func-

tional of the form

J [y] =

Z b

a

�
(y0)2

2
�G(x; y)

�
dx+ h(z1; z2);
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if and only if m11n21 �m21n11 = m12n22 �m22n12.

The conditions above on M , N are just the conditions that the boundary con-

ditions are self-adjoint. In the cases (i)� (iv) the extra conditions on the �i's are

just those that make the problems self-adjoint.

2.2. Case 2: g dependent on y
0

Here a more basic question arises: what is the basic form of the Lagrangian f? It is

clear that not all boundary value problems have a Lagrangian. ( e.g. y0 = g(x; y) -

a �rst order di�erential equation, does not have a VF. ) This question is discussed

generally in Olver [8].

Suppose there is a second order ordinary di�erential equation,

y00 + g(x; y; y0) = 0; x 2 [a; b] (13)

where g(x; y; y0) is a smooth function. We wish to see if a variational formulation

exists in the form,

J [y] =

Z b

a

f(x; y; y0)dx;

which should be optimised by the solution of the ODE. We wish to investigate if

the corresponding �rst variation of the functional J [y] could produce a functionally

independent but compatible di�erential equation for y so that any solution to the

new equation is also a solution of the in the original boundary value problem. The

Euler-Lagrange equation is:

@f

@y
�

d

dx

�
@f

@y0

�
=

@f

@y
�

@2f

@x@y0
�

@2f

@y@y0
y0 �

@2f

@(y0)2
y00 = 0:

Put p = y0 and y00 = �g(x; y; y0) for simpli�cation. Then f must satisfy

@2f

@x@p
+ p

@2f

@y@p
� g

@2f

@p2
=

@f

@y
: (14)

The equation is most easily solved if we �rst di�erentiate it with respect to p

@3f

@x@p2
+

@2f

@y@p
+ p

@3f

@y@p2
�
@g

@p

@2f

@p2
� g

@3f

@p3
=

@2f

@y@p
:

Now put

@2f

@p2
= z: (15)
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Then we get the �rst order partial di�erential equation

@z

@x
+ p

@z

@y
� g

@z

@p
= z

@g

@p
: (16)

Consider the characteristic equations,

dx

ds
= 1

dy

ds
= p

dp

ds
= �g

dz

ds
= z

@g

@p

where s is a characteristic variable (see [7] for detail). We have

z = e
R

@g
@p

ds; (17)

and for g is \nice enough",
R

@g

@p
ds will always exist. Then, the Lagrangian f can

be found by integrating z twice with respect to p.

Explicit answers for f are provided for the following cases.

(i) g = Q(p)R(x; y)

If z depends only on p, substitute g into (16) to get z = 1
Q(p)

. So, the Lagrangian

f will be,

f =

Z p

0

Z u

0

1

Q(s)
dsdu+ A(x; y)p+B(x; y):

Putting f into the Euler-Lagrange equation shows that,

R(x; y) =
@A

@x
�
@B

@y
:

If we choose A = 0, B = �
R y
0
R(x; u)du then the Lagrangian is

f =

Z p

0

Z u

0

1

Q(s)
dsdu�

Z y

0

R(x; u)du:

(ii) g = R(x)p+Q(x; y)

From equation (16) we get z = e
R
x

0
R(s)ds, and the Lagrangian is

f =
p2

2
e
R
x

0
R(s)ds +A(x; y)p+B(x; y): (18)
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Then putting (18) into the Euler-Lagrange equation we obtain

Q(x; y) =

�
@A

@x
�
@B

@y

�
e�

R
x

0
R(s)ds; (19)

and we obtain A,B as in (i).

(iii) g = R(x)p+Q(x)y + P (x)

This is a particular case of (19) with Q(x; y) linear in y,

Q(x)y + P (x) =

�
@A

@x
�
@B

@y

�
e�

R
x

0
R(s)ds: (20)

(a) We can choose A and B as,

A(x; y) = 0;

and

@B

@y
= �(Q(x)y + P (x))e

R
x

0
R(s)ds:

In this case, the Lagrangian will be

f =
p2

2
e
R
x

0
R(s)ds

�

�
y2

2
Q(x) + P (x)y

�
e
R
x

0
R(s)ds:

(b) There are other choices for A and B. With

A(x; y) = y

Z x

0

Q(s)ds e
R
x

0
R(s)ds;

B(x; y) = �h(x)ye
R
x

0
R(s)ds +

1

2
y2R(x)

Z x

0

Q(s)ds e
R
x

0
R(s)ds;

we get the Lagrangian

f =

�
p2

2
+ yp

Z x

0

Q(s)ds� h(x)y +
1

2
y2R(x)

Z x

0

Q(s)ds

�
e
R
x

0
R(s)ds:

Thus there are only these few cases of equation (13) for which a Lagrangian can

be constructed for the VF of the boundary value problem. In these cases only we

would then �nd conditions on the �k`s for which the boundary conditions could

be natural, using the compatibility conditions in equation (7). The details are not

given here.
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3. Extensions

In this section, we will look at the usage of VF in partial di�erential equations and

the relation with self-adjointness. Again the challenge is to �nd the Lagrangian

�rst. A parallel work can be found in Olver [8], which shows a homogenous system

of linear di�erential equations has a corresponding functional form if and only if

the di�erential operator is self-adjoint.

3.1. Higher dimensional systems

Consider a second order partial di�erential equation of the form,

q1(x; y)

0
@X

ij

aij(x)
@2y

@xi@xj
+
X
j

bj(x)
@y

@xj
+ c(x)y

1
A = 0; x 2 
 � <

n;

(21)

where q1(x; y) is an arbitrary multiple function which may arise when the partial

di�erential equation is evaluated from the Euler-Lagrange equations. Then the

corresponding Lagrangian has the form,

f =
X
ij

aij(x)q1(x; y)
@y

@xi

@y

@xj
+ q(x; y);

where q(x; y) = q1(x; y)q2(x; y) and q2(x; y) is an arbitrary function. By putting

the Lagrangian f into the Euler-Lagrange equations, we get,

q1 = q1(x) and q2(x; y) = �
1

2
c(x)y2:

Then, to solve for q1(x), we need to solve the equations,

X
i

@

@xi
(aij(x)q1(x)) = q1(x)bj(x); j = 1; : : : ; n: (22)

If q1(x) is a constant, the equations (22) become

X
i

@

@xi
(aij(x)) = bj(x):

This means the partial di�erential equations are self-adjoint and the funtional form

is

J [y] =

Z



0
@X

ij

aij(x)
@y

@xi

@y

@xj
� c(x)y2

1
A dx:
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However, if q1(x) is not a constant, the equations (22) are

X
i

�
aij(x)

@q1

@xi
+ q1(x)

@aij

@xi

�
= q1(x)bj(x):

Since A = (aij) is symmetric, aij = aji, so that

X
i

1

q1

@q1

@xi
aji = bj �

X
i

@aij

@xi
:

This can be thought of as the jth row of the system of equations,

A

0
BBBB@

1
q1

@q1
@x1

1
q1

@q1
@x2
...

1
q1

@q1
@xn

1
CCCCA =

2
6664

b1 �
P

i
@ai1
@xi

b2 �
P

i
@ai2
@xi

...

bn �
P

i
@ain
@xi

3
7775

or

Ar(ln q1) = b�r � A:

If the n equations for q1 are compatible with each other and satisfy the system,

then q1 can be found. The variational formulation for the linear non-self-adjoint

partial di�erential equation also exists.

3.2. Example

If q1 is a constant equal to unity, we can have a second order linear self-adjoint

partial di�erential equation,

a(x1; x2)
@2y

@x21
+ 2b(x1; x2)

@2y

@x1@x2
+ c(x1; x2)

@2y

@x22
+ g

�
x1; x2; y;

@y

@x1
;
@y

@x2

�
= 0:

(23)

Comparing equation (23) with the Euler-Lagrange equation,

d

dx1

�
@f

@p1

�
+

d

dx2

�
@f

@p2

�
=

@f

@y
;

where pi =
@y

@xi
and the ordinary di�erential operator d

dxi
is considered as a special

kind of partial di�erential operator which takes xj , j 6= i, as constant. So

@2f

@p21

@2y

@x21
+ 2

@2f

@p1@p2

@2y

@x1@x2
+
@2f

@p22

@2y

@x22
+

@2f

@y@p1

@y

@x1
+

@2f

@y@p2

@y

@x2

+
@2f

@x1@p1
+

@2f

@x2@p2
=

@f

@y
:
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We can �nd the following conditions,

@2f

@p21
= a(x1; x2);

@2f

@p1@p2
= b(x1; x2);

@2f

@p22
= c(x1; x2):

Then the Lagrangian f will have the quadratic form,

f =
1

2
A(x1; x2)p

2
1 + B(x1; x2)p1p2 +

1

2
C(x1; x2)p

2
2 +D(x1; x2; y):

By putting the Lagrangian f into the Euler-Lagrange equation, we will �nd that

D(x1; x2; y) = D1(x1; x2)y +D2(x1; x2) and

f =
1

2
A(x1; x2)p

2
1 +B(x1; x2)p1p2 +

1

2
C(x1; x2)p

2
2 +D1(x1; x2)y +D2(x1; x2):

For Laplace's equation, a(x1; x2) = c(x1; x2) = 1 and b(x1; x2) = 0 and the corre-

sponding functional form is

f =
1

2
(p21 + p22) +D1(x1; x2)y +D2(x1; x2)

with D1 = 0, otherwise, it becomes Poisson's equation.
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