
JOURNAL OF APPLIED MATHEMATICS AND DECISION SCIENCES, 6(3), 143–153
Copyright c© 2002, Lawrence Erlbaum Associates, Inc.

A New Heuristic for the Quadratic
Assignment Problem

ZVI DREZNER† zdrezner@fullerton.edu

College of Business and Economics, California State University, Fullerton, CA 92834.

Abstract. We propose a new heuristic for the solution of the quadratic assignment
problem. The heuristic combines ideas from tabu search and genetic algorithms. Run
times are very short compared with other heuristic procedures. The heuristic performed
very well on a set of test problems.

Keywords: Quadratic Assignment, Heuristic Algorithms.

1. Introduction

The quadratic assignment problem is considered one of the most difficult
optimization problems. It requires the location of n facilities on a given set
of n sites, one facility at a site. A distance matrix {dij} between sites and
a cost matrix {cij} between facilities are given. The cost f to be minimized
over all possible permutations, calculated for an assignment of facility i to
site p(i) for i = 1, . . . , n, is:

f =
n∑

i=1

n∑
j=1

cijdp(i)p(j) (1)

The first heuristic algorithm proposed for this problem was CRAFT [1].
More recent algorithms use metaheuristics such as tabu search [2], [14], [16],
simulated annealing [4], [6], [19] and genetic algorithms [8]. For a complete
discussion and list of references see [3], [17], [5].

2. The Algorithm

A starting solution is selected as the center solution. A “distance” ∆p
is defined for each solution (permutation p of the center solution). The
distance ∆p is the number of facilities in p that are not in their center
solution site. The following are trivial properties of ∆p:

† Requests for reprints should be sent to Zvi Drezner, College of Business and Eco-
nomics, California State University, Fullerton, CA 92834.



144 Z. DREZNER

1. For all single pair exchanges of the center solution ∆p = 2.

2. There are no permutations with distance ∆p = 1.

3. ∆p ≤ n because no more than n facilities can be out of place.

4. If an additional pair exchange is applied on a permutation p, then ∆∆p
(the change in ∆p) is between -2 and +2. Note that only the additional
pair of exchanged facilities affect the value of ∆∆p. Therefore, ∆∆p is
calculated in O(1)

We use this distance from the center solution as a tabu mechanism. We
search the solution space starting from the center solution, and each step
we search solutions with increasing distance from the center solution, until
we reach a prespecified search depth d ≤ n. We do not move back towards
the center solution unless a solution better than the best found one is
encountered. We perform all pair-wise exchanges of the center solution and
keep the best K permutations, where K is a parameter of the algorithm.
All these K permutations are different from the center solution in two sites
and therefore their distance from the center solution is ∆p = 2. Pair-wise
exchanges of any of these K permutations lead to permutations which are
different from the center one in either two or fewer sites, or three sites, or
four sites. We generate two lists. One consists of the best K permutations
with distance ∆p = 3, and the other is a list of the best K permutations
with ∆p = 4. Next we check all pairwise exchanges of the best found K
permutations with ∆p = 3, updating possibly the list with ∆p = 4, and
creating a list of the best K permutations with distance ∆p = 5, and so
on, until we scan the best K permutations which are different from the
original one in d sites. If throughout the process a solution better than the
best found one is encountered, the center solution is replaced by the newly
found best solution, and the process starts from the beginning. If no better
solution is found throughout the scanning, the iteration is complete.

2.1. Description of One Iteration

A center solution is selected. Let p be a permutation of the center solution
by successive pair exchanges. We keep three lists of solutions which we term
list0, list1, and list2. list0 contains solutions with distance ∆p. Similarly,
list1 and list2 contain solutions whose distance is ∆p + 1, and ∆p + 2,
respectively. The depth of the search is set to d ≤ n. It is recommended
to apply d = n or very close to it.

1. A center solution is selected.



THE QUADRATIC ASSIGNMENT PROBLEM 145

2. Start with ∆p = 0. At the start, list0 has one member (the center
solution) and the other two lists are empty. The best found solution is
the center solution.

3. Go over all the solutions in list0. For each solution p:

• evaluate all pair exchanges for that solution.

• If the exchanged solution is better than the best found solution,
update the best found solution and proceed to evaluate the rest of
the exchanges. This is necessary in order to be able to apply the
short cut (see the appendix).

• If the distance of an exchanged solution is ∆p or lower, ignore the
permutation and proceed with scanning the exchanges of permuta-
tion p.

• If its distance is ∆p + 1 or ∆p + 2, check it for inclusion in the
appropriate list. This is performed as follows:

– If the list is shorter than K or the solution is better than the
worst list member, check if it is identical to a list member by
first comparing its value of the objective function to those of
list members, and only if it is the same as that of a list member
the whole permutation is compared.

– If an identical list member is found, ignore the permutation
and proceed with scanning the exchanges of permutation p.

– Otherwise,
∗ If the list is of length K, the permutation replaces the worst

list member,
∗ If the list is shorter than K, the permutation is added to

the list.
– A new worst list member is identified.

4. If a new best found solution is found by scanning all the exchanges of
permutation p, set the center solution to the new best found solution
and go to Step 2.

5. Once all solutions in list0 are exhausted, move list1 to list0, list2 to
list1, and empty list2.

6. Set ∆p = ∆p + 1.

7. If ∆p = d + 1 stop the iteration.

8. Otherwise, return to Step 3.



146 Z. DREZNER

The process of an iteration applies concepts from tabu search and genetic
algorithms [10], [13]. In tabu search we disallow backward tracking thus
forcing the search away from previous solutions. In our approach we pro-
ceed farther and farther away from the center solution because ∆p increases
throughout the iteration. As in tabu search we can go back only when go-
ing back leads to a solution better than the best found one. It resembles
genetic algorithms because a “population of K members” is maintained
during the iteration and populations of offspring, that replace adults in
the population are generated. However, there is no merging of parents
in our procedure. Our population is unisex as in primitive forms of life.
Progression and improvement occur only due to mutations.

We constructed an algorithm that repeats the iterations several times.
Once an iteration is completed, (i.e., the scanning of all lists did not yield
a solution better than the best found one), we can start a new iteration.
We can use either the best solution found throughout the last scan (which
is not better than the previous center solution) as the new center solution,
or the best solution in the last list (of distance ∆p = d). The first option is
similar to a steepest descent approach or an iteration of a tabu search with
an empty tabu list. The second approach is similar to the diversification
idea in tabu search, i.e. moving to a “different region” in the search space.
We opted to combine the two and alternate between selecting the best
one throughout the search, and the best one in the last list for the next
iteration.

The Algorithm

1. Select a random center solution. It is also the best found solution.

2. Set a counter c = 0.

3. Select d randomly in [n− 4, n − 2]. Perform an iteration on the center
solution.

4. If the iteration improved the best found solution go to step 2

5. Otherwise, advance the counter c = c + 1, and

• If c = 1, 3 use the best solution in the list with ∆p = d as the new
center solution and go to Step 3.

• If c = 2, 4 use the best solution found throughout the scan (not
including the old center solution) as the new center solution and
go to Step 3.

• If c = 5 stop.



THE QUADRATIC ASSIGNMENT PROBLEM 147

3. Computational Experiments

The algorithm was coded in Microsoft PowerStation Fortran 4.0 and ran on
a Portege Toshiba 600MHz Pentium III lap-top. We selected all symmetric
problems, for which the optimal solution is not known, of up to 64 facilities.
The data base on http://www.mim.du.dk/~sk/qaplib has all 19 problems.
The problems are: Kra30a, Kra30b [11], Nug30 [12], Tho30, Tho40 [18],
Esc32a-32h Esc64a [7], Ste36a-c [15], Sko42-64 [14], and Wil50 [19]. The
problem name includes the number of facilities as part of it.

As will be seen from the results reported below, the new algorithm is
very fast, and we believe it is much faster than other algorithms reported
in the literature (problems with n = 30 facilities were solved 120 times with
K = 1 in 3-4 seconds, i.e., 0.03 seconds per run. Problems with n = 64
facilities were solved 120 times with K = 1 in less than a minute, or less
than half a second per run.) We also plan to use this algorithm as part of
a genetic algorithm. These run times are the times required to generate
an initial population of 120 members using K = 1. Preliminary results of
such a genetic algorithm are very promising. Comparing and evaluating
the advantage of our algorithm over other algorithms is very difficult. We
therefore, compared the performance of the algorithm using different values
of K. The results reported below are of about the same quality as those
reported in [17] but the run times are much faster.

We ran the algorithm for K = 1−6, 8, 10. We ran each variant 120
K times

and report the best solution found in these runs so that run times will be
about the same. We chose “120” because it divides evenly the selected set
of K’s.

The results are summarized in Tables 1-2. In Table 3 we give the in-
formation about the instances in which the best known solution was not
found for completeness of the presentation.

By examining tables 1-3 we conclude that

• Run times are very similar for various K’s. Generally, they decrease
with K.

• In most cases the best average solution is obtained for K = 1.

• The K for which the highest number of times that the best known
solution is obtained was K = 1 in many cases. However, especially for
larger problems, the number of times was higher for a larger K. Clear
exceptions are:

– Ste36c for which the highest number was recorded for K = 4 (41
cases for K = 4 compared with only 5 cases for K = 1);



148 Z. DREZNER

Table 1. Comparison Between Different Population sizes (K = 1− 4)

Problem Best K = 1 K = 2 K = 3 K = 4
Known † ‡ ∗ † ‡ ∗ † ‡ ∗ † ‡ ∗

Kra30a 88900 62 0.63 3.4 70 0.58 3.2 60 0.69 3.1 53 0.81 3.0
Kra30b 91420 37 0.08 3.4 20 0.12 3.1 13 0.16 3.0 16 0.15 3.0
Nug30 6124 62 0.04 3.7 62 0.03 3.3 68 0.04 3.2 60 0.05 3.0
Tho30 149936 76 0.09 3.7 81 0.09 3.3 60 0.13 3.1 54 0.15 3.0

Esc32a 130 112 0.10 3.9 116 0.05 3.7 114 0.08 3.7 109 0.17 3.7
Esc32b 168 120 0 3.3 120 0 3.0 120 0 2.9 120 0 2.9
Esc32c 642 120 0 2.1 120 0 2.0 120 0 1.9 120 0 1.9
Esc32d 200 120 0 2.5 120 0 2.4 120 0 2.4 120 0 2.4
Esc32h 438 120 0 2.6 120 0 2.5 120 0 2.5 119 0.00 2.4

Ste36a 9526 8 0.49 7.2 5 0.64 6.7 5 0.63 6.5 14 0.59 6.4
Ste36b 15852 56 0.48 6.9 40 0.62 6.2 34 0.77 6.0 33 0.90 5.8
Ste36c 8239.11 5 0.25 7.2 2 0.34 6.6 4 0.31 6.4 41 0.28 6.1

Tho40 240516 4 0.19 10.1 1 0.23 9.2 1 0.22 8.9 2 0.23 8.7

Sko42 15812 63 0.06 12.6 58 0.05 11.4 36 0.07 11.2 35 0.09 10.7

Sko49 23386 7 0.13 21.8 2 0.14 20.0 6 0.14 19.6 3 0.14 18.9

Wil50 48816 3 0.08 22.9 0 0.08 21.1 0 0.09 19.9 1 0.09 19.6

Sko56 34458 0 0.19 34.1 0 0.20 31.2 0 0.21 30.0 0 0.21 29.8

Sko64 48498 0 0.19 54.7 0 0.20 50.4 1 0.22 49.3 2 0.23 48.4
Esc64a 116 120 0 18.5 120 0 17.5 120 0 17.2 120 0 17.2

† Number of times out of 120 that best known solution obtained
‡ Percentage of average solution over the best known solution
∗ Time in seconds per run (Each run consists of 120

K individual runs)



THE QUADRATIC ASSIGNMENT PROBLEM 149

Table 2. Comparison Between Different Population sizes (K = 5− 10)

Problem Best K = 5 K = 6 K = 8 K = 10
Known † ‡ ∗ † ‡ ∗ † ‡ ∗ † ‡ ∗

Kra30a 88900 53 0.84 3.0 48 0.94 2.9 35 1.10 2.9 33 1.14 2.8
Kra30b 91420 18 0.17 2.9 18 0.20 2.9 9 0.26 2.8 12 0.26 2.8
Nug30 6124 39 0.07 3.0 32 0.11 2.9 29 0.08 2.8 17 0.13 2.8
Tho30 149936 72 0.11 2.9 50 0.17 2.9 52 0.18 2.8 49 0.20 2.7

Esc32a 130 108 0.15 3.7 110 0.14 3.8 104 0.22 3.7 102 0.28 3.8
Esc32b 168 120 0 2.9 120 0 2.9 120 0 2.9 120 0 2.9
Esc32c 642 120 0 1.9 120 0 1.9 120 0 1.9 120 0 1.9
Esc32d 200 120 0 2.3 120 0 2.3 119 0.01 2.3 120 0 2.3
Esc32h 438 119 0.00 2.4 120 0 2.4 113 0.03 2.4 108 0.05 2.4

Ste36a 9526 5 0.82 6.3 9 0.72 6.3 4 0.84 6.1 7 0.81 6.1
Ste36b 15852 23 1.04 5.6 31 1.03 5.6 18 1.45 5.4 20 1.51 5.4
Ste36c 8239.11 23 0.41 6.1 30 0.37 6.0 14 0.45 6.0 15 0.52 5.9

Tho40 240516 1 0.28 8.5 0 0.27 8.4 0 0.27 8.1 0 0.30 8.2

Sko42 15812 45 0.09 10.4 25 0.11 10.4 39 0.11 10.1 15 0.16 10.0

Sko49 23386 3 0.14 18.7 11 0.15 18.5 2 0.17 18.5 6 0.16 18.5

Wil50 48816 4 0.09 19.1 6 0.10 19.2 3 0.11 18.5 4 0.12 18.9

Sko56 34458 2 0.23 29.6 1 0.24 28.9 1 0.27 29.3 0 0.29 29.9

Sko64 48498 3 0.24 48.3 4 0.25 48.5 1 0.24 48.3 1 0.27 49.9
Esc64a 116 120 0 17.4 120 0 17.7 120 0 18.1 120 0 18.4

† Number of times out of 120 that best known solution obtained
‡ Percentage of average solution over the best known solution
∗ Time in seconds per run (Each run consists of 120

K individual runs)



150 Z. DREZNER

Table 3. Instances Where the Best Known Solution was not Found

Problem Best First Instance Second Instance Third Instance
Known K Min † ‡ K Min † ‡ K Min † ‡

Tho40 240516 6 240542 9 0.01 8 240542 7 0.01 10 240542 12 0.01

Wil50 48816 2 48824 6 0.02 3 48824 8 0.02

Sko56 34458 1 34462 2 0.01 2 34462 1 0.01 3 34462 1 0.01
4 34462 1 0.01 10 34462 1 0.01

Sko64 48498 1 48502 4 0.01 2 48502 1 0.01

† Number of times out of 120 that the minimum solution obtained
‡ Percentage of minimum solution over the best known solution

– Sko49 achieved the highest number for K = 6;

– Wil50 achieved the highest for K = 6,

– Sko56 achieved the highest for K = 5; and

– Sko64 achieved the highest for K = 6.

• For most problems, especially the larger ones, the average solution was
within 0.2% of the best known solution. This is about the quality of
the solutions for such problems obtained by slower algorithms [17].

• There were 12 instances (out of 152) in which the best known solution
was not identified even once (see Table 3). However, in all 12 cases the
best solution found was within 0.02% of the best known solution.

4. Conclusions

We proposed a new heuristic algorithm for the solution of the Quadratic
Assignment problem. The algorithm combines features of tabu search and
genetic algorithms. We plan to investigate the application of this algo-
rithm as part of a genetic algorithm. Preliminary experiments with genetic
algorithms incorporating the proposed algorithm are very promising.

The proposed algorithm is very fast compared with other heuristics. It
is therefore difficult to compare it with other algorithms. However, we
obtained solutions of similar quality to other algorithms in shorter run



THE QUADRATIC ASSIGNMENT PROBLEM 151

times. This demonstrates the superiority of the proposed algorithm over
existing ones.

Appendix: The Short Cuts

The following short cuts are explained in [17]. Since we experimented
only with symmetric problems, we present this short cut for symmetric
problems with zero diagonal (i.e., the cost between a facility and itself, and
the distance between identical locations is zero).

Let ∆frs be the change in the cost f by exchanging the sites of facilities
r and s. This is a similar concept to the derivative of f . There are n(n−1)

2
∆frs’s. It can be easily verified by Equation (1) that:

∆frs = 2
n∑

i=1

{
cir[dp(i)p(s) − dp(i)p(r)] + cis[dp(i)p(r) − dp(i)p(s)] (2)

= 2
n∑

i=1

{
[cir − cis][dp(i)p(s) − dp(i)p(r)]

}
Calculating ∆frs by using Equation (2) requires only O(n) time rather

than O(n2) time required to calculate f by Equation (1).
Taillard [17] points to a faster formula to calculating ∆frs. Define ∆uvfrs

the change in the value of the objective function between the exchanged
permutation by rs, and an additional exchanged pair uv. This is a similar
concept to the second derivative of f . This change in the value of the
objective function can be calculated in O(1) (starting from the second
iteration) if the pairs rs and uv are mutually exclusive. The formula is
based on ∆fuv (the change in the value of the objective function from the
previous permutation by exchanging the pair uv). Therefore, one needs
to keep all the values of ∆fij for all i, j, and K three times for a total of
3n(n−1)K

2 values.
Since,

∆fuv = 2
n∑

i=1

{
[ciu − civ][dp(i)p(v) − dp(i)p(u)]

}
Then, by checking which terms change if an exchange uv is performed on

a permutation where rs were exchanged:



152 Z. DREZNER

∆uvfrs = ∆fuv + 2[csu − csv − (cru − crv)][dp(r)p(v) − dp(r)p(u)]
+ 2[cru − crv − (csu − csv)][dp(s)p(v) − dp(s)p(u)]

which leads to:

∆uvfrs = ∆fuv + 2[csu + crv − csv − cru]
[dp(s)p(u) + dp(r)p(v) − dp(s)p(v) − dp(r)p(u)] (4)

Note that only 2n − 3 pairs are not mutually exclusive and formula (2)
can be used in these cases to evaluate ∆uvfrs. Therefore, evaluating the
change in the value of the objective function for all n(n−1)

2 possible pair
exchanges (which is required for one step of the algorithm) requires O(n2)
time. Therefore, one pass through all O(n) distances from the center using
the short cut requires O(n3K) time.

References

1. Armour G.C., and E.S. Buffa (1963) “A Heuristic Algorithm and Simulation Ap-
proach to Relative Location of Facilities,” Management Science, 9, 294-309.

2. Battiti R. and G. Tecchiolli (1994) “The Reactive Tabu Search,” ORSA Journal
on Computing, 6, 126-140.

3. Burkard R.E. (1990) “Locations with Spatial Interactions: The Quadratic Assign-
ment Problem,” In P.B. Mirchandani and R.L. Francis, editors, Discrete Location
Theory, Wiley, Berlin.

4. Burkard R.E., and F. Rendl (1984) “A Thermodynamically Motivated Simulation
Procedure for Combinatorial Optimization Problems,” European Journal of Oper-
ations Research, 17, 169-174.

5. Cela E. (1998) The Quadratic Assignment Problem: Theory and Algorithms,
Kluwer Academic Publishers, Dordrecht.

6. Connolly D.T. (1990) “An Improved Annealing Scheme for the QAP,” European
Journal of Operational Research, 46, 93-100.

7. Eschermann B., and H.J. Wunderlich (1990) “Optimized Synthesis of Self-Testable
Finite State Machines,” In 20th International Symposium on Fault-Tolerant Com-
puting (FFTCS 20), Newcastle upon Tyne, 26-28th June, 1990.

8. Fleurent C., and J.A. Ferland (1994) “Genetic Hybrids for the Quadratic Assign-
ment Problem,” In P. Pardalos and H. Wolkowicz, editors, Quadratic Assignment
and Related Problems, volume 16, pages 173-187. DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science.

9. Giovannetti M. (1997) “Methaheuristic and exact algorithms for the quadratic
assignment problem,” University of Bologna, Cesena Site.

10. Glover F., and M. Laguna (1997) Tabu Search, Kluwer Academic Publishers.
11. Krarup J., and P.M. Pruzan (1978) “Computer-Aided Layout Design,” Mathemat-

ical Programming Study, 9, 75-94.
12. Nugent C.E., T.E. Vollman, and J. Ruml (1968) “An Experimental Comparison

of Techniques for the Assignment of Facilities to Locations,” Operations Research,
16, 150-173.



THE QUADRATIC ASSIGNMENT PROBLEM 153

13. Said S. (1998) ”Heuristic Search Methods,” in G. Marcoulides (Ed.) Modern Meth-
ods for Business Research, Lawrence Erlbaum Associates, Mahwah, NJ.

14. Skorin-Kapov J. (1990) “Tabu Search Applied to the Quadratic Assignment Prob-
lem,” ORSA Journal on Computing, 2, 33-45.

15. Steinberg L. (1961) “The Backboard Wiring Problem: a Placement Algorithm,”
SIAM Review, 3, 37-50.

16. Taillard E.D. (1991) “Robust Tabu Search for the Quadratic Assignment Problem,”
Parallel Computing, 17, 443-455.

17. Taillard E.D. (1995) “Comparison of Iterative Searches for the Quadratic Assign-
ment Problem,” Location Science, 3, 87-105.

18. Thonemann U.W., and A. Bolte. (1994) “An Improved Simulated Annealing algo-
rithm for the Quadratic Assignment Problem,” Working paper, School of Business,
Department of Production and Operations Research, University of Paderborn, Ger-
many.

19. Wilhelm M.R. and T.L. Ward (1987) “Solving Quadratic Assignment Problems by
Simulated annealing,” IIE Transactions, 19, 107-119.


