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The random (or stochastic) approximation-solvability, based on a projec-
tion scheme, of linear random operator equations involving the theory of
the numerical range of a bounded linear random operator is considered.
The obtained results generalize results with regard to the deterministic
approximation-solvability of linear operator equations using the Galerkin
convergence method.

Key words: Stochastic Projection Scheme, Numerical Range, Approxi-
mation-Solvability.

AMS subject classifications: 47H17, 60H25.

1. Introduction

The theory of random operator equations originated from a desire to develop deter-
ministic operator equations that were more application-oriented, with a special desire
to deal with various natural systems in applied mathematics, since the behavior of
natural systems is governed by chance. As attempts were made by many scientists
and mathematicians to develop and unify the theory of random equations employing
concepts and methods of probability theory and functional analysis, the Prague
School of probabilists under Spacek initiated a systematic study using probabilistic
operator equations as models for various systems. This development was further ener-
gized by the survey article by Bharucha-Reid [2] on various treatments of random
equations under the framework of functional analysis. For details on random opera-
tor equations, consider the work of nharucha-Reid [1-3], Hans [5], Saaty [8], and
others.

Engl and Nashed [4] studying the deterministic projection schemes of the approxi-
mation-solvability of linear operator equations, considered a stochastic projection
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scheme in a Hilbert space setting, and established the existence of the best-approxi-
mate solutions by a selective approach. Our aim has been to apply the theory of a

random numerical range to the random (or stochastic) approximation-solvability of
linear random operator equations. Among the obtained results, is a generalization of
a result of Zarantonello [14] regarding the numerical range of the classical type. Non-
linear analogs of the results involving A-regular random operators using the random
version of the Zarantonello numerical range [14] can be discovered. For more informa-
tion about A-regular operators, please study [10].

Consider a complete measure space (W, F, #). Let X be a separable (real or com-

plex) Hilbert space with inner product /’," }and I1" I1" Le B(X)denote the -alge-
bra or Borel fields of Borel subsets of X. Let f:WX be a mapping such that
f-I(B) is in F whenever B is in B(X), that is, f is a random variable in X. Giving
this definition is equivalent to stating that a random variable with values in X is a

Borel measurable function. An operator T: W xXX is said to be a random opera-
tor if {w in W: T(w,x)is in B} is in F for all x in X and for all B in B(X). An
operator T: W xXX is measurable if it is measurable with respect to the r-algebra

x B(X). A random operator T is continuous at x, if for each w in W, T(w,. is
continuous at x, that is, if

implies T(w, xn)T(w,x for all w in W.

A measurable mapping f:WX is called a random fixed point of a random operator
T: W xX X if, for all w in W, T(w, f(w))= f(w).

Definition 1.1" Let T:W x XX be a linear random operator. A random
(stochastic) numerical range of T, denoted N[T(w)], is defined for all w in W and u
in X by

NIT(w)] {{T(w, u), u}: II u II 1}.

N[T(w)] is a random version of the classical numerical range, and it does have
properties similar to those of the classical numerical range.

Definition 1.2: (The Moore-Penrose inverse). Let T:XY be a bounded linear
operator from a Hilbert space X to another Hilbert space Y. Let TIN denote the
restriction of T to the orthogonal complement of the null space of T. The
generalized inverse or the Moore-Penrose inverse) of T, denoted by T +, is the uni-
que linear extension of {TIN }-1 SO that its domain is D RT (R) R and its
null space isN =R74. T +

T-r"
If PM denotes the orthogonal projector of X onto a closed subspace M of X and

if Q denotes the orthogonal projector of Y onto R, then T+T-PN and

I-TT + -Q D
T +. On one hand, when Rr is not closed, Dr+ isadenselinear

manifold of Y and T + is unbounded; and on the other hand, if RT is closed, then by
the open mapping theorem, T + is bounded and D Y. For more on generalized
inverses, see [6]. Generalized nverses of hnear operators seem to have nice
applications in analysis, statistics, prediction and control theory. As most of these
applications are related to the least-squares property that the generalized inverses
possess in Hilbert spaces, T + is characterized by the following extremal property.
Let u be defined so that u T + y for y in Rr R. Then u minimizes II Tx y II
over x in DT and has the smallest norm among all other minimizers.

Definition 1.3: (The least-squares solution): Let T be a linear operator form a
Hilbert space X into another Hilbert space Y. We call u in X a least-squares
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solution of the operator equation Tx y for a fixed y in Y if inf{ II y I1 is in
x) II Tu- y II. in addition, u in X is a least-squares solution of minimal norm,
it is called a best-approximate solution of Tx- y.

Note that when T is a bounded linear operator, Tx-y has a best-approximate
solution if and only if y is in RT(R)R. Furthermore, T+y for y in
D + -RT (R) R is the unique best-approximate solution of minimal norm. As a
resTult, if RT is closed, a best-approximate solution exists for every y in Y; however, if
RT is not closed, a best-approximate solution does not exist if the orthogonal
projection of y onto RT is not in RT.

Now let us recall the random version of a best-approximate solution. For
random operator T" W XY, we consider the operator equation T(., x) y, where
y is a fixed element of Y; or more generally, we consider the equation

T(.,x(.)) y(.). (1.1)

A mapping u: W---,X satisfying the relation

inf{ II y(w)[I-(w) is in x} II T(w,u(w))-y(w)II

for all w in W, is said to be a wide-sense best-approximate solution of (1.1). A wide-
sense best-approximate solution which is also measurable is called a random best-
approximate solution.

Next, we recall some auxiliary results crticial to the work at hand.
Lemma 1.1: [4] Let X,Y and Z be separable Hilbert spaces, and let

T: W x X---Y be a continuous random operator, U: W x Z---X be a random operator,
and z: W--+X be measurable. Then
(i) w-+T(w,z(w)) is measurable.
(ii) ToU is a random operator on W x Z mapping each (w,u) into T(w,U(w,u)).

Lemma 1.2: [4] For n in N, let el,...,en:W-+X be measurable. For all w in W,
let Xn(w): span{el(W),...,en(w)}. Then Xn:W---*2X is measurable.

Lemma 1.3: [4] Let S’W---2x and P:W X--X be such that for all w in W,
q(w) is a closed subspace of X and P(w,.) is the orthogonal projection onto q(w).
Then the following are equivalent.
(i) S is measurable.
(ii) P is a continuous random operator.
(iii) There exists a sequence of measurable functions Ul,U2,...:W--X, such that for

all wE W, {Ul(W),U2(W),...} is an orthonormal basis of S(w) (with the
understanding that some ui(w may be zero).

(iv) There is a sequence of measurable functions el,e2,...:W--+X such that for all w
in W,

cl{span{el (W), e2(w), .})

Lemma 1.4: [7, Theorem 2.2] Let (W,F,#) be a complete measure space, and let X
and Y be separable Hilbert spaces. Let T be a.s. a bounded random linear operator
from WxX into Y. Let T +(w) denote a.s. the generalized inverse ofT(w). Then

(a) a.s. for each , with 0 < < 2/[I T(w) [[ 2, a(I-aT*(w)T(w))kT*(w)y
k=0

converges to T +(w)y for each y in DT+(w); (b) T +(w) is a random linear

operator from W x Y into X; (c) for each Y-valued generalized random variable y(w)
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such that a.s. y(w) is in D T +(w)y(w) is an X-valued generalized random
variable.

T + (w)’

Lemma 1.5: [15, Theorem 18El: Let A:X---X be a continuous linear operator
on a Hilbert space X over the field K (real or complex). Suppose that there is a
constant c > 0 such that

(Au, u) >_ c II u II 2 for all u in X.

Then, for each given f in X, the operator equation Au f (u in X) has a unique
solution.

2. Stochastic Projection Schemes

In this section we consider stochastic projection schemes based on the deterministic
projection schemes in Hilbert spaces. Let X and Y be separable Hilbert spaces. The
approximation-solvability of a deterministic linear operator equation of the form

Tx y (x in X, yinY) (2.1)

and corresponding approximate equations of the form

where Tn: QnT, is based on a projection scheme IX1 {Xn, Yn, Pn, Qn}. Here Xn
and Yn are, respectively, subspaces of X and Y; and Pn and Qn are orthogonal
projectors onto Xn and Yn respectively. A very frequent choice of the approximation
scheme involves Yn: TXn"

Definition 2.1: (Stochastic projection scheme) Let T:W x X--,Y be a linear
random operator. II1 {Xn, Yn, Pn, Qn} is a stochastic projection scheme if

Xn: W---*2x and Yn: W---*2Y are measurable, if for all n in N and w in W, Xn(w and
Yn(w) are closed subspaces of X and Y respectively, and if Pn(w) and Qn(w) are
orthogonal projectors onto Xn(w and Yn(w) respectively.

Furthermore, let Tn: -QnT. Note that if II1 is a stochastic projection scheme
and T is a bounded linear random operator, then Pn, Qn and Tn are random
operators.

We need to recall the following lemma [4] regarding the measurability of func-
tions.

Lemma 2.1: Let II1 {Xn, Yn, Pn, Qn} be a stochastic projection scheme, let
y: W---Y be measurable, let T: W x XY be a bounded linear random operator; and
let

T,(w,x): Q,(w,T(w,x)). (2.3)

If, for some k in N,
Tk(w, ) Qk(w, y(w)) (2.4)

is solvable in Xk(w for all w in W, then there is a measurable function Xk:W---X
such that, for all w in W, Xk(W is in Xk(w and Tk(W, Xk(W)) Qk(W,y(w)).
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3. Random Operator Equations

As random operator equations differ from their deterministic counterparts only in the
aspect of the measurability of solutions, one general approach to establishing the mea-
surability of the solutions is as follows. First of all, represent a solution by a conver-
gent approximation scheme (use iterative or projectional methods), and then establish
the measurability of approximations. Having done so, apply the following lemma on
limits.

Lemma 3.1: Let {Xn} be sequence of measurable functions from W to X converg-
ing (weakly or strongly) to x. Then x is measurable.

We remark that, when the equation considered has a nonunique solution, one
may not expect measurability of all solutions even in very simple cases. Consider the
following example, where a random operator equation has a nonmeasurable solution.

Example 3.1: Let T" W x R--,R be defined by T(w,x)- x2- 1. Let E be a non-
measurable subset of W, that is, E is not in F. Then the real-valued random varia-
ble x: W-R, defined by

1 winE

-1, winW-E,

is a nonmeasurable solution of T(w, x) O.
Now, we turn our attention to the stochastic approximation-solvability of a linear

random operator equation of the form

T(w, x)- (w)x y(w), (3.1)

where T: W X--,X is a bounded linear random operator on W x X, : W--R + is a
random variable, and y: W--X is a measurable function. We let T,X: T- AI. The
symbols "--*" and ,,w_.,, represent strong convergence and weak convergence respective-
ly. First, we consider the result where the strong monotonicity of the operator T,X is
quite restrictive.

Theorem 3.1: Let T: W X--X be an everywhere define linear random operator
on W X, where X is a separable Hilbert space. Let a number ) be at a positive dis-
tance

d inf{lA-’1:’ in NIT(w)]}

from the numerical range NIT(w)] of T. Let {en} be a sequence of measurable func-
tions from W to X such that, for all w in W, {en(w)} is linearly independent and
complete in X. Let y: W--,X be measurable and let, for all w in W and n in N,
Xn(w)" -span{el(W),...,en(w)} with orthogonal projector Pn(w). Then 1I2
{Xn, Pn} is a stochastic projection scheme. Suppose, in addition, that Tn’-
Pn(T- hi), that is, Tn(w,x)" .Pn(w,T(w,x)) -,kPn(w,x). Then, for an r in q
such that, for all n >_ r and for each corresponding xn in Xn(w), there exist measur-
able functions X, Xr, Xr _[. 1,’" "W--+X such that, for all w in W, xn(w is the unique
 o utio to
x(w), the unique solution of T(w, x)- Ax y(w).

Proof: By Lemma 1.2, II2 {Xn, Pn} is a stochastic projection scheme. Since T
is random, T.x is also random. Since d > 0, for all w in W and x E X,
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<T(,),>

This implies that T(w,. is a strongly monotone random operator, and as a result,
T(w,.) is one-to-one. It is easy to see that the range of T.X RT is X; therefore,
T(w,. is onto. It further follows from (3.2), as Tn: Pn(T- ,/, that for an r in
N and for all n _> r, for w in W, and for xn in Xn(W), we have

(T,(w, ,), ,) (P,(w)(T M)(w)xn’

I<(T AI)(w, xn) Pn(w, xn))J> d II II . (3.3)

Thus, Tn(w .) is a strongly monotone random operator. Inequality (3.3) and
Lemma 1.5 guarantee the existence of approximate solutions from the index r onward
for all w in W; and it follows that, for all n in N and w in W, xn(w is the unique
solution of the approximate equations of the form"

Pn(w, T(w, x)) )Pn(w, x) Pn(w, y(w)). (3.4)

To this end, we proceed to show that, for all w in W, {Xn(W)} converges to x(w), the
unique solution of the equation

(3.5)

For all n >_ j, w in W and xn(w in Xn(w), it follows from (3.4) that

(T(, ()) (),()) ((),())
and

(T(w, xn(w))- .Xxn(w),x,(w)> (y(w),xn(w)>. (3.7)
By inequality (3.3),

d II (w)II 2 ](y(w),(w)>[ II y(w)II II (w)II.
This yields an a priori estimate

d II n(w)II II y(w)II,
nd thus, {,()} is bounded.

Let {xn,(w)} be a weakly convergent sequence with xn,(w)z(w a8 n. By
(3.6), we find that

(T(w, xn,(w)) .Xn,(W), e(w))---(y(w), e(w)) as noc,

for all w in W and e(w)in [.JXn(w). Since [_JXn(w is dense in X and
n n

{(T-I)(w,x,(w))} is bounded, we find that (as n--*)

T(w, xn,(w)) )xn,(w)y(w).

We also have from the hypothesis that

T(w, xn,(w)) ,xn,(w)T(w z(w)) ,z(w).
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It follows that

(T- AI)(w,z(w)) y(w) and z(w) x(w).

Since the weak limit z(w) is the same for all weakly convergent subsequences of

{Xn(W)} we see that for all w in W,

;On(w to

Thus, we have (as n---oo)

d II xn(w)- x(w)II 2 _<I<(T .kI)(w, xn(w x(w)), xn(w x(w))

[((T AI)(w, xn(w)) (T 1I)(w, x(w)), xn(w

(y(w),xn(w))- ((T ,kI)(w,n(w)),(w))

((T AI)(w, x(w)), xn(w x(w)) 0.

This implies that xn(w x(w)--,O as n--,oe, that is, xn(w)-.x(w). It follows that
(T- I)(w,x(w))-y(w).

Finally, since Xr, Xr -t-1 ’’’’W--X are measurable functions by Lemma 2.1, and
since xn(w)- x(w) for all w in W and n in N, it follows from Lemma 3.1 that the
limit x(w) is measurable. This completes the proof.

We note that d and r are independent of w in Theorem 3.1, and this indepen-
dence is rather restrictive; but it guarantees the existence of approximate solutions for
all w in W from the index r onward, tIowever, in the next theorem we allow d and r
to depend on w. As one cannot guarantee, then, the solvability of a projectional
equation for all w in W for any given n, we define the functions of the form xn as

best-approximate solutions of the projectional equation. Once inequality (3.3) is
established for specific w, this best-approximate solution will, in fact, be a solution of
the projectional equation for this w.

Theorem 3.2: Let T: W x X---X be an everywhere defined linear random opera-
tor. Let a real-valued random variable A:W--R + (with (w) > O) be at a positive dis-
tance d(w) from the numerical range N[T(w)] of T, where d:W--.N + is a random
variable. Let y: W---X be measurable, and let II2 {xn, Pn} and Tn as in Theorem
3.1. Then, for all w in W and r(w) in N and for all n>_r(w) and Xn(W in Xn(W),
we have

(Tn(w, xn),xn) l_ d(w) II xn II " (3.8)

Furthermore, there exist measurable functions x, Xl x2, W---X with the
following properties.
(i) xn(w is in Xn(W for all n in N and w in W.
(ii) Tn(w, Xn(W)) Pn(w,y(w)) for all w in W and n >_ r(w).
(iii) For all w in W, x(w) is the unique solution of T)(w,x)- y(w).
(iv) For all w in W and n in N, xn(w is the best-approximate solution of

Tn(w)Pn(w x) P,(w, y(w)) in X.
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(v) For all w in W and n in N, Xn(W is the best-approximate solution of
Tn(w x) Pn(w, y(w)) in Xn(w).

(vi) For all w in W, {xn(w)) converges to x(w).
Proof: Inequality (3.8) is similar to inequality (3.3), and this, in fact, follows

from the hypotheses. Suppose that w in W and n in N are arbitrary but fixed. We
may omit the argument w during the proof for the sake of brevity. The proof is
based on [4] Since Pn is the orthogonal projector onto Xn, RT C Xn and X is

finite-dimensional, this implies that (TnPn) + is defined on all of X; and so we can
let

Xn" Pn(TnPn) + PnY" (3.9)

Now xn satisfies (i)and (iv).
To prove (ii), let n >_ r(w). It follows from(3.8) that Tnx PnY is solvable in

Xn, and as a result, PnY belongs to RTnPn. Since TnPn(TnPn) + projects onto

R.TnPn we can conclude that

Tnxn TnPn(TnPn) + PnY PnY"
Proofs of (iii) and (vi) are similar to the proof of Theorem 3.1.

Since R(TnPn) + N(TnPn)’l- C_ NPn’l- Rpn, we can say xn (TnPn) + PnY"
Therefore, xn minimizes II TnP- P,y II over x nd has the minimal norm among
all the minimizers. This proves (iv). As a result of this and (i), x minimizes

II Py II over x. and has the minimal norm among all the minimizers in X,.
Thus, (v) holds.

Finally, we establish the measurability of xn (and hence of x). Since Pn is a con-
tinuous random operator (by Lemma 1.3), it follows from Lemmas 1.1 and 1.4 that
each xn is measurable. This completes the proof.

4. Concluding Remarks

It seems that one can introduce the concept of the numerical range of a nonlinear ran-
dom operator- a random version of the Zarantonello numerical range. Furthermore,
one can extend the stochastic projection schemes to the case of nonlinear random
operators, and can consider the general approximation-solvability of nonlinear ran-
dom operator equations involving A-regular random operators [10].

For a nonlinear random operator T: W x X-+X and for all w in W and x, y in X,
we define the random numerical range N[T(w)] of T by

NIT(w)]-{(T(w’ x) T(w’ y)’ x y} }
When T is nonrandom, NIT(w)] reduces to N[T]- the Zarantonello classical
numerical range [14]. Random numerical g[T(w)] has the following properties.

Let X be a Hilbert space, S,T:WxX-+X be random operators, and , > 0.
Then
(i) N[;T(w)] ;N[T(w)],
(ii) N[S(w) + T(w)] C N[S(w)] + NIT(w)], and
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(iii) N[(T AI)(w)] NIT(w)]- {A}.
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