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TES (Transform-Expand-Sample) is a versatile class of stochastic se-
quences defined via an autoregressive scheme with modulo-1 reduction and
additional transformations. The scope of TES encompasses a wide variety
of sample path behaviors, which in turn give rise to autocorrelation func-
tions with diverse functional forms- monotone, oscillatory, alternating,
and others. TES sequences are readily generated on a computer, and their
autocorrelation functions can be numerically computed from accurate
analytical formulas at a modest computational cost.

This paper presents the empirical TES modeling methodology which
uses TES process theory to model empirical records. The novel feature of
the TES methodology is that it expressly aims to simultaneously capture
the empirical marginal distribution (histogram) and autocorrelation func-
tion. We draw attention to the non-parametric nature of TES modeling in
that it always guarantees an exact match to the empirical marginal distri-
bution. However, fitting the corresponding autocorrelation function calls
for a heuristic search for a TES model over a large parametric space. Con-
sequently, practical TES modeling of empirical records must currently rely
on software assistance. A visual interactive software environment, called
TEStool, has been designed and implemented to support TES modeling.
The paper describes the empirical TES modeling methodology as imple-
mented in TEStool and provides numerically-computable formulas for
TES autocorrelations. Two examples illustrate the efficacy of the TES
modeling approach. These examples serve to highlight the ability of TES
models to capture first-order and second-order properties of empirical
sample paths and to mimic their qualitative appearance.
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1. Introduction

Fitting mathematical models to empirical time series often presents modelers with a

standard problem: how to capture the greatest range of statistical aspects of the
empirical data in a model with the smallest number of parameter. In other words,
one attempts to simultaneously achieve both a high degree of model accuracy and a

low level of model complexity. These opposing requirements of fidelity versus

parsimony present a classical modeling trade-off and must often be settled with an

unsatisfactory compromise between the desirable and the practical.
The general problem setup assumes that an empirical sample path (record) is

given as a partial history of a stationary time series. This paper proposes a modeling
approach that aims for a more satisfactory modeling compromise. We seek to identi-
fy candidate models which simultaneously capture first-order and second-order statis-
tics of the empirical data, and in addition, give rise to sample paths that mimic the
"appearance" of the empirical record. Thus, we require candidate models to satisfy
both quantitative requirements (local distributional aspects and global temporal
dependence aspects), as well as qualitative aspects (sample path "resemblance"). The
stringency of the requirements ranges from the mathematically precise to the heur-
istic; a precise formal statement of these requirements is deferred until Section 2.3.
Intuitively, model compliance with these requirements can be expected to result in
more accurate models, as more statistical aspects are targeted for capture. On the
other hand, satisfying such multiple requirements is a particularly difficult problem,
as one tries, in effect, to reconcile two conflicting objective: generality and accuracy,
the combination of which we term versatility. To illustrate this point by an example,
consider the popular class of AR(n) models (autoregressive model of order n); see,
e.g., Box and Jenkins [2]. If one chooses, say, an AR(1) scheme to model a prescrib-
ed geometric autocorrelation function, it often becomes necessary to assume that the
marginal distribution is normal, in order to preserve stationarity. The converse case,
in which the marginal distribution is prescribed, often leads to restricted feasible
forms of the attendant autocorrelation functions; see Jagerman and Melamed [8] for
more details. Such methods, therefore, have a limited degree of versatility.

The subject of this paper is a versatile modeling methodology, called TES
(Transform-Expand-Sample), which is naturally suited for modeling empirical time
series in the spirit of the modeling requirements above. The computer implementa-
tion (Monte Carlo simulation) of TES is computationally efficient and its autocorrela-
tion function can be computed by fast and accurate numerical methods from analyti-
cal formulas. The modeling activity consists of a heuristic search for a TES model
that gives rise to a suitable autocorrelation function. As will be explained later, TES
enjoys a great deal of freedom in this activity, since an exact match with the empiri-
cal histogram is automatically guaranteed, regardless of the autocorrelation function.
Since the heuristic search for a TES model is conducted over a large parametric
space, practical TES modeling of empirical records must currently rely on software
assistance. A visual interactive software environment, called TEStool, has been de-
signed and implemented to support TES modeling; see Hill and Melamed [6], Mela-
med et al. [14]. TEStool uses extensive visualization and real-time feedback to cast
the modeling action into an intuitive activity akin to an arcade game, rendering TES
modeling an efficient activity, accessible to experts and non-experts alike. The
purpose of this paper is to describe the empirical TES modeling methodology in
detail and to provide the computational details used in TEStool to implement the
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TES methodology.
The rest of the paper is organized as follows. Section 2 defines the problem for-

mally. Section 3 provides a brief review of TES theory germane to the problem at
hand. Section 4 outlines the empirical TES methodology for modeling empirical re-
cords and Section 5 illustrates it through two examples based on sample data from
two application domains: finance and reliability. Section 6 concludes the paper with
a summary. Finally, the appendices present explicit formulas for fast and accurate
computation of TES model autocorrelations in the context of the empirical TES
modeling methodology, as implemented in TEStool.

2. Problem Formulation

N-1Let {Yn}n 0 be an empirical data sequence (record) of size N, sampled from an un-
known real-valued, discrete time stationary time series. Henceforth, we use the stand-
ard notational convention of appending a hat symbol to estimators; additionally, ob-
jects associated with an empirical sample will be subscripted, to reflect this associa-
tion. Throughout the paper, 1A denotes the indicator function of set A.

2.1 Empirical Histograms

The marginal distribution of {Yn} is modeled as an empirical histogram with either
continuous or discrete components. This section provides a taxonomy of empirical
histograms.

A continuous histogram is specified by a finite set of triplets of the form
{(lj, rj,j):j E }, where } is the index set of histogram cells, [lj, rj)is the interval of
cell j with width wj-rj- j > 0, and . is the probability estimator of cell j. For a

pure continuous histogram, }- {1,,... J, where J is the number of histogram cells,
but this is too restrictive for the general case to be described below. We assume, for
simplicity, that the cell intervals are sorted in increasing order and disjoint (i.e.,
[li, ri)l[lj, rj)-O i j). Recall that the parameters J and the intervals [lj, rj),
1 _< j _< J are prespecified and used to calculate the j from {Yn} as relative frequenc-
ies. Consequently, rather than assuming, to avoid trivialities, that j > 0 for all 1 <
j _< j, ,v dnn the index set } + {j e : j > 0}. The continuous histogram ^-induces the empirical density,

h(y)- E l[lj, rj)(Y)j’ -oo < y < oo, (2.1)
je +

called continuous histogram density. Thus, the empirical density h(y) is a probabi-
listic mixture of d uniform densities over the intervals [lj, rj) with mixing probabili-
ties j. These will be referred to as continuous components, where component j is
characterized by triplet (lj, rj, j).

Observe that any reasonable density function (for instance, with a finite number
of probability atoms and a Riemann-integrable diffuse component) can be approxi-
mated arbitrarily closely by mixtures of uniform distributions, and this fact accounts
for the widespread practice of modeling marginals of empirical data by continuous
histograms. If, however, it is known that {Yn} is discrete-valued, the Yn are better
modeled as a probabilistic mixture of discrete values, and the corresponding discrete
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histogram has the form 5- {(vi, fii): G 3}, where 3 is the index set of distinct dis-
crete values, and value v occurs with probability i" For a pure discrete histogram,
3 {1,..., I}, where I is the number of histogram atoms, but this is again too restric-
tive for the general case, to be described below. We assume, for simplicity, that the
discrete values are distinct and sorted in increasing order. Analogously to the reason-

ing in the continuous case, we define the index set + {i E 3: i > 0}, rather than

assuming that i > O, for all 1 <_ _< I. The discrete histogram induces the em-

pirical density,
"(y)- l(vi}(Y)i, - < y < , (2.2)

i +

called discrete histogram density. The probability atoms, characterized by the pairs
(vi, "i), will be referred to as discrete components.

A general histogram y U5 is any probabilistic mixture of J >_ 0 contin-
uous components and I _> 0 discrete components, provided J + I- M > 0. Thus,
general histograms include continuous and discrete ones as special cases. To simplify
matters we will assume that all M components have been sorted in increasing order
(indexed by 1 _< rn _< M), and that all M components are disjoint in the sense that
for all E and j J, we have {vi} N[lj, rj) C {lj}. Although continuous and
discrete components may alternate on the real line, the mixing probability of
component rn (in sorted order) will be denoted m" As before, we let J and be the
index sets of continuous and discrete components, respectively, except that the indices
are drawn from the set {1,...,M}. Consequently, we can leave the definitions of J +
and + unaltered for the general histogram case. Note that all these set definitions
are proper generalizations, consistent with the previous ones, the latter merely being
special cases. The induced empirical density has the form

-oo < <
and is simply called a histogram density.

2.2 Empirical Autocorrelations

For a stationary time series {Xn} with common mean #x < oo and common var-
iance r( < oc, the autocorrelation function

PX(r)- cry(
r >_ 1, (2.4)

is a measure of the linear dependence of v-lagged variates. It is usually estimated by
the empirical autocorrelation function (see Cox and Lewis [4], Chapter 5),

N-1 -r
1

N r YnYn + r "fly(O, N 1 ’)’fiy(r, N 1)
fly(v)- n-o

’y(0, N-1--)y(-,N-1)
1 <_ v << N, (2.5)

wh re the

mean and 8ample variance, respectively, based on the 8ubsample {Y,Y + ,...,Y}
of {Yn}, from index r to index s. Notice that the lag r in (2.5) is much smaller than
the sample size, in order that "fly(r) be statistically meaningful; for example, r <_
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is suggested in Cox and Lewis [4], Chapter 5.

2.3 Model Fitting Requirements

Recall that, informally, we seek a stationary real-valued stochastic sequence

(Xn}= 0 (with common mean #x < oe and common variance r( < co), such that
its marginal distribution matches its empirical counterpart, its autocorrelation
function approximates its empirical counterpart, and its sample paths "resemble" the
empirical record. More formally, we require {Xn} to obey the three requirements
listed below in order of decreasing rigor:

Requirement 1: The marginal density hx(y of {Xn} should equal the empirical
histogram density hg(y)of Eq. (2.3).

Requirement 2: The autocorrelation function px(r) should approximate its empi-
rical counterpart "fly(r) of Eq. (2.5). The extent of the approximation is left to the
analyst.

Requirement 3: The sample paths of {X} should bear adequate "resemblance"
to the empirical sequence {Yn}" Since the notion of "resemblance" is left unquanti-
fled, we view this requirement as a highly subjective heuristic rather than a precise re-

quirement. Nevertheless, some sort of "path resemblance criterion" is often employed
in practice to increase one’s confidence in a proposed model. We stress that this quali-
tative property is posited in addition to, not instead of, the previous two more rigor-
ously quantitative ones.

In practice, we may or may not be able to calculate hx(Y and px(r) in closed
form nor approximate them numerically. We assume, however, that {Xn} sample
paths can always be computed in a Monte Carlo simulation. In such cases, hx(y
and px(r) will have to be estimated statistically from simulation-based calculations
of adequate precision. This problem is further exacerbated when high positive auto-
correlations are present in {X}, since reliable estimates will then require large sam-

ple sizes.

3. TES Processes

This section contains a brief review of general TES processes and their second-order
properties. The details may be found in Jagerman and Melamed [7] and [8]; an over-

view at an introductory level appears in Melamed [13].
Let {Yn}X= 1 be a sequence of iid (independent identically distributed) random

variables, called the innovation sequence. Let U0 be uniform on [0, 1) (denoted by
U0 Uniform(0,1)), and independent of the innovations {Vn}. We define two
classes of TES sequences, called TES + and TES -, each consisting of cid (correlated,
identically distributed) Uniform(0, 1) sequences, denoted {Un+ }= 0 and {U- }= 0,

respectively. These sequences are defined on a common probability space by

U0, n -0
(3 1)U: [(g:_ 1 -- Vn) > 0

U- -{ sn+’ neven
n

1 Uff, n odd.
(3.2)
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The angular brackets in (3.1) denote the modulo-1 (fractional part) operator, defined
by {x}- x- max{integer n: n <_ x}. The superscript notation in (3.1)-(3.2) is motivat-
ed by the fact that {Un+ } and {U-} can generate lag-1 autocorrelations in the range
[0, 1], and [- 1,0] respectively. In fact, Eq. (3.2) implies p (r) (- 1)rpu+ (r),
where pg+ (r) and Pc (r) are the autocorrelation functions corresponding to {U+ }
and {U- }, respectively. From now on, we shall always append plus of minus super-
scripts to other mathematical objects associated with {U+ } and {U } in a natural
way. However, the superscript is omitted when the distinction is immaterial.

Intuitively, the modulo-1 arithmetic used in defining TES processes in Eqs. (3.1)-
(3.2) has a simple geometric interpretation as a random walk on a circle of
circumference 1 (unit circle), with mean step size E[V,]. When E[Vn]- O, the
random walk has zero drift around the circle and pu+ (r) is monotone decreasing in
the lag r. If E[Vn] > 0, the drift is positive, resulting in cyclical sample paths with
the attendant pu+ (r) oscillating about zero in the lag r. The case E[Vn] < 0 is analo-
gous but with opposite drift.

A Lebesgue measurable transformation D from [0, 1) to the reals is called a distor-
tion. It is used to transform a sequence {Un} with uniform marginals on [0, 1) to a

sequence {X,}, such that X- D(U), and the X, have a common marginal distri-
bution F. When D- F-1, then D is called the inversion method (Devroye [5], Brat-
ley et al. [3], Law and Kelton [11]). In particular, the stochastic sequences
{X+ }o=0 and {X- }n 0 are obtained as

Xn+ D(Un+), X D(U ). (3.3)
Lemma 1 in Jagerman and Melamed [7] provides the theoretical basis for TES. It
states that if U Uniform(0, 1) and V is arbitrarily distributed but independent of U,
then

(U + V),- Uniform(0, 1). (3.4)
Consequently, Eq. (3.4) ensures that both {Un+ } and {U-} have Uniform(0,1)
marginals, so {Xn+ } and {X- } have general marginals. We point out that this fact
serves to satisfy Requirement 1 in Section 2.3, for matching the marginals fo the
empirical data. We oy need to construct the distribution function corresponding to
the empirical density hy(y) of Eq. (2.3), and then invert the corresponding cumula-
tive distribution function to obtain the appropriate distortion. The details are deferr-
ed, however, until Section 4.

To satisfy Requirement 2 in Section 2.3, we need a way to calculate the autocorre-
lation function (2.4) of our model. Such calculations would be used in a search proce-
dure (possibly heuristic) for TES models whose autocorrelations adequately approxi-
mate their empirical counterparts. Naturally, a Monte Carlo simulation of Eqs.
(3.1)-(3.2) can always provide an estimate of (2.4), if a sufficient sample size is gener-
ated. This approach, however, can be costly in terms of computation time, especially
when high correlations necessitate large sample sizes for adequate statistical reliabili-
ty. It is then essential to develop fast and efficient computational techniques for cal-
culating (2.4), over a range of v. Fortunately, Theorems 3 and 4 in Jagerman and
Melamed [8] provide numerically-computable formulas for the autocorrelation func-
tions of {Xn+ } and {X- }, respectively,

2 E Re[f(i27rv)]lD(i27rv)[2 (3.5)
and v
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PX
2 Re[/(i27r)]Re[52(i27r)]
rx n-1

r even

r odd
(3.6)

where f/(x) denotes the r-fold convolution of the innovation density fy, tilde
denotes the Laplace transform, and i- V/- 1.

The sample paths of {Xn+ } and {X-} often exhibit a visual "discontinuity"
whenever the corresponding TES processes, {U+ } and {U-}, "cross" point 0 on the
unit circle in either clockwise or counter-clockwise direction. Sample path
"smoothing" can be accomplished by applying a member from a family of so-called
stitching transformations S, 0 < _< 1, defined by

y/{, O<_y<_
S(y)

(1 y)/(1 ), <_ y < 1
(3.7)

where ( is called a stitching parameter. Note that for 0 < < 1, the S are contin-
uous on the unit circle. In particular, Sl(X -x is the identity transformation and

So(X -1- x is the antithetic transformation. It is quite straightforward to show
that S( preserves uniformity for all 0 _< < 1, i.e., if U,- Uniform(0,1) then

S(U) ,--Uniform(0,1) (see Melamed [12], Lemma 2). The composite distortion D,
defined by

D(x)- D(S(x)), (3.8)

is more general than D since -1 is a special case.

remain~ valid when D is substituted for D throughout.
to D by

Naturally, Eq; (3.5)-(3.6)
Furthermore, D i8 related

D(s) D(s) + (1 7)e- SD(- (1 )s), 0 < ( < 1, (3.9)
1

a fact which is easily verifiable by direct calculation of (s)- f e-SZD(Se(x))dx,
with the aid of Eqs. (3.7) and (3.8). 0

4. The Empirical TES Modeling Methodology

We are now ready to present a TES-based methodology for modeling empirical data
sequences, which we call the empirical TES methodology. In this section, we merely
outline the methodology as a heuristic procedure, omitting most computational
details; the latter are provided in the appendices.

A general TES-based modeling methodology would allow the class of innovation
densities fv under consideration to remain unrestricted, since a major advantage of
TES modeling is that the choice of an innovation density provides a broad degree of
freedom in approximating the empirical autocorrelation function. However, practical
implementation considerations lead us to constrain them to lie in operationally useful
classes, without trading off too much generality in return. The main criteria for
selecting a suitable class of effective innovations are listed below.
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(i)

(ii)

(iii)

The class should be large enough to approximate any marginal
distribution.
Monte Carlo generation of variates from the class should be computational-
ly efficient.
The numerical calculation of the associated transform fv should be fast.

As part of the empirical TES methodology, we select as candidates for innovation var-
iates the class of probabilistic mixtures of uniform variates; the corresponding densi-
ties constitute the class of step-function densities on the unit circle, taken here as the
interval [-0.5, 0.5). We point out that while the concept of a histogram density and
a step-function density is probabilistically similar, it is important to maintain a nota-
tional and conceptual distinction between histogram entities (associated with distor-

tions) and step-function entities (associated with innovations). To this end, we de-
note a step-function density by

K Pkfv(x) E I[Lj, Rj)(x)-6-’ x e [--0.5,0.5), (4.1)
k--1

where K > 0 is an integer, Lk and Rk are the left and right endpoints of step k,
ak R/c-Lk is the width of step k, and Pk is the mixing probability of step k.
Notice that the above criteria are satisfied by this selection. Indeed, the class of step-
function densities is particularly simple, yet it can approximate arbitrarily closely any
reasonable density function. In addition, it enjoys the important advantage of being
particularly easy to manipulate graphically in interactive modeling (to be explained
later).

In contrast, the class of distortions under consideration has been effectively deter-
mined by our decision to model the empirical density as a histogram density hy of
the form (2.3). The generality of this modeling decision is evident, and the fact that
histogram densities are step functions as well will simplify the computational details
to be presented in the appendices. Denoting the cumulative distribution function
attendant to hy by Hy, and the latter’s inverse by H, we shall henceforth be solely
interested in distortions of form

Dy,(x) V I(S(X)) X E [0, 1),

henceforth referred to as histogram distortions. Recall that the inner transformation,
S, is a stitching transformation (3.7), whereas the outer one, 71 (called a histo-
gram inversion) is the inverse of a histogram distribution function H of the form
(2.1), (2.2) or (2.3). In order to distinguish between the continuous and discrete cases

(corresponding to a continuous or discrete underlying empirical histograrn), we use
the notation D, and D,, respectively, and similarly for other related objects. In
all cases, the key fact is that for any background TES sequence {Us} the distorted
sequence {Xn} with elements

X,- Dy,(Un)- V I(S(Un)) (4.3)
will still have marginal distribution Hy. To see that, merely recall that every

{S.(U,)} is marginally uniform on [0,1), and invoke the inversion method under a

histogram inversion to yield a histogram distribution.
For now, we assume that an empirical sample path {Yn} is given, and that an

empirical histogram y has been constructed from it. In the procedural outline to
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follow, we can keep the class of innovations arbitrary, without constraining their den-
sities to step functions.
Outline of the Empirical TES Modeling Methodology

1. Construct the empirical (cumulative) distribution function Hy, corres-

ponding to
2. Construct the associated inverse distribution function i71 (this is always

possible, since Hy is monotone nondecreasing).
3. Select the sign of the TES class (TES + or TES- ).
4. Select a stitching.parameter 0 _< _< 1. This determines a histogram inver-

sion Dy,((x)- HI I(S((x)), where is a heuristic search parameter.
5. Select an innovation density fy, where the innovation density constitutes

a set of heuristic search parameters. This determines a uniform TES pro-
cess {Un} which can be either {Un+ } or {U }.

6. At this point, a TES process {Xn} has been determined by Eq. (4.3), and
its autocorrelation function can be computed from Eq. (3.5) or (3.6) with
the aid of the appendices. In addition, generate a simulated sample path
of {Xn} (the initial variate of the simulated path is typically set to the cor-
responding empirical observation). If px() approximates well its empiri-
cal counterpart, fly(r), and the simulated sample path "resembles" qualita-
tively its empirical counterpart, then the search is terminated; otherwise,
the search is iterated from any previous step.

The procedure outlined above is highly heuristic and should only be viewed as a

general guideline. The main heuristic component is a search for a stitching
parameter and an innovation density function fv that together give rise to a TES
process whose autocorrelation function approximates its empirical counterpart well,
and whose Monte Carlo simulation runs produce sample paths with "acceptable
resemblance" to their elnpirical counterpart.

Our procedural guidelines do not specify how to structure this search. Naturally,
a "blind" search in such an enormous parameter space is bound to be inefficient, if
not fruitless, barring a lucky guess. It is therefore essential to impose some structure
on the search, if we hope to apply TES as a practical modeling methodology. A
simple way to structure the search for step-function innovation densities is to set K
(the number of steps) to 1, and search among candidate single-step densities. If this
does not yield a satisfactory TES model, K can be incremented successively and the
search continued. Naturally, by the principle of parsimony, we aim to find the
smallest K for which a good model can be found.

Searching the vast parameter space of step function densities over [-0.5, 0.5) is a

major problem. To implement a rule-based approach, one needs to have at least
qualitative understanding of how the autocorrelation function behaves as a function

K and the stitching parameter . For a givenof the defining triplets {(Lk, Rk, Pk)}k
step (Lk, Rk, Pk) this behavior can be deduced from the case K- 1, for which we
have considerable qualitative understanding (see Jagerman and Melamed [7-9]). It is
worth summarizing this knowledge, but a more useful understanding would be
gleaned if we adopt the equivalent parametrization (ak, Ck, Pk), 1 <_ k <_ K, where

R + L/ (4.4)ak R- L, R- L"
The interpretation of ak and Ck is highly germane to the understanding of TES
process behavior. Clearly, cc is just the length of step k. The interpretation of Ck is
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more complicated; it can be viewed as the angle of rotation of the innovation step
relative to symmetric straddle. Symmetric straddle of the current iterate Un

corresponds to Lk -Rk, i.e., the point Un + 1 is equally likely to lie to the right or

to the left of Un on the unit circle, given that step ]c of the innovation density was

sampled. The qualitative effect of the a, and parameters on the autocorrelation
function is fairly well-understood for single-step innovation densities (in this case

K- 1 and Pl- 1, so the innovation variates reduce to ordinary uniform variates
over a portion of the unit circle). These qualitative effects are summarized below.

Effect of c: a controls the magnitude of the autocorrelation function. The
autocorrelation function envelope decay in the lag increases with a.

Effect of : controls the frequency of oscillation of the autocorrelation func-
tion. The larger the value , the higher is the frequency of oscillation. When - 0,
the autocorrelation function is monotone decreasing and a spectral analysis reveals no

periodicities. When :fi 0, the autocorrelation function is oscillatory, and the sample
paths have a cyclical appearance. The presence of periodicities can be confirmed by
spectral analysis.

Effect of : The effect of 0 < < 1 is to "smooth" sample paths. The magnitude
of the autocorrelation function increases as approaches 0.5 from the left or from the
right. Symmetry about 0.5 manifests itself in another way. While {S(U,)} and

{Sl_(gn)} have different sample paths, their autocorrelation functions are

identical, for any background TES sequence {Un}. In cyclical TES processes (those
with E[V,] 7 0), ( can be used to skew sample paths in accordance with the
corresponding stitching transformation. Here, {S(Un)} is also cyclical, but its cycle
peaks are shifted by a phase proportional to . In particular, So(y -1-y and
S(y)-y give rise to "descending" and "ascending" sawtooth cycles, respectively,
while S0.5 gives rise to stitched sequences with symmetrical cycles.

We remark that TES + models are the most common choice, in our experience;
TES- sequences should be considered, however, when empirical records or autocorre-
lation functions have an alternating (zigzag) appearance.

The heuristic nature of the empirical TES modeling methodology described above
requires computer assistance for effective implementation. To this end, a software en-

vironment, called TEStool, has been built to support visual interactive TES modeling
of empirical records; see Hill and Melamed [6] for a detailed description, or Melamed
et al. [14] for a brief overview. A salient feature of TEStool is that it casts the heuris-
tic search process in the mold of an arcade game through extensive visualization and
real-time interaction. A workstation mouse is used to visually create, delete, resize
and relocate innovation density steps. The geometric simplicity of step-functions is
exploited graphically, as steps are simply represented as rectangles on the display
screen. Thus, modifying the step-function density is simple and intuitive" changing a
step size is accomplished by "stretching" a side or a corner of the corresponding
rectangle, while translating a step on the horizontal axis is just the familiar operation
of "dragging" an icon. In a similar vein, the stitching parameter is selected by
positioning a slider in the [0,1] interval, and a TES sign is chosen by pressing a
button. In the interactive mode, any change in model specification (e.g., innovation
density, stitching parameter, etc.) triggers a numerical recomputation of all TES
statistics (sample paths, histogram, autocorrelation function and spectral density)
with the corresponding graphs redisplayed, superimposed on their empirical counter-
parts for comparison. This can be executed in real-time, since the autocorrelation
function can be computed rapidly and accurately from Eqs. (3.5) and (3.6) with the
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aid of the appendices. Thus, the heuristic search process can proceed rapidly and effi-
ciently, guided by visual feedback the goal being to bring the TES autocorrelation
graph as close as possible to the corresponding empirical target. At the same time
the user may also judge the "qualitative similarity" of the model-generated sample
path to the empirical data used in the modeling heuristic. The visual interactive faci-
lities are not only instrumental in facilitating an effective modeling process, but they
also serve to hold the modeler’s interest by reducing the tedium of repetitive search
iterations. An additional advantage of TEStool is that its visual style tends to speed
up the learning process, thereby increasing the efficiency of subsequent searches. The
graphical user interface encourages tinkering and experimentation, allowing the user
to readily study the behavior of TES sample paths and autocorrelations as functions
of TES parameters. It is expected that such studies will lead to the identification of
qualitative rules which could be used to automate, or at least guide, the search
procedure for a TES model.

Recently, an algorithmic modeling approach has been devised and implemented
for TES modeling (aelenkovic et al. [10]). The algorithm nst i out brute-
force search of a subspace of step-function innovation densities and various stitching
parameters; recall that the distortion is completely determined by the empirical
record and user-supplied histogram parameters. Of those, the algorithm selects the
best n combinations of pairs, (fv,{), in the sense that the associated TES model
autocorrelation functions have the smallest error (sum of squared deviations) relative
to the empirical autocorrelation function. The algorithm then performs nonlinear
optimization on each model candidate to further reduce the aforementioned error.
Finally, the analyst peruses the results and selects from the n optimized candidate
models, the one whose Monte Carlo sample paths bear the "most resemblance" to the
empirical record, in addition to having a small error. Experience shows that the TES
modeling algorithm produces better and faster results than its heuristic counterpart.

5. Exaxnples of Empirical TES Modeling

This section presents two illustrative examples of empirical TES modeling. These are

graphically summarized in Figures 1 and 2, both of which are actual TEStool
displays, copied off a workstation’s screen. Figure 1 illustrate a TES + model of an

empirical financial time series, while Figure 2 exhibits a TES- model of an empirical
sequence of machine fault interarrival times (up times). For each model, the
corresponding heuristic searches required less than an hour of visual interaction time
with TEStool. For more details on these case studies, refer to Melamed and Hill [15].

The screen displays in both figures have the same format. Each display consists
of four tiled canvases (subwindows). The buttons at the top of the screen and at the
bottom of each canvas control various modeling services; these include reading and
writing datasets, subdividing the screen real estate, opening a TES specification win-
dow or menu, performing various computations and terminating the session. The
lower-right canvas displays a graphical TES model specification, while the remaining
three canvases each display a pair of statistics such as sample paths, histograms and
autocorrelation functions. In each of the statistical display canvases, the TES model
statist.its graphs are superimposed on their empirical counterparts for comparison; the
empirical statistical are always represented by a solid-line curve, and their TES
counterparts by a dashed-line curve.
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Each of the two upper-left canvases display an empirical record superimposed on

a TES model sample path generated by Monte Carlo simulation; the TES model was
created by applying the empirical TES modeling methodology to the corresponding
empirical record. Each upper-right canvas displays the histograms calculated from
the sample paths in the corresponding upper-left canvas. Similarly, each lower-left
canvas displays the empirical autocorrelation function (computed from the upper-left
canvas) superimposed on its numerically-computed TES model counterpart, according
to the formulas provided in the appendices. Finally, each lower-right canvas consists
of a joint visual specification of TES model parameters. The upper part of this
canvas displays a visual specification of a step function innovation density fv; the
control panel below it displays a joint specification of a TES sign (plus or minus), a

stitching parameter , an initial TES variate U0 and a selection of a histogram
inversion computed from the empirical record (the histogram itself is displayed in the
corresponding upper-right canvas). The steps of fv are created and modified visually
with the aid of the mouse by "sweeping out" steps and "dragging" them around.
The TES sign is chosen via a selection button and the parameter by a slider in the
range [0, 1]. Inversion transformations to the requisite marginal distributions include
uniform and exponential as well as discrete distributions. A TES model can also be
specified in TEStool in standard text mode by populating text fields in a popup
subwindow, but the visual specification is more efficient, particularly when modifying
the TES process specification in the context of interactive heuristic search.

Consider now the visual fit depicted in Figures 1 and 2 vis-a-vis the three model-
ing requirements of Section 2. Note that Requirements 1 and 2 are apparently satis-
fied, as evidenced by the excellent agreement of the curves in the lower-left and
upper-right canvases. It is also interesting to note that the upper-left canvases exhi-
bit considerable "similarity" between the empirical and simulated sample paths, in
apparent compliance with Requirement 3. We conclude that both Figures 1 and 2 re-
present successful TES modeling efforts according to the three modeling requirements
of Section 2.

6. Conclusion

The empirical TES modeling methodology is a novel input analysis approach, which
strives to simultaneously fit both the marginal distribution and the leading autocorre-
lations of empirical records, and additionally to mimic their qualitative
"appearance". This paper has presented the empirical TES modeling methodology; it
has summarized the TES process theory underlying TES modeling, and briefly over-
viewed the TEStool visual interactive software environment designed to support TES
modeling via a heuristic search for an appropriate TES model. Two examples have
illustrated the versatility and efficacy of the empirical TES modeling methodology as
implemented in TEStool.
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Figure 1" A TEStool screen display of a TES + model for a financial time series.
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Figure 2: A TEStool screen display of a TES- model for a machine up time record.
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Appendices: Numerical Computation of TES Formulas

The following appendices provide the fine computational detail for autocorrelations of
TES processes. Specifica~lly, we derive explicit numerically computable formulas~ for
the Laplace Transforms fv of step-function innovation densities, as well as D, and.,, both evaluated at i2rv. These are needed in Eqs. (3.5) and (3.6) within a

larger computation of the autocorrelation functions of {X+ } and {X- }. Recall that
the empirical TES modeling methodology relies on fast calculation of the correspond-
ing autocorrelation functions, in the context of an interactive visual software support
environment. The formulas in the following appendices may look messy, but they are

easy to implement in software and lead to fast and accurate results by truncating the
infinite sums in Eqs. (3.5) and (3.6) (TEStool uses only the first 100 terms in each for-
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mula).

Appendix A: Computation of fv(i2ru)
The notation in this appendix was defined in Section 4.

Proposition 1: For all u >_ 1

~fv(i2ru) kEK=1(sin(2ruRk )--sin(2ruLk)2ru + 2ru P
Proof: From Eq. (4.1), RK [ -sxPk

j
k--ILkwhence,

(A.1)

K -sLk -sRk Pkfv(s E e -es -" (A.2)
k:l

Eq. (A.1) follows by setting s i2ru in Eq. (h.2) and rewriting in terms of the trigo-
nometric definition of complex exponentials. V1

Appendix B" Computation of Dc (i2ru)Y,

The notation in this appendix was defined in Section 2, in the context of continuous
histograms and their associated objects.

The cumulative distribution fllnction H corresponding to the continuous histo-
gram density h of Eq. (2.1) is the piecewise linear function

O, y < 11
j-1 +(y--lj)j, y e [lj, rj),l <_ j <_ J

Cj, y E [rj, lj + 1), 1 _< j <_ J 1

1, y>_rj

(B.1)

where {j}=0 is the cumulative distribution function corresponding to {j}_ 1’
given by j

j E "i, O <_ j < J. (B.2)

Note that Eq. (B.2) implies that Co -0 and Cj- 1. From Eqs. (B.1) and (B.2) it
follows that the inverse ()- can be written as

(.)-(x) 1 Oj)(x) lj+(x-j_) 0<x<l. (B.3)
e + [cj_ , pj

Recall that for 0 _< _< 1, we have

D,(x) ([)- l(q(x)),
Proposition 2: For all u >_ l, and O <_ <_ l,

0<x_<l. (B.4)
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i2ru[ X-" rjsin(2ruCj) jsin(2ruCj 1)
Y, 2ru

cos(27rpCj) -cos(27rpCj_ l) wj rjsin(2r(1- )Cj) ljsin(27ru(1- )Cj_1)
x -- +

cos(2ru(1 )Cj)- cos(2’u(1 )Cj_ 1)
(1-)(2ru)2 w..]

wj

sin(2ru(1 )Cj) sin(2ru(1 )Cj 1)
(1 )(2’u)2 x (B.5)

and for the limiting cases 1 and O, this simplifies to

rjsin(2ruCj) jsin(2ruCj 1)5c (i2ru)--.c o(i2ru)_ EY,1 Y, 27rb,

cos(27rgCj) cos(27rgCj 1)

-- Z rjcos(27rl]Cj) ljcos(27rgCj_ 1)

jcj+
2rr,

sin(2ruCj) sin(2ruCj 1) wj

(2.a.u)2 X---
P

(B.6)

Proof: The quantities DcY,(i2w) will be derived in two steps. First, we derive
the simple case D(,l(i2ru (for - 1), where the stitching transformation S1 is just
the identity, and so it effectively drops out of the calculation. The general case

D,((i2ru)_.. is then obtained via the relation (3.9).
We begin by substituting Eq. (B.3) into the definition of D.,1 in Eq. (B.4), re-

smung"’- in 1

)Cy, l_8_( / e SXD,l(X)dx j" e- SX() l(x)dx
0 0

C.
3

e -sx lj-t-(x-Cj_l) dx,
J +

Oj-1
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whence

Je} + s2
x

Thus, substituting s i2ru into Eq. (3.9) for D, yields

D, ((i2ru) D,1(i27ru + (1 )D, 1(- (1 )i27ru),

because e-i2u= 1. Hence, from Eq. (B.7),

5.,1(S tlj
ij+

-sCj-1 _rje-sCj -sj_ 1

s +e -e

s2

-cj wj

(B.7)

(B.8)

(B.9)

and

(1 )D,I( (1 ()s)

E lie
(1 )sCj 1

rje
(1 -)sCj (1-)sCj_ 1 (1-()sCj wj

(1 ()s2
x

(B.10)

Next, set s i2ru in Eqs. (B.9) and (B.10), and substitute in Eq. (B.8). The general
result (B.5) now follows, by expanding the complex exponentials in terms of their trig-
onometric representation in moderately tedious algebra.

Finally, to obtain Eq. (B.6), take limits in Eq. (B.5) as 0 or as T1, and use
L’HSpital’s rule in each case. In both cases, we obtain vanishing terms, and Eq.
(B.5) simplifies into (B.6). [3

"dAppendix C" Computation of Dy,5(i2ru)
The notation in this appendix was defined in Section 2, in the context of discrete
histograms and their associated objects.

The cumulative distribution function corresponding to the discrete histogram
density h^} of Eq. (2.2) is the step function

1,

Y<V1

y E [vi, v + 1)’ 1 < < I 1

Y>VI

(C.1)

where {i}//= 0 is the cumulative distribution function corresponding to { i}i 1,

given by

i-- Ej’ 0<j_<I. (C.2)
3=1
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Note that Eq. (C.2) implies that CO -0 and CI 1. From Eqs. (C.1) and (C.2) it
follows that the inverse ()-1 can be written as

(/)-1(X)-- E 1[ 1,i)(x)vi"
ie+

Recall that for 0 _< _< 1, we have

D,(x)- (dy)- I(S(x)), 0 _< x

_
1. (C.4)

Proposition 3: For all u >_ 1 and 0 <_ <_ 1,

v5dY, (i2a’u) E -[mn(2rui) sin(2rui -1)
e]+

-cos(2ru(1 )Ci)- cos(2ru(1 )C 1)], (c.5)

and for the cases 1 and O, this simplifies to

v
Dy, l (i2ru
d )dy, 0(i2ru) .._. ,."[sin(2ruCi) sin(2rui 1)]

e]+
v

+ i}]
ie +

(C.6)

Proof: We proceed analogously to the previous appendix, except that the compu-
tations are somewhat simpler.

Substituting Eq. (C.3)into the definition of 5, 1 in Eq. (C.4)yields

1 1

5dY,l(s) j e-sxD,l(X)dx-- J e-SX(.)-l(x)dx
o o

whence
e

% dx

i-1

d sCi 1 sCi
Dy, I(S)- E e -s-e

i] +
X Vi.

Thus, substituting s- i27r into Eq. (3.9) yields, analogously to (B.8),

(c.7)

)d (i2ru) ) (i2ru) + (1 )), 1( (1 )i2ru)Y, ,1 (c.s)

Hence, from Eq. (C.7)
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and

[y,1(8

_
,e

8 ’XVi’
ie +

(c.9)

(1 ()5,,1 (1 ()s) ’ e(1 )sCi- 1 e(1 ()sCi
s xv (C. 10)

i +

Next, set s i2ru in Eqs. (C.9) and (C.10), and substitute in Eq. (C.8). The general
result (C.5) now follows by expanding the complex exponentials in terms of their tri-
gonometric representation in moderately tedious algebra.

Finally, to obtain the special cases (C.6), just set - 1 or - 0 into the general
case (C.5). rn

Appendix D" Computation of Dy,(i2r)
The notation in this appendix was defined in Section 2, in the context of general histo-
grams and their associated objects.

In this section we find it notationally useful to consider a discrete component of a

general histogram as a special case of a continuous (uniform) component with Vm
m -rm. With this notational convention, the cumulative distribution function H
corresponding to the continuous histogram density h of Eq. (2.3) is the piecewise
linear function

Hy(y)

O, y < 11
Pmc_ + (- .), e [., ),. e

Cm, y E [rm, m + 1 ), 1

_
rrt

_
M 1

1, y >__ rM

(D.1)

where {rn}Mm-O is the cumulative distribution function corresponding to mixing
probabilities {m}M (of the sorted components) given byrn----1

m

5m- E n, 0 <_ rn

_
M. (D.2)

n=l

Note that Eq. (D.2) implies that CO -0 and CM 1. From Eqs. (D.1) and (D.2) it
follows that the inverse l 1 can be written as

/11 (X) E l[j (x)[lj
j e } + I’Cj

+ 115 Oi)(x)vi
iE] + -1,

Recall that for 0 _< <_ 1, we have

Proposition 4: For all >_ 1, and O <_ <_ 1,

D.(,) (B.) + (c.),

0 <_ x < 1. (D.3)

0 _< x <_ 1. (D.4)

(D.5)
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and for - i or -O,

Dy, l(i2ru Dy,o(i2ru (B.6) + (C.6). (D.6)

Proof." We show that the results can be formed as additive composites of the cor-

responding continuous and discrete components.
We begin by substituting Eq. (D.3) into the definition of Dy, 1 in Eq. (D.4)

resulting in
1 1

0 0

cj c

/[
-1 Ci-1

e SXvidx

whence, from Propositions 2 and 3,

Dy, I(S)-(B.7)+(C.7). (D.7)

The rest of the computations proceed as in Proposition 2 for the continuous
components and as in Proposition 3 for the discrete case.


