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In this paper, we propose a generalization of continuous-time processed
defined by
X, = /f(t—s)dWs,

to the case of f being a distribution. We give a necessary and sufficient
condition for f, such that the obtained process is a second order distribu-
tion process. We study the moments and the regularity of these processes.
In addition, we investigate a generalization to processes with stationary in-
crements.
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1. Introduction

Here we study linear models defined by a convolution of the form

X,= [ fe-9aw,, (1)

where f is in the space 9’ of distributions. These processes are distribution processes,
since they are indexed by test functions. This situation generalizes the familiar setup,
where f is in L2. The induced process X, is then a second order stationary linear pro-
cess.

The most popular example of distribution processes is probably the derivative of
the Brownian motion. Selecting f in (1) from a suitable family provides interesting
families of distribution processes. For instance, in [1] we study the particular family
of fractional ARMA distribution processes.

More generally, many field like Physics or Statistical Mechanics often need a
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larger framework than the time indexed stochastic processes one. Distribution pro-
cesses have been independently introduced by Gelfand and Vilenkin [8] and K. Ito
[11]. These processes were studied afterwards from various points of view: Fernique
[7] showed that distribution processes are random distributions and investigated their
general properties (characteristic functions, moments, convergence in law and point-
wise convergence), Meidan ([16, 17]) studied the Reproducing Kernel Hilbert Space of
distribution processes and established the connection between time indexed stochastic
processes and distribution processes. Esquivel [5] dealt with periodic random distribu-
tions and their Fourier coefficients. Rao [21] gave a characterization of harmonizable
distribution processes. Piterbarg [19] investigated the structure of the o-algebra gener-
ated by a distribution process with rational spectrum. Brillinger [2] proved the
asymptotic normality for finite Fourier transforms of stationary distribution process-
es.

Other authors (Inaba et al. [10], Lozanov et al. [14], Y. It5 [12]), studied process-
es on different function spaces such as L? or hyperfunctions. Pugh [20] used the L?
processes framework to study the analytic signal of white noise.

The usually adopted terminology is somewhat confusing: distribution processes,
that is, processes indexed by the set of test functions, are often called generalized pro-
cesses. Unfortunately, the same term is used for time indexed processes with range in
a distribution space, which are widely used in white noise calculus [13], functionals of
Brownian motions [9, 18] or branching random fields [6].

For this reason, we prefer to call our processes distribution processes.

We first recall the main properties and the definition of regularity of distribution
processes, using the Gaussian feature allowing techniques of functional analysis. We
then show that expression (1) makes sense if and only if the distribution f belongs to
the Sobolev space H ~ .

The induced Gaussian linear stationary processes are indexed by test functions.
As Gaussian linear stationary processes time indexed, they have a spectral density
and we give the expression for their moments. We give the link between the regular-
ity of distribution processes X and of the corresponding filters f: namely, X is of
Holder regularity s if and only if f belongs to the Besov space B;,oo'

We carry out an analogous study on distribution processes with stationary incre-
ments that generalize continuous-time processes parametrized by functions f and g,
of the form

X, = /(f(t—s)—g(—s))dWs,

where f and g are distributions.

This family contains the popular fractional Brownian motion and the family des-
cribed previously.

2. Second-Order Distribution Processes

We recall in this section the definition and properties of second-order distribution pro-
cesses. These processes form a subclass of those introduced by Gelfand and Vilenkin
[8]. Most of following are results from [8] and [11].
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2.1 Definition and properties of distribution processes

Let C3°(R™) denote the space of infinitely differentiable functions with compact
support in R™, with the family of semi-norms

Let (2, A, P) denote a fixed probability space and L?(Q) the space of second-order
random variables. In the sequel, C' will denote a constant.

Definition 1: A second-order distribution process X defined on the probability
space (€, A, P) is a continuous application from the space C°(R™) into L(Q):

for p €CRR™), X(p): = (X;p) € LX),
and for every compact subset K in R™,

ACk, Ik, Yo € CP(K):  |[{(Xs50) || |2 <CK”‘P“I¢
L3(Q)

This definition, that requires the mean-square continuity of the application X, is
more suitable for our purpose than that of [8], which requires only convergence-in-law
continuity. As we consider only second-order distribution processes, for the sake of
simplicity and by a slight abuse of terminology, we will henceforth simply refer to
them as distribution processes. The space of distribution processes will be denoted by
P'(R™, L2(R2)) by analogy with the space of distributions 9'(R™).

Meidan [16] showed that a continuous-time process with values in L%(£) is a dis-
tribution process if and only if it is locally Bochner integrable, that is if
I X, 2(0 L} (R™). In this case, we set:

Ve € SR, (Xig)= [ Xplo)dt

Fernique [7] showed that these processes can be seen as random distributions.
Namely, if X is a distribution process, then there exists a measurable function X
from Q into D'(R™) such that for all ¢ € C3°(R™) and for almost all w,

(X (W) ) = (X5 0)(w).

Let %(R™) be a subset of distributions and B(R", L?(Q)) the set of distribution pro-
cesses X in D' (R™, L3(Q)), such that X(w) € B(R™) for almost all w.

We define the derivation, translation, convolution, and Fourier transform (denot-
ed by F(T) or T) for dlstrlbutlon processes in the same way as for distributions. We
also define the mean, covariance and stationarity of these processes in the same way
as for continuous processes. In particular, we have the following properties:

Property 1: ([8]) Let X be a second order stationary distribution process. The
mean m of X satisfies:

JaeC, Vp e CPR™): m(p)= /a(,o(t)dt,

and there exists a positive tempered measure p such that the covariance B of X has
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the form

Ble) = [ P(OHON(O).

p is called the spectral measure of X. If p admits a density g with respect to the
Lebesgue measure, then g is called the spectral density of X.

Property 2: ([11]) If X is a second order stationary distribution process with
spectral measure p, then there exists a random measure M with respect to p, such
that

(Xip) = [ GaMO) = M(@).

Conversely, any distribution process having such a form is a second order stationary
distribution process.

2.2 Regularity properties

We now define regularity for distribution processes by characterizing the spaces they
belong to in the same way as for distribution spaces. Firstly, we recall some defini-
tions and properties of different distribution spaces [24].

Let $(R™) denote the space of C™, rapidly decreasing functions and let ¥'(R™) be
its dual, space of tempered distributions [22].

Denote (¢)2 =1+ | €]2. The Sobolev space H*(R™), s € R, is defined by

m®") ={5 e P®R);(-)F € *®R™)}.
The norm in H*(R™) is given by
171 ey = 16T gy
and we may note that

H™°®R") =] H*R") and H®[R") = (] H*(R").
s € R 8 € R

We shall need the following properties:
Vs € R the dual space of H*(R™) is H ~ *(R"™),
and if s < t we have
$(R™) C H*(R™) Cc H'[R™) C H*(R™) C H ™ °°(R™) C ¥'(R™).
We recall the Littlewood-Paley decomposition [3].
Let B(0,r) be the ball with radius r in R™ and v € C3°(B(0,2)) such that
0<¢¥<1land ¢y =1on B(0,1). We have in C=(R"):

VeE € R™ NETOO'(/)(Q_NE) =1.
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Set x(€) = (27 1¢) — (), xx(€) = x(2 —kf). Then we have:
ylim w27V =4(e) +k;0Xk(£)' )

For any k = —1,0,..., and u € ¥'(R"™), define the operator A}, as follows:

F(Agu)(€) = xx(£)u(€), k20,

and

F(A _1u)(€) = $(E)u(E)-

It will be helpful in the following to have a representation of Aju in the temporal
space rather than in the frequential space. To that aim, we denote ¢(&) = x(&) and
ér(t) = 257 (2% 1) for k > 0.

Thus, ¢4(&) = xx(€) and Agu = ¢y xu for k>0, A_ju= F~1(y)xu. We note
that Agu € C°(R™).

From (2) we obtain the Littlewood-Paley decomposition:

o
u= Z Apu.

k= -1
Sobolev spaces can be redefined by means of A, as follows:

HYR™) = {u € $(R™);I(c;) € 15,¥k> — 1, || Apu| < 27 ke)

k
Moreover, the norms || u || HYR™) and || 2% || Apu | LR

The Besov space B}, ((R"), s €R, 1 <p < +00,1<g< +00is defined by

| Il 2 are equivalent.

By, (R™) ={ue ' ([R");3(c,) €19,Vk> —1, || Agull LPR™) S cx2 ™ FY.

)
We set
lull gs = [l 25 || Al Il 1o
| B;,q(ﬂ—\”n) | | k LPR™ 19
For 0 < p < 1, the space Bgovoo(R") is identical to the Holder space
CP(R™) = {u € L®(R™); |u(t)—u(s)| <C[t—s]"}. (3)
By analogy with C?®(R"), we introduce the distribution process space
C*(R™, L%(Q)) in the following way.

Let X be a distribution process in T’(R",L2(Q)). Then we define A X by
duality:

(ApX50) = (X50.p) = (X5 p%p)

and

(AR X50) = (¢px X5 0) = (¢ X, ).
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Thus
and in the same way,

A_ X =F Hp)X.
For all t € R™, we have

(ALX;6,) = (X;25n(2%(z — 1)) = ALX(t) € C®(R™), for k > 0.

Hence, A, X € C®(R™; LY(Q)).
For s € R, we set

C*R", L}(Q)) =

{X € ¥(R™, L¥(Q));3C, VE > — 1, || [| AX || <C27 R

LZ(Q) ” LOO(Rn)
We can extend identity (3) to distribution process spaces by means of the following
proposition.

Proposition 3: Let X be a distribution process in $'(R™, L%(Q)) and p € (0;1). X
belongs to CP(R™, L*(Q)) if and only if X is a process in L°(R™, L*(Q)) and if there
exists a constant C such that for all z, t € R™,

| Xey o= Xl <Clezl|”.

()

Proof: From now on all constants will be denoted by C. Assume that

X € IR L) and || X,y o= X, o SClo]”
It is clear that || A _,X, || is bounded. If k >0, from x(0) =0 and [ ¢(s)ds =
0, we have (@)
ApXy = /2kn(Xt -5 Xt)¢(2k3)d3-
Hence,

(BAX < [ 20, = X)) g(25s) | ds
<c [2n 51216025 ds

<cak [ [21216(0) | da.

Since ¢ € $(R™), this integral is finite.
So, Vk> -1 we have | |[AX] L2(9) Il LR <C2 % and Xe

CP(R™, L3(2)). Conversely, assume that X € CP(R", L%(Q)). Hence, for all k> —1,
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sup I AX, |l 12 < C27%P. Since

Lo (@) to
X, = E ApX,
k= -1
and

+ oo
X, LX) .<_k ;—1 I ApX, | L) <C,

then X € L°(R™ L*(Q)). We have
[e.2]
X, =X, =) (0 X, — ALX,).
k= -1
If |t—s| >1, then

If |t—s| <1, choose NENsuch that
27 N-T<jt—s] <27N,

Then,

N -1 0o
Il X, — X, |l 12(@) Sk;l | ApX, — ApX, | L2(9)+2k;N | ApX, |l 120y

Now we have that
1
with

OALX = O(¢p*X) = Oy X = Z O+ ;X = Z ¢ +0prxX.
j= -1 j= -1

This leads to

F(¢x0¢1)(8) = Ex;(E)xx(E),

ifj¢{k—1,kk+1}, Xj(f)xk(f) =0 and ¢j*6¢k = 0, and, therefore,
k41
1=k-1
Consequently,
k+1
[1o(ALX) ] L2(@) <JC_;_1 || O ;X || L2(@)
k+1 k(1 )
-p

because. || 0¢y || < C2*. 1t follows that

LY(R™) =

<2Z ||AkXt||L2 <2Z c2 ke <Clt—s|P.

49



50 L. BEL, G. OPPENHEIM, L. ROBBIANO and M.C. VIANO

1
A, = X, 2 < Tt=s] [ 108X @s+ (=) | 5 do
0

<C|t—s|2kt -7,

Hence,
N -1

[e.8]

k(1 — —

1X =X, 0l 2y SC D2 Tt=s|20 7942037 27k
k= -1 k=N

<Clt-s]2NO-Pyco-Ne<c|t—s|®,

because 2~ N1 < [t—s| <2~V

3. Linear Distribution Process

We now investigate processes that generalize linear Gaussian processes

X, = /f(t —s)dW ,
where W is the standard Brownian motion and f is a distribution.

3.1 Definition of the process

We shall write f(t) = f(—t) if f is a function and (};go) =(f;¢) if f is a distribu-
tion.

If X,= [f(t—s)dW, with f € LAR™), then X, is a distribution process and for
@ € CP(R™) we have (X;0) = [( [ f(t—s)dW ,)p(t)dt. It is easy to see that in this
case we can permute the integrals to obtain

Vo € CR™), / < / f(t—s)dW3><p(t)dt= / ( / f(t—s)go(t)dt)dWs.

Therefore, it is natural to introduce the following process:

(i) = [ Feolo)iw, @

for f € V(R™) such that fxp(s) € L4R™) for all p € C(R™). Let us show that this
is actually a distribution process.

Proposition 4: Let f € D'(R") such that fxp(s) € LAR™) for all ¢ € CP(R™).
Let W be the standard Brownian motion. The process defined by

(Xig) = [ Froo)aw,

is a distribution process.

We call these processes, linear distribution processes with filter f.

Lemma 5: Let f € D' (R™) such that fxp(s) € L2[R™) for all p € CP(R™). Then
the application
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H: CP(R) — LA(R™)
o fxp

15 a linear continuous application.
Proof: Assume that the lemma holds true. For every compact set K we have
that:

3C g and k €N, Vo € C3°(K), such that

” (X;(p) ” LZ(Q) = ” f*SO ” L2(|R")

<Cg sup |03p].
o] <k
re K
Hence, the linear application X from C3°(R™) into L?(R™) is continuous and is a distri-
bution process.
Proof of the Lemma: In order to show that H is continuous, we first show that
the restriction H | ;- of H to C3°(K), where K is a compact, is continuous.
Let y € R™ be such that |y| < R. Since f €& D'(R"), there exist Ck, r and
k € N, such that

S

up | {f;7_ <cC sup 0%t _ oz
ngH P <Ck R S | 03(T _ (@) |

z € K + B(0,R)
<Ckg pr sup |0zp(z)].
o] <k
z €K

00
loc

Therefore, H |, is continuous from CF°(K) into L7, (R™) and, by assumption, the

range of H | - is included in LA(R™).

Since C3°(K) and L?(R™) are complete and metrizable topological vector spaces,
it suffices to use the closed graph theorem [23].

Let (¢, f,) be a convergent series in the graph of H | . Then we have f, =
H x(¢,) and (i, f,,) converges to (i, f) with respect to the C°(K) x L2(R™) topolo-
gy. Let us prove that (¢, f) belongs to the graph. Since H |, is continuous from
C(K) into LfS (R™), it follows that HﬁK@pn) converges to H | r(p) in L7, (R™).
Hence f, converges to HIK(tp) in L2 (R™) and to f in L*[R™). Since L{2 (R™) C
D'(R™) and L%(R™) C D'(R™) we obtain

H | (¢) = f in TR
Therefore, (¢, f) belongs to the graph of H | KO which proves that the graph is closed

and that H | , is continuous. Consequently, H is continuous from CS°(R™) to L%(R™).
Thus, for each compact set K we have

3Ck and k €N, Vyp € C°(K) such that || fxp || L2R™) < Ckl Slllp< . | 0% . :
al| < (5
r€K
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This inequality remains valid if ¢ € CS(K), as it can be seen by using standard argu-
ments.

3.2 Filters of linear distribution processes

We will now characterize the distribution filters f in 9’(R™) with which we can asso-
ciate a distribution process.

Theorem 6: Consider f € V(R™), then fxp € LAR™) for all p € CP(R™) if and
only if f € H™°(R™).

Proof: If f € H ™ *°(R™), then there exists s € R, such that f € H*(R™). Let ¢ be
in CP(R™). Using convolution properties it follows that fxp € ¥'(R™)NC®(R™).
Hence,

[ 1Fret@ 2z = [ 1506 174

2 19()0) 1
= [1er st Mg e

2
Since ?Fggo) € $(R™) and (-)*|%(f)| € L*A(R™), lcj(—w,ﬁ,i)—l—- is bounded and therefore
Txp € L(R"). <>

Conversely, we will show that f is a linear continuous form defined on HN(R")
for some N € N, then f € H ™ N(R™).

Let ¢ be in C°(R™). From (5) we have

[ _ o

SCK|SI|1p [0z LT N 2 gny (6)
[e3

ze K
For f € L?([R™) we also have

/ (i7_ob(e)dz = (f; / oz + - Yb(x)dz). (7)

But [¢(z+ - )1/)(:c)d:c € C3°(R™) and from (5) the left-hand side is well defined as
soon as peck (K) Therefore, this equality remains true for f &9’ ([R") and
pE CO(K) The aim here is to show that we can replace ¢(z +y) by 6, v in (7)
and obtain estimations in norm HY

Let M eN and ¢ be such that ¢ = E)

1- A)M¢ = 4, but ¢ is not compactly supported.

Let X,X be cut-off functions in C3°(B(0,1)) such that x =X =1 on B(0,1/2)
and xX =X

We have

37 ¢€H2M‘"/2‘6(IR") and

X (1-2)M(x¢) = 6.

By permuting ¥ with derivatives we can write

laf <2M
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where the %, are linear combinations of X ’s derivatives. X,¢ € Cg(K), as soon as
2M —n—e€ >k and we can replace ¢ by X,¢ and ¢ by (—0,)% in (6). Taking
K = B(0,1) and summing over «, we obtain

Sty [ Gab)at)(-0,)(e)dn)| < CI (L= 2)M | 3 o

lal <2M

Integrating by parts, it follows that

Y [ Gadet (00 @he = (3 O2Tad)e+ 1)i(a)

la| <2M la| <2M

= (61' = — y; ¢($)> = w( - y)a
and, consequently,
.7 _ AWM —
for ¢ € C°(R™). As C3°(R™) is dense in H*M(R™), it follows that f is a linear contin-
uous form on H*M(R™), and f € H =M (R™), that is f € H '°°([R"g.

Remark: If f € H ™ °°(R"), then it is easy to see that fxp € LAR™), Vo € $(R™).
Therefore, the processes defined by (4) are in ¥'(R™, L3(1)).

3.3 Moments of linear distribution processes
Let X be a distribution process with filter f € H = *°(R™).

Property 7: X is a Gaussian stationary distribution process with zero mean and
spectral density | (€)%, i.e.,

Ble ) = EX@X@) = [ €36 17(€) 1246 = (riorh)
where o € #/(R™), the covariance of X, is given by
c=5-1(1F12).
Proof: From
(X50) = /]‘*SO(S)dWs

it follows immediately that X is a Gaussian distribution process with zero mean [8].
Let ¢, be in C3°(R™), then straightforward calculations give

cov(X(r_po) X(r_y) = [ WO 7(6) 1% ®)
= cov(X(p); X(¥)).
Therefore, X is a stationary distribution process [8].

From (8) it follows that the spectral density of X is | 7 |2. Since | f |2 € #'(R™),
we have
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o=F"1(|]|%) ey (R,
which yields
B(p,¥) = (o;0%9).
3.4 Regularity of linear distribution processes

We can characterize the regularity of a process X with filter f € H ™ °°(R™) by the
regularity of f.

Proposition 8: Let f be in H ™ °(R™). Then the distribution process X with
filter f belongs to C*(R™, L2(R)) if and only if f € B;}oo([R").

Remark: For all € > 0, we clearly have

B3 Ls(R™) C Bj 5(R™) C B} (R™).

Since Bj o(R™) = H*(R™), we have I = (R") = U Bj ,(R"). From this last proper-

. c e . €
ty, the corresponding distribution processes belsong to

C ™R, L%,0)) = | C*R", L}(Q)).
seR
Proof: Let f be in Bj . (R™) and X be the distribution process with filter f.
Then, for all £k > — 1, we have

(AL X ) = / Feip(s)dW .
On the other hand,
f*Akso = Ak}*S"
with A, f € L*R™). Thus
(ALX), = / Apf(t—s)dW,,

and A X is the process with filter A; f. Consequently,

18X 1200 = 180 122 g )
Therefore, Vk > —1: || A X || 20 <C27 %5 and X € C¥(R", L3()). Conversely,
if X € C*(R™, L}(R)) then @)
—ks
1A I g <2

Since f € H™°(R"), A.f € L2(R™) and equality (9) implies that

— ks
HALfI L2(R™) <C27 78,

Consequently, f € By (R™).
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3.5 Distribution processes with stationary increments

We now shall treat with linear Gaussian distribution processes with stationary incre-
ments.

The temporal processes, defined by

X,= [(H(e-5)- o= s)aw,

where f and g are L%(R™) functions, have stationary increments. Indeed, for any
reals 6 and h:

ALX(H) = X(t+h)— X(t) = /Ahf(t —5)dW,,

and the Ay X(t+ 6) are identically distributed.
Fractional Brownian motions [15] belong to this family, if we set

_1
g(t) = f(t) = F(Hl—_'_SH 2I]t>0-
2

Let X be the distribution process associated with X,, then we have

e = [ ([ a=5)-a(-spetwye aw,

= / (?*(p—— g / go(t)dt)dWs. (10)

Processes, defined by (10) for distributions f and g such that fxp—g [¢dt is in
L*(R™) for all ¢ € Co°(R™), are process with stationary increments, that is, the process
ApX =71, X — X is a stationary distribution process

(ARX50) =(X;7 _ ) — (X5 9)

= / FH(T _pp —@)dW

and the random variables (A, X; 7,p) are identically distributed.
The following theorem gives a necessary and sufficient condition on f and g to
have the distribution process X in (10) well defined.
Theorem 9: Let f and g be in V' (R™). Then, fxp— g [ pdt € LAR™) for all p €
CF(R™) if and only if Vj=1,..,n: 0, ,9 € H~YR"), and f —g € H™°(R").
J

Remark: If g € L?(R™), then the assumptions of Theorem 9 are verified for all
f € H™°(R") and the result is a simple consequence of Theorem 6. Nevertheless,
the assumption 8,9 € H ™~ 1(R™) is weaker than the assumption g E L2(R™).

In the fractional Brownian motion case, we have 9,9 € L*([1; +oo[) and g€
L*([0,2]), which yields that 0,9 € H ™ }(R).

Proof: We shall need the following lemma.

Lemma 10: Let g€ D'(R"). IfVj=1,..,n:0, g € H~Y(R"), then we have,

J

Vo € CP(R™): Gxp—§ / p(t)dt € LAR™).
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Let us first assume that the lemma holds true. Let

H(p)= o3 [ elt)at.

We can write

H(p)=(f = §)xp + (G0 — / p(t)dt).
In the sequel, we denote 0, g=09,9. If Vj=1,..,m:0;9¢€ H~Y(R™), and if there
j

exists p such that f —g € H?(R"), then the first term belongs to L?(R™) by Theorem
6 and the second term belongs to L%(R™) due to the lemma.

Conversely, assume that for all ¢ € C°(R™), H(p)€ L*[R™) and, therefore,
H(9;p) € L*([R™). Now, H(0;0)=0 f*(p and by Theorem 6 there exists a p such

that ij € H°(R™). On the other hand, if H(p) € L%R"™), then 6j(H(<,o)) €
H~YR™). Since

0,(1(9)) = 0,(ro—0,0) [ el
it follows that 0 (g)f(,o € H™Y(R™). Let v be such that [¢(t)dt=1. For any

i=1,. ,nwehave@(g)EH_l([R")
Smce

(7~ Do = 1)~ Gro =3 [ 0)
where the second term is in L2(R™), due to the lemma, we have
Ve € CPR™:  (f —g)*p € L*(R™),

and by Theorem 6 there exists a p such that f — § € H?(R™).
Proof of the Lemma: If for any j=1,...n:0,9 € H~ L(R™), then g € ¥'(R™) and

13 =3 [ el g m = [ 13(-0)17 1) - 3(0)|%ae
<c [t 1161?1900 1%

<cy [©7*10,60 %

i=1

SCY 1059l -1 g < +oo
1=1

Hence, g*xp — g [ p(t) € L*([R™).
Corollary 11: If X is a process defined by (10), then the process 0;X 15 a station-
ary linear distribution process with filter 0 .f and with spectral density |£f(£ . 2
Proof: If X is a distribution process defined by (10), then
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(0,X;0) = —(X;0,;0) = / 0 ;fxpdW .

According to Section 3.3, 9.X is a stationary process with spectral density
10,71 = 1€;7() 1

Remark: In the fractional Brownian motion case we find the density of the frac-
tional Gaussian noise [4] in the form:

g-L —g-1
o+ DT 2= e T 2= e

Noting that the temporal process, defined by

X,= [(a-9-% %0, (-9aw,,

|a| <k-1

has stationary kth order increments, in the same way we can define distribution pro-
cesses with stationary kth order increments, as

win = [ (}*so(s>—2 eyl so(t)t“dt)dws-

la| Sk-1

The following result generalizes Theorem 9.
Theorem 12: Let f and {g,}, |o| <k—1, a€N" be in D(R™). Then
Frp(s) — 9o (—5)> la] <k-1 Jo(t)tdt € L2(R") for all € CP(R™), if and only if

V18| <k=1;0%, € H™IPIR™ for [a] + 18] =F
6'ag0—~ﬂ!gﬂ€f1_ lﬂl([l'\“") and f — g, € H™ °(R™).

The proof can be rendered by recurrence in the same way as that of Theorem 9.
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