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This paper develops the impulse control approach to the observation pro-
cess in Kalman-like filtering problems, which is based on impulsive model-
ing of the transition matrix in an observation equation. The impulse con-
trol generates the jumps of the estimate variance from its current position
down to zero and, as a result, enables us to obtain the filtering equations
for the Kalman estimate with zero variance for all post-jump time
moments. The filtering equations for the estimates with zero variances are
obtained in the conventional linear filtering problem and in the case of
scalar nonlinear state and nonlinear observation equations.
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1. Introduction

The attempts to design the optimal estimate for a dynamic system state over a cer-
tain class of observations take their origin from the fundamental Kalman and Bucy
paper [3], where the optimal linear estimate was constructed. The general ideal of
conditionally Gaussian filtering is known from [6]. The more complicated problem of
nonlinear filtering, where only an equation for conditional density of the optimal esti-
mate [5], but not a closed system of equations for its moments, can be obtained, was
described in [1, 2]. Thus, the optimal filters were designed for various classes of dis-
crete or continuous observations. However, none of these filters is based on applica-
tion of the impulse control to the observation process, although the impulse (§-func-
tion) approach is conventionally used for analysis of linear and nonlinear dynamic sys-
tems.

This paper presents applications of the impulse control approach to Kalman-like
filtering problems. Using impulsive or pseudoimpulsive modeling of the transition
matrix in an observation equation, it is possible to generate the jumps of the estimate
variance from its current position down to zero and, as a result, to obtain the
filtering equations for the Kalman estimate with zero variance for all post-jump time
moments. The described procedure is applied to linear and scalar-state nonlinear
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filtering problems, where the estimates with zero variances are obtained.

The paper is organized as follows. The impulsive control is applied to the obser-
vation process and the estimates with zero variances are obtained in the conventional
linear Kalman filtering problems (Section 2), in the case of a scalar nonlinear state
equation (Section 3), and in the case of scalar nonlinear state and nonlinear observa-
tion equations (Section 4).

2. Impulse Control of Observations in Linear Kalman Filtering

To present the new approach and describe application of impulse control to observa-
tion process, consider first the conventional linear Kalman filtering problem [3]

&(t) = Az(t) +b(t), z(ty) = =z, (1)
y(t) = C()x(t) +4(1), y(ty) = yo, (2)

where z(t) € R™ is a nonobserved state and y(t) € R™ is an observation process, A is
a matrix specifying asymptotic behavior of the system (1) trajectories, C(t) is a tran-
sition matrix in an observation equation, ¥(t) is a Gaussian noise with variance
F ~Y(t), matrices A,C(t) and a vector b(t) are deterministic, To,Yg, and P(t) are
mutually independent Gaussian variables/processes.

The problem is to find the best estimate for z(t) based on the observations from
the initial moment ¢, to a current moment ¢, that is the conditional expectation
m(t) = E(z(t) | F 2/), where F }/ is the o-algebra generated by the observations from ¢
to t.

The basic idea of the Kalman filtering is to minimize the estimate variance
P(t) = E((z(t) — m(t))(z(t) — m(t))T | F{), where aT denotes the transposition of a
vector (or a matrix) a. However, none of the known minimizing methods is based on
impulsive changes in a transition matrix C(t) of an observation process, although the
impulse (é-function) approach is conventionally used for analysis of linear and non-
linear dynamic systems. This paper describes applications for the impulse control to
Kalman-like filtering problems.

Let the matrix C(t) change in the impulsive manner (as é-function) at a point ¢*
(which may coincide with the initial point t,), i.e.,

C(t) = Cs(t - 17), (3)

where C is the intensity matrix of é-function, and let the observation process (2) stop
after ¢t =¢*. Of course, characteristics of a physical device (specified by a matrix
C(t)) cannot change exactly as é-functions but may be represented as abrupt changes
in C(t) from its normal to peak values and back, i.e., may be described by é-func-
tions approximately. Moreover, in many transient stability problems for faulted sys-
tems, such pseudoimpulsive behavior of system coefficients is intentionally generated
for the testing purposes in computer-aided analysis.

With the impulse transition matrix C(t) given by (3), the observation equation
(2) takes the form

t t
y=yo+ / Cz(s)6(s —t*)ds + / Y(s)8(s — t*)ds,
to ko
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and can be written as an equation of discrete-continuous observations

¢ t
y(t) =yo + / Cz(s)du(s) + / P(s)du(s), 4)
to to

where u(t) is a bounded variation function, which is equal to a Heaviside function
x(t —t*) in this case.

The discrete-continuous observations are considered in detail in [7]. Using the
results of 7], the filtering equations for the optimal estimate of the state (1) over the
discrete-continuous observations (4) are written as follows

m(t) = Am(t) + b(t) + P(t)CT F()[5(t) — Cm(t)a (1)),
m(ty) = mg = Bz | FY)), (5)
P(t) = AP(t) + P(t)AT — P()CT F(t)C P(t)u(t),
P(tg) = Py = E((zg —mg)(zg —mg)" | FY).

The equations (5) are equations in distributions. Their solution is defined as a
vibrosolution [4], which is a function discontinuous at discontinuity points of wu(t).
The method for determining jumps of a vibrosolution of the equations (5) at
discontinuity points of u(t) is given in [7].

In accordance with Theorem 2 from [7], the jumps of the best estimate m(t) and
its variance P(t), regarded as a vibrosolution of (5), at the point ¢* are computed as
follows

Am(t*) = P(t* =)+ CTF(t*)CP(t* -~ lC'TF(t*)[Ay(t*) —Cm(t* =), (6)
AP(t") = — P(t* = )T + CTF(t")CP(t* - )] T CTF(:™)CP(t* ),

where Af(t*) is a jump of a function f(t) at a point t*, f(¢*—) is a value from the
left of a discontinuous function f(t) at a point ¢*, and I is the n x n-dimensional iden-
tity matrix.

The intensity C of the impulse transition matrix can be selected in (6) in such a
way that the post-jump value of P(t) is approximately equal to zero up to an
arbitrary precision, i.e., 0 = P(t* +) = P(t* —) +li_r)r(1)A5P(t*), where the expressions

APt = —Pt*-)I+e 7 e = —P@t*—)[e+1I]7 1,
CTF()CP(t* =) =7, (7)

are specified by the second relation in (6), and ¢ is a positive definite matrix with a
small norm. Note that the intensity matrix C' can be simply selected as the matrix
with the maximal possible norm, if ¢ tends to zero.

Since the Heaviside function x(t—t*) = u(t) in (4) is equal to zero for ¢ > t*, the
rightmost terms in (5) are also vanished, and the filtering equations (5) take the
following form for ¢ > t*
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m(t) = Am(t) +b(t), m(t* +)=m({t* - )+ Am(t* = z(t*), (8)
P(t) = AP(t)+ P(t)AT, P(t*+)=0, (9)

where m(t* +) and P(t* +) are the post-jump values of the best estimate and its var-
iance, respectively.

The homogeneous equation (9) with zero initial value has trivial zero solution.
Thus, selecting the intensity C of the impulse transition matrix from (7), it is possi-
ble to obtain the filtering equations for the Kalman estimate with the best variance
P(t) = 0 equal to zero for all post-jump time moments.

This fact seems fairly surprising. However, it can be easily understood using the
following reasoning. Indeed, the impulse (6-function) control with intensity C in the
observation equation (4) perfectly compensates for the influence of the Gaussian noise
¥ at a point t*, and influence of the Gaussian noise 1 at points t > t* is ignored.
Thus, since the Kalman estimate is the best estimate with respect to the o-algebra
generated by observations, the obtained estimate with zero variance is actually opti-
mal in the class of all possible (linear and nonlinear) estimates.

Consider the stability problem for the best estimate variance P(t) obtained from
(6)-(9). A solution of the equation (9) with a nonzero initial value P takes the form

P(t) = exp(At)Pyexp(ATt) (10)

and is stable, if the matrix A has negative eigenvalues. If the latter condition is satis-
fied, a solution (10) will tend to zero, even if it deviates from zero due to some distur-
bances, for example, due to a small Gaussian noise with variance G(t) in the state
equation, which adds the term GG into the right-hand side of (9).

In the case of a few positive or critical zero/pure imaginary eigenvalues of the
matrix A, the deviation of a solution (10) from zero, induced by some disturbances,
will increase in view of (10). However, the variance P(t) can be returned to zero by
repeating application of the impulse (6-function) control C(t) = Cy6(t —t,) with an
appropriate intensity C, to the observation process (2) at a subsequent moment t,.
A moment ¢, can be selected as the moment when the deviation of P(t) from zero
reaches a given threshold P,. Then, the value P, is substituted for P(t*—) in the
equation '(7), and the desired intensity C, of the transition matrix is determined.
This procedure can be repeated at subsequent time moments t3,,,... as many times
as necessary.

Available intensities C' of the transition matrix can be insufficient (i.e., too
small) to return the variance P(t) to zero with the desired accuracy. In this case, the
described procedure should be repeated stepwise several times at close subsequent
time moments, selecting the maximal possible intensity for the impulse (6-function)
control C(t) at each step.

In the next sections, we consider applications of the impulse (é-function) control
to Kalman-like filtering problems in the cases of nonlinear scalar state and nonlinear
observation equations.
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3. Impulse Control of Observations in Kalman Filtering for a Nonlinear
Scalar State Equation

Let us consider the Kalman filtering problem for a nonlinear scalar state equation

(z(t) € R)
&(t) = f(z(t)) +b(t), z(ty) = zqs (11)
y(t) = C()z(t) + (1), y(te) = Yo (12)

where the function f(z(t)) is continuous, preserving the assumptions for the equations
(1) and (2). The problem is to find the best estimate for z(t) based on the observa-
tions from the initial moment ¢, to a current moment ¢, that is the conditional ex-
pectation m(t) = E(z(t) | Fr)

Since the function f(z(t)) is continuous, it can be approximated up to an arbi-
trary precision, in view of Weierstrass theorem, by a polynomial f(z) = a,z + az:zt2 +
a3:c3+ ..., where a,,a,,... are certain coefficients. Thus, it is possible to consider an
auxiliary Kalman filtering problem, which can approximate the initial one up to an
arbitrary precision

£(t) = ayz + a2 + agz® + ...+ (1), 2(ty) = zg, (13)
y(t) = C(1)z(t) + (1), y(to) = yo- (14)
Thus, without loss of generality, the impulse control approach can be applied to the
observation equation (14), which is thus transformed into the form (4). Since
m(t) = E(xz(t) | F}l) remains a conditionally Gaussian process in this case, the follow-
ing filtering equations for the state (13) over the observations (4) can be obtained us-
ing results from [6]
. _ 2 Y 3 Y
m(t) = aym(t) +a, E(z*(t) | Fy )+ azE(x>(t) | Fy ) +...+b(t)
+ P()CTF(1)[i(t) = Cm(t)i(t)}, m(te) = my = E(zo | FY), (15)
P(t) = dE[(2(t) - m(1))? | F{)/dt
- P()CTF()CP(1)i(t), P(ty) = P = E((zg —~mp)* | FY), (16)
where u(t) = x(¢t —t*) and t* is the point where impulse control is active.
The first term in the right-hand side of (16) can be represented, in view of (13)
and (15), as follows
dE[(a(t) = m(t))* | F{'}/dt = 2B[d(a(t) = m(1)) /dt(a(t) = m(t)) | F}]
= 2B[a(2(t) - m(1))? + ay(a*(t) — E[z*(t) | FY ])(2(t) — m(1))
+ ay(@*(t) = Bla(t) | FY D(a(t) = m(t) +... | FY ]

= 2[a, P + 2a,mP + 3a5(P? + m?P) +.. 0],
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because all odd central moments of a conditionally Gaussian process m(t) are equal
to zero [6]. Thus, the equation (16) takes the form

P(t) = 2[a, P 4 2a,mP + 3az(P? + m?P) +...] - P(t)CTF(¢)CP(t)u(t)),
P(ty) = Py = E((zg —mo)* | FY). (17)

The jumps Am(t*) and AP(t*) at the point t* are determined [7] by the relations
(6), and the equations (15) and (17) take the following form for ¢ > t*

(t) = aym(t) + ay E(2(t) | FY) + agE(23(t) | FY) +... 4+ b(2),
m(t* +) = m(t* =) + Am(t*) = z(t*), (18)
P(t) = 2[a; P + 2a,mP + 3a3(P* + m*P) +...], P(t*+)=0. (19)

The homogeneous equation (19) with zero initial value has trivial zero solution.
Thus, selecting the intensity C of the impulse transition matrix from (7), it is possi-
ble to obtain the filtering equations for the Kalman estimate with the best variance
P(t) =0 equal to zero for all post-jump time moments in the case of a polynomial
scalar state equation. These equations can approximate the desired filtering equa-
tions for the state (11) over the observations (12) with the transition matrix (3) up to
an arbitrary precision. Based on the continuous dependence of a solution of a differen-
tial equation on its right-hand side, we conclude that the Kalman estimate for the
state (11) over the observations (12) with the transition matrix (3) also has zero var-
iance P(t) = 0 for all post-jump moments ¢t > t*.

Since a small deviation of an initial value P, of the equation (19) from zero is
possible due to some disturbances (see, for example, Section 2), the local stability of
the equilibrium solution P(t) =0 should be assured for the convergence of a solution
outgoing from P, > 0 to the equilibrium. Behavior of a solution of (19) emanating
from a small neighborhood of zero, i.e., the local stability of the equilibrium
P(t) =0, is specified by the coefficient of the linear term P(t) in the right-hand side
of (19), which is equal to

2[a; +2a,m + 3agm® + ...+ na,m" "1 +...] = 2[f(m)/m].

Let the function f(z) be such that solutions z(t) of the equation (11) are bounded.
Then, if the condition

[f(m(t))/m(t)] < p <0, (20)

is valid for ¢ > t*, there exists a neighborhood of zero, such that a solution of (19)
emanating from it will tend to the best variance P(t) = 0. Note that the condition
(20) is equivalent to the local stability of the equilibrium solution z(t) =0 of the
equation & = f(z). If the condition (20) is not satisfied, a solution of (19) outgoing
from P > 0 could diverge from zero. In the latter case, the variance P(t) can be re-
turned to zero by repeating application of the impulse (é6-function) control C(t) =
C,6(t —t,) to the observation process (12), as it was described in Section 2.

Note that the nonlinear state equation (11) is assumed scalar for the reason of
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simplicity. The case of a vector nonlinear state equation should be examined addi-
tionally.

4. Impulse Control of Observations in Kalman Filtering for Nonlinear
Scalar State and Nonlinear Observation Equations

Let us consider the Kalman filtering problem for nonlinear scalar state (z(t) € R) and
nonlinear observation equations

(1) = f(2(1)) + (1), =z(t) = o, (21)
y(1) = C(z(1) +4(1), y(to) = Yo (22)

where the function f(z(%)) is continuous, preserving the assumptions for the equations
(1) and (2). The problem is to find the best estimate for z(t) based on the observa-
tions from the initial moment t; to a current moment ¢, that is the conditional ex-
pectation m(t) = E(xz(t) | F}l)

Using the polynomial approximation (13) for the state equation (21) and apply-
ing the impulse transition matrix

C(z(t)) = C(x(t*))8(t — t*) = Cz(t*)5(t — t*) (23)

to the observation process (22), we obtain the following filtering problem

&(t) = ayz + a2:c2 + a3w3 +.. +b(t), z(ty) =z, (24)
t t
v =uo+ [ Cayiu(s)+ [ wis)iucs), (25)
ty ty

where u(t) = x(t —t¥).
Using the theory of nonlinear filtering [1, 2], write down the equation for the best
estimate in the filtering problem (24), (25), which also follows from [5]
m(t) = aym(t) + ayB(2?(t) | FY) + azE(z3(t) | FY) + ...+ b(t)
+{E[(e(t)e(t)CT | FY] = m()Ele(t)CT | FY NF(t)dv(2),
m(tg) = mg = Bz | FY), (26)
where dv(t) = dy(t) — Cm(t)dx(t —t*). The latter term in (26) can be transformed,

in view of integration with atomistic measure dv(t) concentrated at the point t*, as
follows

{El2(t)e()CT | F{ 1= m() E[=()CT | FY JF(t)du(t)

= {El(2(t)2()) | F{ 1= m()m(t)}CT F(t)dw(1)
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= P(t)CTF(t)du(t) = P(t)CTF(t)[dy(t) — Cm(t)du(t)],

where P(t) is the variance of the best estimate m(t). Thus, the equation (26) takes
the form

m(t) = aym(t) + ay E(zX(t) | FY) + agE(z3(t) | FY) +... 4+ ()
+ P()CT F(t)[dy(t) — Cm(t)du(t)], m(ty) = my = E(z, | F};). (27)

The best estimate equation (27) depends, in this case, only on the variance P(t) but
on no other moments. Using the deduction from the Section 3, we obtain the follow-
ing equation for the variance P(t)

P(t) = 2[a, P + 2a,mP + 3a3(P?* + m?P) +...] - P(t)CT F(t)C P(t)u(t),
P(tg) = Py = E((zg— m0)2 | F};). (28)

The jumps Am(t*) and AP(t*) at the point t* are determined [7] by the relations
(6), and the equations (27) and (28) respectively coincide with the equations (15) and
(17) from Section 3 for ¢ > t*. Thus, selecting the intensity C of the impulse transi-
tion matrix from (7), it is possible to obtain the filtering equations for the Kalman
estimate with the best variance P(t) =0 equal to zero for all post-jump time
moments (the equations (18) and (19) from Section 3). These equations can
approximate the desired filtering equations for the state (21) over the observations
(22) with the transition matrix (23) up to an arbitrary precision. Thus, we conclude
that the Kalman estimate for the state (21) over the observations (22) with the im-
pulse transition matrix (23) also has zero variance P(t)=0 for all post-jump
moments ¢ > t*.

The stability analysis for the estimate variance (28) at post-jump points ¢t > t*
could be done in the same way as for the estimate variance (19) from Section 3.
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