
Journal of Applied Mathematics and Stochastic Analysis, 11:2 (1998), 163-178.

TI-IE STATIONARY G/G/s QUEUE WITH
NON-IDENTICAL SERVERS

PIERRE LE GALL
France Telecom, CNET

Parc de la Brengre
F-92210 Saint-Cloud, France

(Received February, 1998; Revised April, 1998)

We extend a recently developed factorization method to the case of the
G/G/s queue with non-identical servers, by presenting three simple proper-
lies which lead to a simple numerical calculation method. We compare
our results with those determined by classical Markovian (phase) methods
in the case of the symmetrical M/G/s queue, and for the mean queueing
delay we compare with results given by traffic simulation.
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1. Introduction

In a recent paper [3], we studied the stationary G/G/s queue by means of a new fac-
torization method more general than a Wiener-Hopf type of decomposition. In Sec-
tion 3, we show how this method may be readily extended to the case of non-identical
servers for delayed customers. In Section 4, we then show how the effect of the busy
period can be combined with that of the partial occupancies to evaluate the probabili-
ty of delay. The calculations are made in both Sections 3 and 4 with the aim of deriv-
ing a simple numerical calculation method offered by three simple properties. We
apply the results successively to the stationary GI/G/s queue and the M/G/s queue.
In Section 5, we close with numerical comparisons of results obtained by applying
classical Markovian methods to the symmetrical M/E2/s and M/H2/s queues, and we

compare the calculated values of the mean queueing delay with results given by traf-
fic simulation.
We begin, in Section 2, by defining notation and assumptions and by outlining the

recently-derived preliminary results for the case of the symmetrical G/G/s queue.
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Notation, Assumptions and Preliminary Results for the Symmetric
G/G/s Queue

2.1 Notation and Assumptions

Except for the service time distribution, different for each server, the notations and
assumptions will be the same as in Le Gall [3]. We consider a queue handled by a
multiserver of s non-identical servers.

a) The Arrival Process: We assume a metrically transitive, strictly stationary pro-
cess of successive non-negative interarrival times. Let N(t)denote the random num-
ber of arrivals in the interval (0,t]. We write dN(t)= 1 or 0 depending on whether
or not there is an arrival in the elementary interval (t, t + dr). We exclude the possibi-
lity of simultaneous arrivals. We can then write

E{dN(to). dN(to + t)} E[dN(to) p(t). dr,

where p(t) is the arrival rate at time t + to if an arbitrary arrival occurred at time to.
We let

ezt.p(t).dt- Cl(Z)- O,x(Z), Pt(z) < O, (2)
0 x=l

where OO, x(Z corresponds to the xth arrival following the epoch t0. However, the sta-
tionary assumption and the Abelian theorem give that limz__.oZ.Cl(Z -A, where h
is the mean arrival rate. In a more general way, we may write for j- 1, 2,...

E{dN(to) dN(to + tl)...dN(to + tI +... + tj_ 1 +

= [dN(to)].fj(tl...tj). dr1...dtj,

and for l{e(zj) < 0 and j- 1,2,...

f ezltl.dtl.../ eZjtj.dtj.fj(7l...7j)-- otj(Zl...zj).
o o

(4)

In the case of a renewal process, the successive arrival intery.als Yn are mutually inde-
pendent and identically distributed, and we let 0(z)- E[e

zx
hi, for Re(z) < 0.

Expression (2) becomes

 0(z)eel(Z) 1 990(Z)’ (5)

and expression (4) becomes

Cej(Zj...Zj) Ol(Zl)...Cel(Zj). (6)

In fact, we assume Oo(Z) to be holomorphic at the origin. From Paul Levy’s theorem,
we deduce that Oo(Z) exists for Re (z) < where is a positive real number.
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b) The Service Times: The successive service times Tn are mutually independent
and independent of the arrival process. For server j (j- 1,...,s) the service times
Tn(j) are identically distributed with a distribution function El(t; j); and we let

Ti(z;j)- E[eZTn(J)], for Re(z) < 0. We exclude the possibility of batch service and,
consequently,

F1(0; j) FI( + 0; j) 0.

We assume Tl(z;j) to be holomorphic at the origin. From Paul Levy’s theorem, we
deduce that Ti(z;j) exists for Re(z)

_
5, where 5 is a real positive number.

c) The Service Discipline: The servers are supposed to be non-identical with differ-
ent service time distributions. But they are indistinguishable for the service discipline
which is "first come-first served."

d) The Traffic Handled: Loynes [4] demonstrated the existence of the stationary
regime. In Section 3, we shall see that the non-identical servers are equivalent (dur-
ing the busy period in the stationary regime) to different single servers handling the
same value y for the traffic intensity per server (at any period), with the necessary
and sufficient condition:

e) Queueing Delay: Since the term "waiting time" means "sojourn time" in
Little’s formula, for clarity we prefer to use the term "queueing delay" r for the queue-
ing process only and for an arbitrary customer.

f) Contour Integrals: In this paper we use (Cauchy) contour integrals along the
imaginary axis in the complex plane. If the contour (followed from the bottom to
the top) is to the right of the imaginary axis (the contour being closed at infinity to
the right), we write f If the contour is to the left of the imaginary axis, we write

+0
f Unless it is necessary to specify whether the contour is to the right or to the left
-0
of the imaginary axis, we write f.

0

2.2 Preliminary Results for the Symmetrical G/G/s Queue

Now, we outline the recent results that were presented in [3] for the case of the sym-
metrical G/G/s queue in equilibrium. To avoid very complicated calculations, Le
Gall defined the singular points of the function E[e-qr], with Re(q) > 0, relating to
the queueing delay v for an arbitrary delayed customer. Secondly, Le Gall established
conditions under which this function is holomorphic, these conditions being satisfied
by a more general factorization method than the Wiener-Hopf type of decomposition.
The results will very easily enable one to tackle the difficult case of non-identical ser-

vers for the evaluation of the queueing delays of delayed customers.

2.2.1 The singular points

For a delayed customer, the queueing delay in server j is denoted w(j). The queueing
delay r of this customer is
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r Min + [w(1),..., w(s)] Max[0, min(w(1),..., w(s))].

From an expression given by Pollaczek [6], we may write for Re(q) > 0

dz1 dzse qv 1 (27ril)s" 4-fOexp(zl w(1)).--1...+foeXP(Zs w(s)).-2--s q + Es zu’
r,--1

with Re(q + zu)> O.

In Le Gall [3], for the symmetrical case, Theorem 1 gives the singular points of the
function E[e-qr]. These are the singular points of the following function with
Re(q) < 0, not holomorphic for Re(q) > 0"

dzI dzs qGs(q)-1-(21i)------.+J0-i-1...+J-0-2-s q + z
with Re(q+ zu)>0,

1
R,s(Zl...Zs, q)’

(10)

and

__oS_l( s )R,,(Zl...z; q) 1 +-\ A
1)

8

"as- ,x(q"" "q)" H [991(ZJ 1], (11)
j=A+I

where os_,x(q...q) is defined by expression (4). The physical meaning may be per-
ceived in the GI/G/s case, where, due to expression (6), we may write

R,s(Zl...Zs; q) 1 +, 1)s- ),. [Cel(q)]S X. H
j-A+I

[l(Zj)- 1],

or more simply

R(Zl’"z;q) l-I [1 o1(q) (991(zj) 1)]. (12)
j=l

The case j corresponds to the server j, assumed to be in isolation with an arrival
process corresponding to al(q). For the G/G/s queue, instead of Rs, we want to de-
fine a holomorphic function Vs(zi...z,;q) for Re(zj) > 0 (j- 1,...,s) and Re(q) > 0,
so that Vs(0...0;q) has the same singular points as the function Gs(q) given by ex-
pressions (10) and (11).

2.2.2 The factorization method

Let

Vs(Zl.. .Zs; q) 1 Us(Zl. .Zs; q)" (13)
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In Le Gall [3] for the symmetrical case, we proved that the function Us has to satisfy
the following conditions of factorization:
We set

(- 1). (q...q). [l(Z)- 1]
1 11 Mi(Zl" "Zs; q)’ (14)Vs(Zl" "zs; q) ls(Zl" "Zs’ q) 1

where R, is defined by expression (11) and Us is holomorphic for Re(zi) >- 0
(i 1,..., s) and Re(q) >_ 0, with the following conditions for Mi:

a) M is holomorphic for Re(z/) < 0, i- 1,...,s;
i-1

b) Mi(Zl’" "Zi 1’ q z,, z + 1"" "Zs; q) 1.

Then, we have

v(0...0; q)

where Gs(q)is given by expressions (10) and (11).
Note the following facts.
1) Factorization (14) is still valid when we substitute

Ol(Zj; j) for Ol(Zj) (15)

2)

in expressions (11) and (14), where l(zj;j) has been defined in subsection

(2.1.b).
To establish this factorization method, we had to use expression (22) in Le
Gall [3] for R(q) >_ 0:

/ /
2.2.3 The function Us

q+zv
,--1

Us(Zl...Zs;q). (16)

For the symmetrical G/G/s queue, the function Us has been defined in Le Gall [3]"

Vs(Zl...zs; q) Exp (2ris q + . +
-0

z1

Zsl_;lds’lgls{l"’s)I
with

R q-4- zuA-i >0, i-1,...,s.
u=l

The function Ns is given by

(17)
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1 As(z1...zs)
Ns(Zl...zs) Bs(Zl. ".zs)’

with As(z1. "’zs) (-1)s { j--11I[j(Zj)-1]}
"Cs 2:1, 2:1 2:2,’’ ", E Zu and

u=l

B(Zl...) 1 (- 1)- . [l(Z)- 1]
0

+1
{j AIs

"s-A --=IEZ,..., %ElZ=

(18)

where oj(z1. ..zj)is defined by expression (4).

3. The Delayed Customer

In this section, we consider the busy period only and a server’s behavior during this
period (- congestion state). There is generated (for server j) a queueing delay w(j)
for j- 1,...,s, while the multiserver generates a queueing delay " for an arbitrary
delayed customer, in a stationary regime.

3.1 The Traffic Per Server

Let T(j) denote the service time of an arbitrary customer in server j (j 1,...,s), in
a stationary regime. The termination rate is #j- (1/T(j)). The total termination
rate for the multiserver (during a busy period in the steady state) is

$

t- Z #j (-), (19)

defining the mean service time T of the multiserver. Let

# with

In other words, k./ > 0) is defined by the relation

(20)

(21)

The total arrival rate is - [EdN(t)]. The traffic intensity handled by the multi-
server is A. ’ -[EdN(t)]. . Due to the stationary regime and expression (20) for

/ti the arrival rate at server j is

1 EdN(t)]. (22)

The traffic intensity handled by server j is, due to expressions (21) and (22),

(23)
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This traffic intensity is the same in each server. We may conclude that the following
property holds.

Property 1 (Behavior of server j for the non-symmetrical G/G/s queue in a sta-
tionary regime): Server j behaves as a G/G/1 server, as if an arbitrary arrival is
chosen with probability (1/kj) of being handled by server j. It follows that the traf-
fic intensity y has the same value in each server during a busy period, in the steady
state.

Note the following facts.
1) The symmetrical G/D/s queue has to be excluded because of a deterministic

mechanism for the choice of arrivals. But, when the service times are non-

identical, the above property is correct.
2) For the symmetrical G/G/s queue, we have

kj-s, j-1,...,s. (24)

We deduce the queueing delay r of an arbitrary delayed customer in the G/G/s
queue by applying the expectation operator to expression (9) to evaluate E[e-qr].
But, we want to check in the case when kj is valued in set (1, 2,..., s).

3.2 The Distribution of the Queueing Delay

Expressions (9) and (10) may be applied immediately.
renewal, expression (12) with substitution (15) becomes

For an arrival process, being

R,s(Zl...Zs;q)- - [1-cq(q).((zj;j)- 1)]. (25)
j=l

For a general stationary arrival process, as described in paragraph (2.1.a), we can sub-
stitute

as (q...q) for [al(q)]s- )’ (26)

after having expanded expression (25). Finally, with the new expressions for Rs and

Ns, expressions (17) and (18) are still valid if we apply substitution (15). However,
it may be very useful to note that the result is not changed if we replace

s ,k Z... Z
--1 =1

in expression (18) by

To check this equivalence, we come back to the preceding expressions, related to

(17) and (18) and leading to relations (30) through (33) in Le Gall [3], to be applied
in the above expression (16) in order to satisfy the factorization method. It follows
that the successive residues for (i zi (i s, s -1,. .,1) lead to the application of

cs_.x to expression (16). The successive residues at the respective poles
i-1

z -q- for s,s-1,..., 1, lead to the expression as_),(q...q), as with the

above expression for cs_ . We find again expression (25) or a more general expres-
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sion corresponding to expression (11). In other words, the singular points are not
changed, and the factorization method is still applicable. The new expression for the
functional Ee-qr does not change its value, since we know that the solution is unique
to determine the G/G/s queue.

Now, we shall use the symmetry in expression (17), which leads to the following
substitutions:

[7l(zj;j)--l].os_ zv,... zv,... z
=1 =1 =1

l(Zj; j) 1

zj
v=l v=l =1

l(Zj; j) 1 1
3 s

Zz -7." Zv "Os--A Zv’’" Zv"’" Zv
d v=l v=l v=l v=l

Expression (16) leads to the expression:

l(Zj; j) 1

zj "s-(q"’q)"

Finally, considering every variable zj (j > A), we find that (16) reduces to the expres-
sion:

II2Ij=A+l(j)l "Os-A(q’’’q)’ (27)

instead of c%_.x(q...q). Property 1 is satisfied and, finally, we may use expression
(9).

Property 2 (The distribution of -, the queueing delay of the non-symmetrical
G/G/s queue): In a stationary regime, if w(j) is the queueing delay of an arbitrary
delayed customer served by server j behaving under Property 1, the queueing delay of
an arbitrary delayed customer served by a non-symmetrical (or symmetrical) multi-
server is - Min[w(1),..., w(s)], (28)

and the expression for the functional Fie-qr] may be deduced from expression (9).
From the notation in formula (11) in [3], using Pollaczek’s formula in [5], for

Re(q) >_ 0, we may write

1 },
with K(() 1

O1( ()
kj [1(; J) 1],

(29)

where kj is defined by expression (21). In particular, when ql increases indefinite-
ly, we obtain, for the probability of no delay of this server equivalent to server j the
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expression

Qj- Exp -+0

and for the mean busy period size (= mean number of customers served) we deduce
the expression

1
nj --, (31)

due to some classical relations. In fact, Qj is the probability of initiating a busy
period.

a) Case of the Non-Symmetrical GI/G/s Queue: Taking expressions (9), (28) and
(29) into account, we have that the queueing delay r, of the non-symmetrical GI/G/s
queue for an arbitrary delayed customer is given [for Re(q) > 0] by

/dZl Jdzs ( -[ -qw(j)) qE[e -qr]- 1 (2i)s --i--"" -5-s" Ee s (32)
-t-O -t-O j=l q+ zu

Expression (35) below will give a simpler expression for the complementary distribu-
tion function of the queueing delay, which will be very convenient for numerical calcu-
lations.

b) Case of the Non-Symmetrical G/G/s Queue: For the non-symmetrical G/G/s
queue, it is much more difficult to expand the terms between brackets in expression
(32), since servers are mutually dependent through the arrival process. Finally, it is
simpler to proceed in expressions (17) and (18) with the substitutions (15). But the
expression in the distribution function of the queueing delay is much more intricate
than that of the GI/G/s queue.

3.3 The Busy Period

The busy period corresponds to the s servers being busy simultaneously. To evaluate
the probability Q0 that the multiserver initiates a busy period, we may note that,
among a great number N of successive arrivals, the mean number N. Q0 initiates a

busy period of the multiserver and the mean number N.[Qj/kj] corresponds to
server j due to Property 1. We deduce the relations:

__Qj s
1Qo j= l-J and - ln-" kJ’ (33)

due to expression (31), with n being the mean busy period size of the multiserver, and

kj being defined by expression (21). In the case of a symmetrical G/G/s queue,
where kj- s (see expressions (24)), we have

nj-n, j-1,...,s. (34)

3.4 The Distribution Function

Let W the queueing delay of an arbitrary (delayed or not delayed) customer and let
F(t) denote the queueing delay distribution function of a delayed customer. Intro-
duce the complementary function G(t)= [1- F(t)] for the multiserver and introduce
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Gj(t) for server j.

3.4.1 Case of the non-symmetrical G/G/s queue

Let 5(t) denote the queueing delay distribution function of an arbitrary (delayed or

not delayed) customer of the multiserver. We have

(t) 1 P G(t), (35)

where P is the probability of delay.

3.4.2 Case of the non-symmetrical GI/G/s queue

As we consider the non-symmetrical GI/G/s queue, expression (28) makes say that

since the relation r > t needs simultaneously to have w(j) > t for j 1,..., s. Expres-
sion (29) allows us to evaluate Gj(). Expressions (a5) and (a6) give for the mo-
ments of W:

E(Wa) cP. J ta- 1. G(t)" dt, 1, 2,... (37)
0

Gj(t) and this expression (37) can be easily calculated on a computer.

3.4.3 The non-symmetrical GI/M/s queue

From Pollaczek [51 we deduce from expression (29) that

Gj(t)-Exp{ y(j)
"T(j)

where Yo(J)is the unique root, for R(() > 0, of

or

K(t:) 1
cq( )

kj [991(; j) 1] 0, with

Yo(J) 1
T(j) 1 -4- k-" c[- Y0(J)]"

Expressions (30) and (31) become

1Qj Yo(J), and nj = Yo(J)"
We deduce from expression (21) that

with------’ 1Yo(J 1 s,_ s
T(j) nj kj T j- T-(j)"

Finally, expression (33) gives us that

T()

(38)

(39)

(40)

(41)
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yo(J) _s (42)j=lT(j)-n.
where n is the mean busy period size of the multiserver mean number of custom-
ers served during a busy period). Consequently, we may write the following simple
expression from expressions (36) and (38) for the complementary distribution func-
tion of the delayed customer:

G(t)- Exp(
3.4.4 The non-symmetrical M/G/s queue

Due to expression (23), we may write

1 (44)Qj-l-r/ and n-nj=l_r/,

for the mean busy period size n of the multiserver. From Pollaczek [5], we may write

a.i(0
1 r. E rU" 1

1 F(u; j). du (4)rl
u 1 0

r(j)

where [-]() denotes the k-fold convolution of the function [-]. Finally, (36) gives an

intricate expression for the complementary distribution function G(t) of the delayed
customer:

ii r/ /.
1 Fl(U; j). du (46)G(t)- !.. 1-

j 1 , 1 0
T(j)

which can be evaluated numerically on a computer.
need to define the probability of delay P.

To use expression (35) we, now,

4. The Probability of Delay

During the busy period (= the congestion state), server’s behavior has been defined
in a way quite independent of partial occupancy states. For these states, it follows
that a busy period appears exactly as a unique congestion state in the lost call model,
with n successive service times handled as if there were a unique arrival, with n being
the mean value of the busy period size, i.e., of the number of customers served during
this busy period. This fact could not be observed with the classical Markovian
methods, and it has not been noted in Pollaczek’s equation of [6].

With the lost call model in a stationary mode, let Pi Po" h(i) denote the proba-
bility that i servers are busy upon the arrival of an arbitrary customer. The probabili-
ty of loss is Pa Ps with

1 =l+l+’"+h(s-l) (47)1
Pa -s h(s)
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$

due to the normalizing condition Pi- 1.
i-0

With our preceding remark to evaluate the probability of delay P, we have to sub-
stitute

n. h(s) for h(s). (48)
We may now conclude.

Property 3 (The probability of delay)" For a non-symmetrical G/G/s queue in a

stationary regime the probability oJ delay is

n’Pa (49)P
1 +(n- 1).Pa

where Pa is the probability of loss in the lost call model and n is the mean value of
the busy period size as defined by expression (33).

As already seen in [1] and [2], we know that the evaluation of Pa is extremely diffi-
cult except in two symmetrical cases: The GI/M/s and M/G/s queues. In particu-
lar, for the M/G/s queue we conclude that the delay Erlang formula may be extended
for a general service time distribution. In that case, expression (44) gives n

[1/(1- r])]. From fact 1) after Property 1, we know that the M/D/s queue has to be
excluded; however, it has already been noted by C. Palm that the delay Erlang for-
mula gives still an excellent approximation.

5. Numerical Comparisons for Some M/G/s Queues

Now, we present some numerical comparisons with the results obtained by applying
classical Markovian methods to the symmetrical M/E2/s and M/H2/s queues.

5.1 The Symmetrical M/E2/s Queue

The service time distribution of any server j is

1Fl(t) 1 e 2t. (1 + 2t); ol(z)
(1 g]2;

VarT 0.5.corresponding to E(T)- 1; C )JrE’T"2
(50)

We deduce, for the queueing delay w(j) of any server j when Re(z) < O"

E[ezw(J)] l-r] (1- r])(1 )2

1() 1 (1 --)2 r]. (1--)1-.

with/31 -2(1-)-21-(+ 1),

4(1 )(1- )2

(z-Z)(z-Z:)’

(51)

and 2-2(1-)+ 21.(+ 1).
The queueing delay distribution function of this server j is
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Fj(t) Fl(t 1 r]. Gl(t),

1 4-1with Gl(t (1 ). (/2- ill)"

(52)
1 4--2 -f2 }"e-flt + (ill f12) "fl--- e

From expression (36), for the multiserver, the queueing delay distribution function of
the delayed customer is

p F(t) 1 -[Gl(t)]s. (53)
where t is the conditional queueing delay percentile t(p).

In Table 1, we give (for 0.8) our results concerning t(p) and the probability of
delay P from expression (49), for s 2, 5, 10, 25, 50 and p 0.5, 0.9, 0.95, 0.99. For
the results given by the Markovian methods phase methods), we refer to Table 1
(first part) in Seelen and Tijms [7]. These results appeared as approximated (Marko-
vian) results in our Table 1. The deviation is not significant.

s-2

s-10

s- 25

s-50

p 0.5 0.9 0.95 0.99 P
exact 1.36 4.31 5.58 8.52 0.711
Markov 1.34 4.29 5.55 8.50 0.709
exact 0.58 1.78 2.29 3.47 ’0.554
Markov 0.55 1.73 2.24 3.42 0.548
exact 0.31 0.93 1.19 1.78 0.409
Markov 0.29 0.88 1.13 1.72 0.402
exact 0.13 0.40 0.51 0.75 0.209
Markov 0.12 0.36 0.47 0.70 0.203
exact 0.07 0.21 0.27 0.40 0.087
Markov 0.06 0.19 0.24 0.36 0.084

Table 1: The symmetrical M/E2/s queue

1) Results a) the conditional queueing delay percentile f(p) for the delayed
customer

b) probability of delay: P
2) Parameters a) traffic intensity per server: r/= 0.8

b) service time distribution from expression (50): E(T)= 1,
C2 0.5

3) Calculations a) "exact": Section 5.1
b) "Markov’: Phase method

5.2 The Symmetrical M/H2/s Queue

The service time distribution of any server j is"

-blt 2 2F1(t)-0.5.[1-e ]+0.5.[1-e b2t], b1=" b2-

corresponding to E(T)- 1, Cs2_ VarT _2.
[(T)]2

(54)
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We let

bl + b2 /(bI + b2 )2
2 + V 4 -b1.b2.(1-r),

/2 bl "" 2
b2 r] -/V(bl -- b24 2 bl" b2" (1 ).

(55)

As for expression (52), the complementary queueing delay distribution function of
any server j is

Gl(t 32 1 -- r -1 /1- 1 -t- r] -f2t (56)2-1
"e - 1-2

"e

Now, table 2 uses expressions (53) and (56) to give the new values of t(p) and P
corresponding to the same values of parameters r/,s and p as in Table 1. For the
approximated (Markovian) results we refer to Table 1 (second part) in Seelen and
Tijms [7]. The deviation is not significant either.

s-2

s-10

s- 25

s-50

p 0.5 0.9 0.95 0.99 P
exact 2.47 8.65 11.30 17.43 0.711
Markov 2.36 8.82 11.62 18.11 0.715
exact 0.89 3.35 4.41 6.86 0.554
Markov 0.89 3.41 4.53 7.12 0.562
exact 0.40 1.58 2.11 3.34 0.409
Markov 0.43 1.63 2.19 3.48 0.418
exact 0.15 0.56 0.76 1.22 0.209
Markov 0.16 0.60 0.81 1.31 0.216
exact 0.07 0.26 0.34 0.55 0.087
Markov 0.08 0.28 0.38 0.61 0.090

Table 2: The symmetrical M/H2/s queue

1) Results a) the conditional queueing delay percentile t(p) for a delayed
customer

b) probability of delay: P
2) Parameters a) traffic intensity per server: r/- 0.8

b) service time distribution from expression (54): E(T)- 1,

3) Calculations a) "exact": Section 5.2
b) "Markov": Phase method

Tables 3 (for r/- 0.5) and 4 (for - 0.9) give some comparisons between values of
the mean queueing delay W of an arbitrary (delayed or not delayed) customer, given
by calculation and by traffic simulation. Now, the service time distribution of any
server j is
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-blt -b2tFl(t aI [1 e A- (1 al). [1 e ],
50-(n- 1) 10.(1-al)with a1 50. n-t-31’

b1 10, b2- 10- a1

VarT n.corresponding to E(T)- 1, Cs2 [E(T)]2

(57)

s-2

5 10
0.98 1.76
1’0 1.77
0.14 0.24
0.15 O.25

Table 3: The symmetrical M/H2/s queue
The mean queueing delay W of an arbitrary customer

1) Comparisons between calculations (expression (58)), line C and simulations,
line S.

2) Parameters a) traffic intensity per server: t/- 0.5
b) service time distribution from expression (57)" E(T) 1,C2 n

5 10
4.5 8.3
4.6 8.7
1.9 3.3
2.0 3.2

Table 4: The symmetrical M/H2/s queue
The mean queueiug delay W of an arbifrary customer

1) Comparisons between calculations (expression (58)), line C and simulations,
line S.

2) Parameters a) traffic intensity per server" t/- 0.9
b) service time distribution from expression (57)" E(T)- 1,Cs2 --n

On applying expressions (55) and (56), we deduce from (37):

W P. [Gl(t)]s. dt,
0

(58)

where P is given by expression (49). Tables 3 and 4 consider the cases n- 5 and 10.
Taking the accuracy of simulations and of calculations of (58) into account, the
results given by traffic simulations and by calculations are in good agreement.
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6. Conclusion

We characterized non-symmetrical (and symmetrical) G/G/s queues by three simple
properties which lead to very simple numerical calculations, at least for the GI/G/s
queues. The deviation of the numerical results with those of classical, approximated,
Markovian methods is not significant, and our numerical results are in good
agreement with those given by traffic simulations.
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