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This paper studies a class of high order delay partial differential equations.
Employing high order delay differential inequalities, several oscillation cri-
teria are established for such equations subject to two different boundary
conditions. Two examples are also given.
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1. Introduction

The oscillation theory of delay differential equations has been studied by numerous
authors and the number of papers published in this area is enormous. For an ex-
cellent exposition of the basic theory, see [5]. In recent years, there has been an in-
creasing interest in oscillation theory of delay partial differential equations, see [6-10]
and references therein. However, the corresponding theory is still in its initial stage
of development. In this paper, we shall investigate a class of high order delay partial
differential equations which will be described in Section 2. In Section 3, we shall esta-
blish several oscillation criteria for high order delay partial differential equations sub-
ject to two kinds of boundary conditions, employing Green’s theorem and high order
delay differential inequalities. We then develop, in Section 4, some results on even-
tual positive and eventual negative solutions of high order differential inequalities,
which enable us, in addition to their independent interests, to obtain in Section 5,
further oscillation criteria for high order delay partial differential equations. To illu-
strate our results, two examples are also given.
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China.
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2. Prehminaries

We shall consider the following nonlinear high order delay partial differential
equation

ff-m[u + A(t)u(x, v)] + p(x, t)u + q(x, t)f(u(x, t r))

= a(t)Au + E aj(t)Au(x, aj(t)),(x,t)e x R+ G, (2.1)
j=l

where m is an even positive integer, " > 0 and a > 0 are constants. Let fl be a

bounded domain in Rn with piecewise boundary OF/, A is the Laplacian in Rn;
A E cm[R + ,R]; a, aj C[R + ,R + ], j 1, 2,..., ; p,q C[R + x ,R + ],
f C[R, R], rj C[R +, R + is nondecreasing in t, rj(t) < t and lim r(t) + cx3,

j 1, 2,..., . t--. +
We shall consider two kinds of boundary conditions

Ou )u o, (, ) e O R +
and

ON t- 7(x’ (B1)

0, (, ) e 0e a +, (B)
where N is the unit exterior normal vector to 0, 7(x, t) is a nonnegative continuous
function on c3 x R +.

Definition 2.1: The solution u(x,t) of system (2.1) satisfying certain boundary
conditions is called oscillatory in the domain G if for each positive number #, there
exists a point (Xo, to) 2 x lit, + cx) such that U(Xo, to) O.

3. Oscillation Criteria

In this section we shall establish oscillation criteria for problem (2.1) with boundary
condition (B1) and (B2) separately. The basic idea of our approach is to reduce the
study of high order delay partial differential equations to that of high order delay
differential inequalities.

Theorem 3.1: Assume that the following condition (H) holds.
(H) f(u) is convex in R + and f( u) = f(u) < O, u E R +
If the high order delay differential inequalities

d,d--t-[U(t + (t)U(t r)] + P(t)U(t) + Q(t)f(U(t o’)) _< 0 (3.1)

has no eventually positive solutions, then all solutions of the problem (2.1) under (B1)
are oscillatory in G, where

P(t) min_ p(x, t), Q(t) min_ q(x, t).
xEfl xEfl

Proof: Let u(x,t) be a nonoscillatory solution of the problem (2.1) under (B1).
We may assume that u(x,t)> 0 for (x,t)E x[it, +x), where it is a positive
number to > it, such that

and
(, t -) > 0, (, t ) > 0

u(x,rj(t)) > O, (x,t) e ]x[to, +oo), j- 1,2,...,g.
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Integrating both sides of system (2.1) with respect to x over the domain f2, we obtain

dm u(x, t)dx + a(t) u(x t r)dx + p(x, t)u(x t)dxdtm

+ J q(x, t)f(u(x, t r))dx

a(t)/Au(x, t)dx + E aj(t)J Au(x, aj(t))dx, t

_
t0.

t j=l Ft

From Green’s Theorem, it follows that

and

/ /
-/7(,j(t))(,y(t))d8 <_ o, j- 1,2,...,t, t >_ to,
o

(3.3)

(3.4)

where dS is the surface integral element on 0ft.
using Jensen’s inequality, we have

Since if(u) is convex in R +, then

f(u(x, t )dx

_
all [o1 u(x, t )dx (3.)

where a] f dx. Combining (3.2)-(3.5) yields

+ P(t) u(x,t)dx + Q(t)f a_
a(t) / 7(x, t)u(x, t)dS E.aj(t) / 7(x, j(t))u(x, aj(t))dS

<_O, t>_to.

Thus, we see that the function

1 / u(x t)dxu(t) al (3.6)
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is a positive solution of the inequality (3.1) for t _> to, which contradicts the condition
of the theorem.

If u(x, t) < 0 for (x, t) [#, + c), then set

(., t) (., t), (., t) [, + ).
Note that since f(-u)= -f(u), u E (0, + c), it is easy to check that (x,t)is a

positive solution of the problem (2.1) under (B1) which is impossible. This com-
pletes the proof of Theorem 3.1.

The following fact will be used in the proof of Theorem 3.2. Consider the Dirich-
let problem

Au+u- 0 in ,
ulo-O,

where ,- constant. It is well known that the smallest eigenvalue 0 and the cor-

responding eigenfunction (x) are positive.
Theorem 3.2: Assume that the condition (H) holds. If the high order delay

differential inequality

dm [V(t) + A(t)V(t v)] + (A0a(t) + P(t))V(t) + Q(t)f(V(t r)) < 0 (3.7)dtm

has no eventually positive solutions, then all solutions of the problem (2.1) under
are oscillatory in G.

Proof: Let u(x,t) be a solution of the problem (2.1) under (B2) having no zeros
in the domain fix[#, +c), for some #>0. Ifu(x,t)>0 for (x,t) EFt[#,+cx3),
then there exists a to > tt such that

u(x, t r) > O, u(x, t r) > 0 and u(x, aj(t)) > 0, (x, t) flx [to, +
j 1,2,...,t.

Multiplying both sides of (2.1) by the eigenfunction (I)(x) and integrating with respect
to x over the domain fl, we have

drn

+ I p(x, t)u(x, t)qP(x)dx + / q(x, t)f(u(x, t (r))O(x)dx

a(t)J Au(x, t)(x)dx + E aj(t)] Au(x,rj(t))(x)dx, t > tO. (3.8)
fl 3--1

Using Green’s Theorem, we obtain

Au(x, t) ((x)dx
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= / (3.9)

Au(x, crj(t)). (b(x)dx

oi u(x, rj(t))(b(x)dx, j 1, 2,..., . (3.10)

Using Jensen’s inequality, we have

f(u(x, t cr))O(x)dx

>_ (x)dx. f f ((x)dx

Combining (3.8)-(3.10) yields

(3.11)

- Ja(t) i u(x, t)((x)dx, t >_ to,

i.e., the inequality (3.7) has positive solution

f
] u(x, t)((x)dx, t >_ to,v(t) r ((x)dxJ

which contradicts the condition of the theorem.
If u(x, t) < 0 for (x, t) E x [#, + oc), then -u is a positive solution of the

problem (2.1) under (B2) which also provides a contradiction. The proof of
Theorem 3.2 is complete.

4. High Order Delay Differential Inequalities

From the discussion in Section 3 it follows that the problem of establishing oscillation
criteria for the system (2.1) can be reduced to the investigation of the properties of
the solution of high order delay differential inequalities for the form
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m

-m[y(t) + (t)y(t 7")] + Q(t)f(y(t or)) <_ O, t >_ to, (4.1)

and
dmd--[y(t + (t)y(t 7")] + Q(t)f(y(t r)) O, t >_ to. (4.2)

Along with (4.1) and (4.2), we consider the high order delay differential equation

dTM

dtm[y(t + (t)y(t ’)] + Q(t)f(y(t )) o, t >_ to, (4.3)

where m is an even positive integer, " > 0 and r > 0 are constants;
cm[[to,+ c), R], Q C[[,0, + ),R + fo om *o > 0, f e C[R, R]. We h

first consider the case A(t) >_ 0.
Assume that y(t) is a nonoscillatory solution of equation (4.3). Let

z(t) y(t) + A(t)y(t-

We shall use the following lemma.
Lemma 4.1" If z(t) is of definite sign and not identically zero for all sufficiently

large t; there exist a T >_ to and an integer k, O <_ k <_ m, with rn + k even for
z(t)z(m)(t) >_ O, or rn + k odd for z(t)z(m)(t) <_ O, then

z(t)z(i)(t) > 0 on [r, + c) for 0 < <_ k,

(- 1)i- kz(t)z(i)(t) > 0 on [7", + oc) for k <_ <_ m.

Theorem 4.1- Assume that f(- y) f(y) for y R +, and that

0 _< A(t) <_ 1, Q(t) >_ O, t >_ to; (4.4)
f(Y) > e constant > O, y (0, + oz) (4.5)y

If
Q(s)[1 A(s cr)]ds + cx, (4.6)

then
(i) the inequality (4.1) has no eventually positive solutions;
(ii) the inequality (4.2) has no eventually negative solutions; and
(iii) all solutions of the equation (4.3) are oscillatory.
Proof: Let y(t) be an eventually positive solution of the inequality (4.1). Then,

there exists a t > to, such that

y(t) > 0, y(t- r) > 0 and y(t- r) > 0 for all t >_ t1.
Setting

z(t) y(t)+ A(t)y(t- 7-), t >_ tl, (4.7)

we have
z(t) > O, t >_ t1.

From (4.1), (4.4) and (4.5)it follows that
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z(rn)(t) <_ -Q(t)f(y(t- r)) <_ -eQ(t)y(t- or) <_ O, t >_ t1.

Thus, it follows from Lemma 4.1, that there exists an odd number k and a t2

_
t1

such that
z()(t) > o, o <_ <_ , t >_ t

and
(-1)i-kz(i)(t)>0, k < <_ m, t >_ t2.

It is easy to see that
z’(t) > O, z(m-1)(t) > 0, t

_
t2. (4.8)

Using (4.5)and (4.7), we have

0 >_ z(m)(t) + Q(t)f(y(t

>_ z(rn)(t) + Q(t) y(t

z(m)(t) + eQ(t)[z(t r) A(t r)y(t v r)], t _> t2.

Note z(t) >_ y(t) for t >_ t2, thus we obtain

0 >_ z(m)(t) + eQ(t)[z(t r) A(t r)z(t r r)], t >_ t2.

Since z(t) is increasing for t >_ t2, we have

z(m)(t) + eQ(t)[1 (t a)]z(t a) _< O, t >_ t2. (4.9)

Integrating both sides of (4.9) from t2 to t(t > t2) we get

z(m 1)(t)
_

z(m 1)(t2) ez(t2 r) J Q(s)[1 A(s r)]ds.
2

Since z(m- a)(t) > 0 for t _> t2, the above inequality leads to a contradiction in view
of (4.6). This proves assertion (i).

Assertion (it) follows from the fact that if y(t) is an eventually negative solution
of (4.2), then y(t) is an eventually positive solution of (4.1). The proof of the asser-

tion (iii) is obvious.
Theorem 4.2: Assume that condition (4.4) holds; f(- y) f(y) > O, y E R +,

and that f(y) is a monotone increasing function in R +. If for any c > O,

Q(s)f([1 A(s r)]c)ds + oc, (4.10)

then conclusions (i)-(iii) of Theorem 4.1 remain true.
Proof: Let y(t) be an eventually positive solution of inequality (4.1).

there exists a tI > to such that
Then,

y(t) > 0, y(t-r) > 0 and y(t-r) > 0 for all t _> ta.
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The following inequalities can be proved by the analogous arguments as in the proof
of Theorem 4.1:

z(m)(t) O, t 1;

z’(t) >0, z(m-l) >0, t >_t2 >_tl,

with z(t) defined by (4.7). We have z(t) > 0 for t >_ tI and

z(t- r) < z(t) < y(t) + (t)z(t- r), t >_ t2,

[1- (t)]z(t- r) <_ y(t), t >_ t2.

Choose a t* > t2 such that
z(t-r) > O, t>_t*.

Since f(y) is increasing, we obtain

0 >_ z(m)(t) + Q(t)f(y(t o)

>_ z(m)(t) + Q(t)f[(1 i(t er)]z(t r er)), t _> t*.

Note that since z(t*-v- r) < z(t- t-r) for t > t*, we have

z(m)(t) + Q(t)f([1 A(t r)]c) _< O, t >_ t*,

where c z(t*-r- r) > O. Integrating the above inequality from t* to t(t > t*), we

get

z(m z(ra 1)(t*) + / Q(s)f([1 A(s r)]c)ds <_ O.

t*
This leads to a contradiction in view of (4.10), since z(m- 1)(t) > 0 for t >_ t2. This
proves the assertion (i).

We can prove assertion (ii) and (iii) by the same arguments as in the proof of
Theorem 4.1. This completes the proof.

Theorem 4.3: Assume that f(- y) -f(y) .for y E R+ and that (4.4) and (4.5)
hold. If there exists a monotonically increasing function cl[[t0, + oo), (0, + oo)]
such that

+oo

[e(s)Q(s)(1 (s-r))-c’(s)]ds +oo (4.11)

for any number c > O, then conclusions (i)-(iii) of Theorem 4.1 remain true.
Proof: Let y(t) be an eventually positive solution of the inequality (4.1). Then,

there exists a tI >_ to such that

y(t) > O, y(t- r) > O and y(t-er) > O for all t >_ t1.

The following inequalities can be proved by the analogous arguments as in the proof
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of Theorem 4.1:
z(t) > o, z(’)(t) _< o,

Z’(t) > O, Z(m-1)(t) > O, t

_
t2

_
tl;

z(m)(t) + eQ(t)[1 A(t a)]z(t a) _< O, t >_ tz.

Thus, there exists T > t2 such that z(T- r) > 0 and

Z(m- 1)(t) _( Z(m- 1)(T), t >_ T; (4.12)

z(m)(t) + ez(T r)Q(t)[1 (t r)] _< 0, t >_ t. (4.13)

Set (m 1)(t)_(t).z (t).
z(T r)

then we obviously have
(t) > 0 for all t >_ T.

Note that (t) is a montonically increasing functions and using (4.12) and (4.13), we
obtain

’(t)z(m-1)(t) (t)z(m)(t)
9’(t) z(T r) + z(T (r)

z(m 1)( ez(T r)Q(t)[1 A(t r)]< z(T T) )’(t) + (t) z(T )
t > T.

Set

we have

z(m-1)(T)
z(T (r) =c>0;

’(t) <_ -[e(t)Q(t)(1 A(t r)) c’(t)], t >_ T.

Integrating both sides to the above inequality from T to t(t > T), we get

(t) <_ (T) / [e(s)Q(s)(1 A(s r)) c’(s)]ds,
T

which is impossible in view of assumption (4.11). This proves assertion (i).
We can prove assertion (ii) and (iii) by the same arguments as in the proof of

Theorem 4.1. The proof of Theorem 4.3 is complete.
Theorem 4.4: Assume that A(t) A constant > O, f(- y) f(y) > 0 for

y R+ and that f(y) is an increasing function and satisfies:

f(x + y) <_ f(x) + f(y), f(kx) <_ kf(x) for x > O, y > O, k > O. (4.14)

If Q(t) is periodic with period and satisfies
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Q(s)ds + oo, (4.15)

then conclusions (i)-(iii) of Theorem 4.1 remain true.
Proof: Let y(t) be an eventually positive solution of the inequality (4.1). Then,

there exists a tI > to such that

y(t) > O, y(t- 7") > O and y(t-cr) > O for all t >_ tI

and for
z(t) v(t) + v(t- ).

we have
z(t) > O, z(m)(t) <_ O,t _> tl;

z’(t) >0, z(m-1)(t) > O, t_>t2_>t1.

Set
a(t) z(t) + z(t- 7") y(t) + 2Ay(t- 7") + A2y(t 2v), t >_ t2. (4.16)

Then, there exists a t3 > t1 such that

and
.(t) > 0..(t- ) > 0..’(t) > 0. t >_ t

ce(m-1)(t)>0, c(m-1)(t-7")>0, t>_t3.

From (4.1) and (4.16)it follows that

.(")(t) v(")(t) + v()(t- ) + [v(’)(t- ) + v(")(t- 2)]
<_ Q(t)f(y(t r)) Q(t r)f(y(t 7- r)). (4.17)

Choose T >_ t3 such that

y(t- 27"- (r) > O, t >_ T.

Since Q(t)is periodic with period r, we get by (4.14), (4.16) and (4.17)"
a(m)(t) + a(m)(t r) + Q(t)f(a(t r))

< Q(t)f(y(t a)) 2AQ(t v)f(y(t v a)) A2Q(t 2v)f(y(t 2"

+ Q(t)f(y(t a) + 2Ay(t r a) + A2y(t 2r a))
< Q(t)f(y(t ag)) 2AQ(t)f(y(t r r)) A2Q(t)f(y(t 2r a))

+ Q(t)f(y(t )) 2AQ(t)f(y(t r r)) + A2Q(t)f(y(t 2r )) O, t >_ T.

(4.18)
Since a and f are increasing, we have

0 < c(T- (r) < a(s- a), s > T
and

I(a(T- )) <_ f(a(s- a)),s >_ T.
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Integrating both sides of (4.18) from T to t(t > T), we get

0 >_ ce(m 1)(t) ce(m 1)(T) -t- c(m 1)(t 7") ,kce(m 1)(T 7")

+ f Q(s)f(a(s-a))ds
T

_> c(m 1)(t c(m 1)(T -- ce(TM 1)(t 7") c(TM 1)(T 7")

+ f(a(T- r)) / Q(s)ds.
T

This leads to a contradiction in view of (4.15), since c(m-1)(t)>0 and
Ce(m --1)(t- 7") > 0 for t _> t3. This proves assertion (i).

We can proves assertion (ii) and (iii) by the same arguments as in the proof of
Theorem 4.1. This completes the proof of Theorem 4.4.

We shall consider next the case of A(t)< 0. The following lemma is a special
case of Theorem 2 in [3].

Lemma 4.2: [3] Assume that fl E C[[t0, + o),R +] such that

and

Then, the inequality

lim inf /3(s)ds >-
t-5

limt__,+inf / fl(s)ds > O.

t_

_
x(m)(t)- m(t)x(t- mS) <_ 0

(4.19)

has no eventually negative bounded solutions.
We introduce the following notations:

cQ(t)
+ > o

Theorem 4.5: Assume that the condition (4.5) holds, > 7", f(-y)- -f(y)
for y +, and that there exist constants ,kl,,k2 and M such that

1 <_ "1 /(t) /2 < O, t >_ to (4.21)

and
Q(t) >_ M > O, t >_ to

if
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limt__,+ooinf J fl(s)ds > 1,
t-5

then conclusions (i) and (iii) of Theorem 4.1 remain true.
Proof: Let y(t) be an eventually positive solution of the inequality (4.1). Then,

there exists a tI >_ t0 such that

y(t) > O, y(t- r) > 0 and y(t- r) > 0 for all t >_ t1.

Set

We have
z(t) y(t) + ;(t)y(t- r).

z(m)(t) <_ -Q(t)f(y(t- r)) <_ -cq(t)y(t- r) <_ O, t >_ t 1.

We claim that
z(t) < O, t >_ t1. (4.23)

If true, from (4.1) it follows that

z(m)(t) <_ eQ(t)y(t r) <_ eMy(t r), t <_ t1. (4.24)

Thus, we see that z(m- 1)(t) is strictly decreasing on (tl, + oo) and z(i)(t) are strictly
monotonically functions on It, + c), 0, 1,..., m 2. Then, we have

lim z(m- 1)(t) oo (4.25)

or

lim z(m 1)(t) r < + oe. (4.26)

If (4.25) holds, then we have

lim z(i)(t) c, O, 1,..., m 1.

Hence (4.23) is true.
If (4.26) holds, then integrating both sides of (4.24) from tI to t and letting

t---, + cx, we get

eMy(s- a)ds <_ 1)(tl)- r/, (4.27)z(m

I

which implies that y E Ll[tl, + oo). In view of (4.2), we obtain

z E Ll[tl, -t- oo).

Note that z(t) is montonically function, we see that

lim z(t) O. (4.28)
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Thus r/- 0. From (4.28), it follows that

z(i)(t)z(i+l)(t)<O, i-0,1,...,m-1, t>t1.

Equations (4.28) and (4.29)imply that (4.23)is true.
Now we have

(4.29)

v() < ()v(- ) < v(-) < v(- ),

which implies that y(t) is a bounded function. Thus z(t)is bounded. Since

z(t + ) ( + )(t ) + (t + -)

>_ (t- + )(t- ) o t >_
we h&ve

Q()
).z(t-a + r) < Q(t)y(t- ), t > t1. (4.30)(t-+r

From (4.24) and (4.30), it follows that

) z(t-(q-v)) < O, t>tl,z()(t) -(t- + )

z(m)(t)- flm(t)z(t- mS) O, t t1. (4.31)
In view of (4.22), by Lemma 4.2 we see that the inequality (4.31) has no eventually
negative bounded solutions, which contradicts the fact that z(t)< 0 and z(t) is
bounded. This proves assertion (i). We can prove assertion (ii) and (iii) by the
same arguments as in the proof of Theorem 4.1. The proof is therefore complete.

5. Further Oscillation Criteria

In this section we shall establish some further oscillation criteria for the higher order
delay hyperbolic boundary value problem (2.1) under (B1)and (2.1) under (B2) using
the results obtained in the last two sections.

Theorem 5.1: Assume that conditions (U) and (4.5) hold, and that 0 <_ ;(t) <_ 1.

II

min_q(x,s)[1-)(s-)]ds- (5.1)
x

then
(i) a omio. of ro6tm (2.) . (B) a ocilmou i. a.d
(ii) all solutions of the problem (2.1) under (B2) are oscillatory in G.
Proof: Let u(x,t) be a nonoscillatory solution of the problem (2.1) under (B1).

We may assume that u(x,t)>O for (x,t) Efx[#,+c), where # is a positive
number. By the analogous arguments as in the proof of Theorem 3.1, we can see
that the function U(t) defined by (3.6) is a positive solution of the inequality (3.1) for
t >_ to >_ #, which implies that the function U(t) defined by (3.6) also is a positive
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solution of the inequality

d-m[U(t) + A(t)U(t v)] + min_ q(x, t)f(U(t )) _< 0. (5.2)
zfl

However, by Theorem 4.1, we see that the inequality (5.2) has no eventually positive
solutions. Thus, we obtain a contradiction.

If u(x,t)<O for (x,t)x[#,+c), then -u is an eventually positive
solution of the problem (2.1) under (B1) which is impossible. This proves assertion
(i).

The assertion (ii) can be proved by the analogous arguments as in the proof of
assertion (i). The proof of Theorem 5.1 is complete.

Using Theorem 4.2-4.5, respectively, it is easy to obtain the corresponding results
for problem (2.1) under (B)or (2.1) under (B2)also. We merely state them below.

Theorem 5.2: Assume that the condition (H) holds, and that 0 < (t) < 1, f(y)
is a monotone increasing function in R +. If for any c > O,

min_ q(x, s)f([1 A(s r)]c)ds + oc,

then
all solutions of the problem (2.1) under (B1) are oscillatory in G and
all solutions of the problem (2.1) under (B2) are oscillatory in G.

Theorem 5.3: Assume that conditions (H) and (4.5) hold, and that 0 <_ A(t) <_ 1.

If there exists a monotonically increasing function E CI[R + (- ,-t-cx)] such that

[(s)min_ a(x, s)(1 i(s )) c’(s)]ds 4- c, (5.4)
xE

for any number c > O, then
(i) all solutions of the problem (2.1) under (B1) are oscillatory in G and
(ii) all solutions of the problem (2.1) under (B2) are oscillatory in G.
Theorem 5.4: Assume that condition (H) holds, A(t) =_ . constant > O, and

that f(y) is an increasing function and satisfies (4.14). /f q(x,t) is periodic in t with
period r and satisfies

+oo

min_q(x,s)ds-+oc, (5.5)
then x

(i) all solutions of the problem (2.1) under (B1) are oscillatory in G and
(ii) all solutions of the problem (2.1) under (B2) are oscillatory in G.
Theorem 5.5: Assume that conditions (H) and (4.5) hold, > v, and that there

exist constants "1,’2, and M such that

and
-l <_ _< (t) _< 2 <0, tER+
min q(x,t) > M > O, t R +.xEft

inf fl (s)ds > 1,lir +
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then
()
(ii)

where

and

all solutions of the problem (2.1) under (B1) are oscillatory in G and
all solutions of the problem (2.1) under (B2) are oscillatory in G,

cmin_ q(x, t)
xEft’(t) -a(t-+-)

m

Finally, we discuss two examples.
Example 5.1" Consider the equation

Ot6 + (1 -e )u(x,t- -)] + 3u + 2u(x,t- )exp[3t + x + u2(x,t-)]

Xu + (2 + os t)x(, t ), (, t) e (0,,) (0, + )

and a boundary condition of type (B1)
,,(o, t) + (o, t) 0, (,, t) + ,,(,, t) o, t > o.

Here, m- 6;n- X;,g- 1;gt- (0,’);r- ’;a ;7(x,t)- 1 for
A(t) 1 e t;

2
q(z,t)--2ez +3t,min q(t)--2eat; f(u)--ueu

: [o,]

It is easy to see that the function f(u) satisfies condition (H) and

-boo

/ m.in .q(x,s)[1-A(s-r)]ds-

Then, all conditions of Theorem 5.1 are fulfilled.
(5.7) and (5.8) are oscillatory in(0, rr) x (0, + oo).

Example 5.2: Consider the equation

(94-[u u(x, t 2r)] + 2u + 4(2 sin x)u(x, t 4’)

etAu -k 3An(x, t ), (x, t)i(O, 7r) (0, q- oo)

(5.8)
t>0;

_s+ n"

2e3s. e gds + oo.

Hence, all solutions of problems

(5.9)

and a boundary condition of the type (B2)

,,(o, t) u(,, t) o, t > 0. (5.10)

Here, m 4;n 1;e 1;f2 -(0, 7r); A(t) 1;r 2rr;r 4rr;q(z,t) r4(2 sinx);
f(u) u.

In this case,
5 r- r rr

m --2
and

emin q(x, t)
e [0,,]4(t)- A(t- O" q- 7") 71"4’
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where e 1. It is easy to see that

inf fl (s)ds lim inf rds - > -.lim
t- + oo t + oo

t-r _"
2

The hypotheses of Theorem 5.5 are satisfied and hence all solutions of the problem
(5.9) and (5.10) are oscillatory in (0, r) x (0, / c).
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