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The present work is devoted to the study of stability of the zero solution
to linear impulsive differential-difference equations with variable impulsive
perturbations. With the aid of piecewise continuous auxiliary functions,
which are generalizations of the classical Lyapunov’s functions, sufficient
conditions are found for the uniform stability and uniform asymptotical
stability of the zero solution to equations under consideration.
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I. Introduction

The impulsive differential-difference equations are adequate mathematical models of
various real processes and phenomena that are characterized by rapid change of their
state and dependence on the pre-history at each moment. In spite of great possibili-
ties of applications, the theory of these equations is developing rather slowly due to
difficulties of technical and theoretical character.

If the impulses are realized at fixed moments of time, the results can be easily de-
rived by virtue of the corresponding result in the continuous case. Studies of impul-
sive differential-difference equations with variable impulsive perturbations carry lots
of difficulties due to the presence of phenomena such as "beating" of the solutions, bi-
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furcation, loss of property of autonomy, etc. The importance of these equations in
mathematical modeling necessitates to prove criteria for stability of their solutions.

The investigations of the present work are carried out with the aid of piecewise
continuous Lyapunov’s functions [3] and a technique that uses minimal subsets of suit-
able spaces of piecewise continuous functions. The elements of these subsets help us
estimate the derivatives of piecewise continuous auxiliary functions [1, 2].

2. The Statement of the Problem and Preliminary Notes

Let +- [0,oo); n be the n-dimensional Euclidean space with elements x-

col(x,...,n) the norm Ix = =s and the scalar product (,y}-
ZlYl -t-... + nYn" Let h > 0 and 0 N.

We consider the linear system of impulsive differential-difference equations

[c(t) A(t)x(t) + B(t)x(t- h), t rk(x(t)) t > to, (1)

Ax(t) t= rk(x(t)) Ckx(t), t > to, k-l,2,...,

where x E Rn, A(t) and B(t) are n x n-matrix-valued functions; Ck, k 1,2,..., are
n x n-matrices; rk: Rn--.(to, oo); Ax(t) x(t + O) x(t 0).

Let r0(x to for x E n.
We introduce the following conditions:

H1. rk e C[Rn, (to, oc))], k 1,2,
1t2. to < 7"l(x) < T2(X <..., X e n.
tI3. rkc as k---o uniformly in x 6 n.

Assuming that conditions H1, H2, and H3 are satisfied, we introduce the
following notations:

Gk--{(t,x) e[to,)W*:rk_l(x)< t < rk(x)} k--l,2,...,

{(t,.) e [to, t

i.e., rk, k 1,2,... are hypersurfaces with the equations t rk(z(t)).
Let 9o E C[[to- h, to], n].
We denote by z(t)= x(t;to,o the solution of system (1), (2) that satisfies the

initial condition

(t) t e to]. (3)

The symbol J + (t0,90) stands for the maximal interval of the type [t0,) at which
the solution x(t;to,o is defined; co C[[to h, to],n], and 11911--
maXs e [to -h, t0] (s) is the norm of the function p C0.

We will specify the solution x(t)= x(t;to, Po of the initial problem (1), (2), (3)
as follows:

1. For t [to -h, to] the solution x(t) coincides with the initial function T0(t)
CO

2. The function x(t) is piecewise continuous on J + (to, o), t rk(x(t)) t =/= ,
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k= 1,2,
3. For t E J + (to, o), t =/= rk(x(t)) k- 1,2,..., the function x(t) is differentiable

and

c(t) A(t)x(t) + B(t)x(t- h).

We make the following assumptions:
114. The matrix-valued n xn-functions A(t) and B(t) are continuous for t E
(to, OO).
1t5. B(t) is a diagonal and A(t)is antisymmetric matrix function.
116. Ck = diag(clk,... cnk), 1 < ci <_ O, 1,..., n.
1/7. The integral curves of system (1), (2) meet successively each of the hypersur-
faces o1, 0"2,’" exactly once.

Condition H7 stipulate the absence of the "beating" phenomenon of the solutions
to the system (1), (2), i.e., when a given integral curve meets more than once (or
even infinitely many times) one and the same hypersurface. The "beating" pheno-
mena is not present in the case when vk(x --tk, k 1,2,...,x Rn, i.e., when the
impulses are realized at fixed moments.

Definition 1: The zero solution of system (1), (2) is said to be
a) uniformly stable, if

b)

(w > o) (5 () > o) (Vto )

(Vo e Co: II o II < ) (vte z + (to, So)):

(t; to, o) < ;

uniformly attractive, if

( > o) (w > o) ( () > o) (Vto e n)

(V,o e Co: II ’o II < ): to + ,z + (to, o) and

(vt _> to + , t e J + (to, o))"

z(t; t0, 0) < ;

c) uniformly asymptotically stable if it is uniformly stable and uniformly
attractive.

Definition 2: [3] We say that the function V:[t0, oz Rn--, + belongs to the
class r0 if:

1. The function V is continuous on [.J= iGk and V(t,O) 0 for t [t0, c).
2. The function V is Lipschitzian with respect to its second argument on each

of the sets Gk, k 1,2,
3. For each k 1,2,... and (t,x) 0", there exist the finite limits

V(t O, x) lim V(t, x), V(t + O, x) lim V(t, x).
(, )-(, x) (, )-(,

(t,x) e Gk (t,x) E Gk_t_ 1
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4. The following equality holds:

v(,; 0, ;) v(,;, 4).

In the sequel, we shall use the following functional classes, assuming that condi-
tions H1, H2 and H3 a:e met:

PC[[to, c), Rn] = x: [to, c)-Rn: x(t) is piecewise continuous with points of dis-
continuity of the first’kind (i.e., the left and right limits eist there, and they are

bounded) on the interval (to, C at which it is left continuous;
fl {z E PC[[to, OO),n]’V(s,x(s)) <_ V(t,z(t)),t-h < s < t,t > to, V o}"

Let V V0, z PC[[to, CX),gn], and t 7 rk(x)) k 1,2,
Introduce the function

ov ov B(),(’(t, z(t)) + [A(t)z(t) + h)].
Let $1, t2,... (tO < t1 < t2 <...) are the moments at which the integral curve

(1, x(t; to, 90)) of (1-3) crosses the hypersurfaces gk, k 1,2,
Remark 1: Let us note that conditions H1-H4 and H7 imply that tk---.c as

k--c and J + (to, a0) [to, c).
In proving the main results of the paper we shall use the following statements:
Theorem 1: Let the following assumptions hold:
1. Conditions H1-H4 and H7 are fulfilled.
2. g PC[[to, oo xR+,R+] and g(t,O) 0 for t [t0, cx).
3. Bk e C[R + ,R + ],Bk(0 0 and the functions Ck:R + +, Ck(u)

u + Bk(u are nondecreasing with respect to u, k 1,2,
4. The maximal solution r(t; to, Uo) of the problem

i g(t, u), t tk, k- 1,2,...,

,(to + o) Uo >_ o, (4)

Au(tk)--Bk(u(tk)), k- 1,2,...

is defined on the interval [to, m
The function V gr

0 is such that

V(to, o(to)) _< ’o

and the inequalities

9(t,x(t)) <_ g(t, V(t,x(t))), t # rk(x(t)) k 1,2,... (5)

V(t + O, x(t) + Ckx(t)) <_ Ck(V(t,x(t))), t vk(x(t)) k 1,2,... (6)

Then
are satisfied for t > to and x ft.
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v(,(;*0,v)) < (*;0,0), * e [*0,).

by
Proof: The maximal solution r(t;t0, u0) of problem (4) for t E (t0,oo) is defined

(t; to,-o)

ro(t; to,u ), to < t <_ tl,

rl(t;tl,Ul+), tI < t <_ t2,

0.....

rk(t;tk, ltkq-), tk < t tk -t-1,

where rk(t;tk, Uk+) is the maximal solution of the equation /- g(t,u) without im-
pulses, that is defined on the interval (tk, tk+ 1]’ k-0,1,2,..., for which uk+ =

Ck(rk_l(tk;tk_l, Uk+_l)), k- 1,2,... and Uo+ -uo.
Let t E (to, t]. Then, it follows from the corresponding comparison theorem in

the continuous case [1], that

v(t, x(t; to, o)) -< (t; to, o),

i.e., inequality (7) is fulfilled for t (to, t1).
Let us suppose that (7) holds true for t (tk 1, tk], k > 1. Then, using (6) and

the fact that the function Ck is nondecreasing, we obtain

V(tk + O,z(t/ + O;to,o)) < Ck(V(tk, z(tk;to,)))

<- Ck(r(tk;to, Uo)) Ck(rk(tk;tk- l, Uk+- 1)) uk+"

We apply the comparison theorem from [1] again for t (tk, tk + 1] and obtain

v(t, x(t; to, ’o)) -< ,-(t; t, ,+ ,-(t; to, ’o),

i.e., inequality (7) is satisfied for t (tk, tk + 1]" The proof is completed by induction.

Corollary 1" Let the following assumptions hold:
1. Conditions H1-H4 and H7 are met.
2. The function V ro is such that the inequalities

(/(t,z(t)) < O, t # rk(x(t)) k- 1,2,...,

V(t + O,x(t) + Clcz(t)) < V(t,z(t)), t rk(x(t)), k 1,2,...

Then
are valid for t > to and x

V(t,x(t;to,o)) < V(to,o(to)), t [to, c<)).
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3. Main Results

Theorem 2: Let the following conditions hold:
1. Conditions H1-H7 are met.
2. The elements of the matrix-valued n x n-function B(t) are nonpositive for

all t E (to, c).
Th zro ou,o o/,, (), (2) i uifo.
Proof: Let > 0 be chosen arbitrarily. We choose 6 6() > 0 such that 6 < .
Let 9o e C0: II o II < and let x(t) = x(t;to,o be a solution to problem (1-3).
We define the function Y(t,x)- (x,x)- xTx. Then the set is defined by the

equality

ft {x e PC[[to, CX),Rnl’<x(s),x(s)) <_ <x(t),x(t)),t- h <_ s <_ t,t >_ to}.
Now we shall estimate 9(t,x(t)) for t (to,), t # rk(z(t)), and x G .

follows from condition H5 and condition 2 of Theorem 2 that
It

(t,x(t)) icT(t)x(t) + xT(t)ic(t)

[A(t)x(t) + B(t)z(t- h)]Tx(t) + xT(t)[A(t)x(t) + B(t)x(t- h)]
xT(t)[AT(t)+ A(t)Jx(t)+ xT(t- h)BT(t)x(t)

+ xT(t)B(t)x(t- h) 2(x(t)B(t), x(t- h))

<_ 2(x(t)B(t),x(t)) <_ O. (8)

Let t ’k(x(t)). After using H6 we obtain

V(t + 0, x(t) + CkX(t)) E (1 + Cki)2x2(tk) <_ V(t,x(t)), k 1,2,
k=l

Hence, the conditions of Corollary 1 are met, and therefore,

v(t, (t; to, ,)) < V(to, ,o(to)), t e (to, ),

Ix(t; t0, Oo) <_ oo(t0) =, t (t0, c).

The last inequality yields

:(t; to, Oo) _< oo(to) e <_ [I o II 2 < 2 < 2,

whence Ix(t; to, 90) < for t (to, cxz). This proves the uniform stability of the solu-
tion x(t) 0 of system (1), (2).

Theorem 3: Let the following conditions hold:
1. Conditions Hl-H7 are met.
2. B(t) diag(bl(t),...,bn(t)) and bk(t <_ -7k < O, k 1,2,
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Then the zero solution of system (1), (2) is uniformly asymptotically stable.
Proof: We consider the function Y(t,x)- (x,x). Analogously to (8), we obtain

the estimate

9(t, x(t))

_
2(x(t)B(t), x(t)> (9)

for t >_ to, t 7 ’k(x(t)) and x E f.
Let 7- minT/, k- 1,..., n. Then, it follows from condition 2 of Theorem 3 and

from (9) that

(t, x(t)) < 27 x(t) , t > to, t = rk(x(t)), x e (10)

Since the conditions of Theorem 2 are satisfied, it follows that the zero solution of
system (1), (2)is uniformly stable.

Now we shall prove that the zero solution is uniformly attractive.
Let c > 0 be arbitrary chosen. We take r] ri(e) > 0 such that q < e.

A2Let const > 0 and r a(e) > 0 be such that a > 2"2/
Let 0 E Co, II 0 II < A and x(t)= x(t;to,o be the solution of the problem (1-

If we assume that x( t; to, o) >_ for t [to, to +r], then (10.) implies the in-
equalities

V(t,x(t;to,Oo) < V(to,Oo(to) / 2 x(s) uds
o

_< II o II 27 / x(a) 2ds -< Az 27r/2r < 0,

o

which contradict to the choice of the function V(t,x) fo"
Hence, there exists a t* ( [to, to + r] such that x(t*;to, 0) < r]. Thus, by virtue

of Corollary 1 for t >_ t* (as well as for t >_ to + r), the inequality

V(t, x(t; to, o)) <- V(t*, x(t* to, o))

is valid, i.e., Ix(t; to, Oo) 2 _< Ix(t*; to, Oo) z, t _> t*.
The last inequality implies the inequalities

(t; to, Oo) < (t*; to, o) < < , t > to + .
The last inequalities show that the zero solution of system (1), (2) is uniformly
attractive.
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