
Journal of Applied Mathematics and Stochastic Analysis, 11:3 (1998), 231-246.

SOJOURN TIMES FOR TIIE BROWNIAN MOTION

LAJOS TAKiCS
Case Western Reserve University

Cleveland, OH USA

(Received September, 1997; Revised February, 1998)

In this paper explicit formulas are given for the distribution function, the
density function and the moments of the sojourn time for the reflecting
Brownian motion process.

Key words: Brownian Motion, Reflecting Brownian Motion, Sojourn
Times, Distribution Functions, Moments.

AMS subject classifications: 60J 15, 60J55, 60J65.

1. Introduction

Let/{tt,t> 0} be a standard Brownian motion process. We have P{(t)< x}-
(I)(x fot > 0 where

x

1 f u2/2( x
X/r

e- du (1)

is the normal distribution function. We also use the notation

1 e- /2 (2)

for the normal density function.
Let us define

r(a) lim 1_ measure {t:a < (t) < a + ,0 < t < 1} (3)

for any real a. The limit (3) exists with probability one and r(a) is a nonnegative
random variable which is called the local time at level . We define also

w(a) / 5((t) > a)dt (4)
0

for a 0 where 5(S) denotes the indicator variable of any event S, that is, 5(S) 1
if S occurs and 6(S)- 0 if S does not occur. The integral (4) exists with probability
one and w(a) is a nonnegative random variable which is called the sojourn time of
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the process {(t),t >_ 0} spent in the set (a, cx)in the time interval (0,1).
consider the reflecting Brownian motion process { (t)I, t >_ 0} and define

We also

1

w*() / 5(I (t) > a)dt
0

for a > 0 as the sojourn time of the process { (t)I, t > 0} spent in the set (a, oe) in
the time interval (0, 1).

Our main object is to determine the distribution and the moments of w*(a) for
c > 0. In principle, we can apply the method of M. Kac [6] to find the distribution of
0*(c). His method requires the inversion of a double Laplace transform which can be
obtained by solving a certain Sturm-Liouville differential equation. Our approach is
combinatorial and we shall find explicit formulas for the distribution function and the
moments of w*(a).

Let us define
E{[v(a)]r} mr(a), (6)

and
E{[w(a)]r} Mr(a

E{[w*(a)]r} M;(a)

(7)

(8)

for r 1,2,... and a _> 0. We shall prove the following surprisingly simple formulas
for the moments (7) and (8)"

Mr(a m2r(a)/(2rr!) (9)
and

(r- 1)! m2r((2k- 1)a)-- z..., (r k)!(r + k 1)’ (10)
k=l

if r- 1,2,... and a > 0. Equations (9) and (10) make it possible to determine the
distribution function P{w*(a) x} Ga(x) explicitly. We shall prove that

E Ek --1)JJ’ (k- )dk- lxk- l[1- r(2j-1)a(x)]
2Fc,(x) 1 + 2 + 1)! 1

k=2

if0<x<landc>0, andG(1)-l. In(ll),F(x)-P{w(a)x}. Wehave

(11)

1 xe c2/(2u
ra(x) 1- / V/U( 1

_. u)du
0

for0<x_<l, anda>_0, and

(12)

F,(0) 2(I)(cr) 1 (13)

for a >_ 0. The distribution function Fa(x) was found by P. Lvy [9] p. 326 in 1939.
If, in particular, x- 0 in (11), we obtain that
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a (o)

1 + 4E 1)/[1 O((2k 1))] )
k=l j=l

2j-1
e

for a > 0.
We note that

P{r(a)

_
x} 2@(a + x)- 1

(2j 1)2r2/(8a2) (14)

(15)

if x >_ 0 and a >_ 0, and

mr(a 2r / xr- l[1- (a + x)]dx
0

(16)

if a _> 0 and r _> 1 where q(x) is defined by (1). Explicitly,

mr(a 2( 1)r{ar(a)[1 (I)(a)]- br(c)p(a)} (17)

for v- 1,2,... where

and

[/2] a_j
ar(O)- r! E 2jjj=0 !(r- 2j)!

[(-)/]

=0

(18)

(19)

for r > 1. See L. Takcs [13].
Our approach is based on a symmetric random walk {r,r > 0} where r- l +

2+’"+r for r > 1, (0-0, and {(r,v > 1} is a sequence of independent and
identically distributed random variables for which

P{r 1} P{r 1}- 1/2. (20)

Let us define rn(a as the number of subscripts r-0,1,...,n for which r-a
where a- 0, 1,2, Furthermore, define Wn(a as the number of subscripts r- 0,
1,...,n for which r-> a where a- 0, 1,2,..., and w(a) as the number of subscripts
r-l,2,...,nforwhich Irl _>awherea-l,2,

By the results of M.D. Donsker [2], if n---ec, the process {[ntl/X//-’ 0 _< t <_ 1} con-

verges weakly to the Brownian motion {(t),0 _<t_< 1}. See also I.I. Gikhman and
A.V. Skorokhod [4] pp. 490-495.

In 1965, F.B. Knight [7] proved that

limP{rn([aV/]) } P{rn--.c fi
_< x (c) <_ x) (21)

for a _> 0 and x ) O. Since the integrals (4) and (5) are continuous functionals of the
process {(t), 0 _< t _< 1}, we can conclude that

and
lLmP(w([av/]) _< nx} P{w(a) _< x} (22)
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nlLrnP(w([av/-)] _< nx} P{w*(a) _< x} (23)

for a > 0 and x > 0.
We shall determine the distributions and the moments of the random variables

Tn(a), Wn(a) and w(a), and their asymptotic behavior in the case where a- [a/],
a > 0, and nc. We shall prove that

for r 1 and a 0 where mr(a is given by (16). Furthermore, we shall determine

(7) and (8) by calculating the following limits

lim N n([]) Mr() (25)

and

JibE n M:(a) (26)

for r>l and a>0. The moments Mr(a), (r >_ 1), and M:(a), (r >_ 1), uniquely
determine the distribution functions P{w(a) _< x} and P{w*(a) _< x}.

2. The Random Walk {{’r,r _> 0}

Let us recall some results for {r,r _> 0} which we need in this paper.
[12]. We have

n 1P{n-2j-n}-(j-a\/

See L. Takcs

(27)

for j- 0, 1,..., n, and by the central limit theorem

li_,rnP _< x O(x) (28)

where O(x)is defined by (1).
Let us define p(a) as the first passage time through a (a 0, +/- 1, :k 2,...), that is,

We have

for a_>l and j>_0.

p(a)- inf{r: r a and r _> 0}. (29)

a+2j )a 1P{p(a) a + 2j} a + 2j j 2a + 2j (30)

If 1 _< a _< n, then

P{p(a) _< n} P{(n >- a} -t- P{(n > a}.
By (30),

P{p(a)- n}wn- [7(w)]a
n--0

fora>_l and wl _<1 where 7(0)-0and

(3)

(32)

7(w)- (1- V/1- w2)/w (33)
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for 0 < wl < 1. The identity
n

E P{p(a) j)P{p(b) n j} P{p(a + b) n)
3=0

is valid for anya_>l, b_>l andn>l.
We note that

P{p(1) 2n + 1} Cn/22n + 1

for n- 0, 1,2,... where

is the nth Catalan number.
Let us define

1Ca-
n )n+ 1

(34)

(35)

(36)

b’! c1 c .C:n (37)P(n, u) E 01!02! Co C12. 1
a1 + a2 -t-... + an

Ctn!
c1 + 2c2 +... + nan n

for 1 _< _< To (at) us each Catalan number in (at) (ha).
By the repeated applications of (34) we obtain that

22n- UP{p(u) 2n- u} ( 2nn- v )2nU_u. (38)P(n, )
/

By (31) we obtain that_
P{p(2j) 28} P{p(2j) < 2r + 1}

s=j

r

2P{2r + _> 2j + 1} E (39)
s j r- s 22r

for j O, 1,..., r.

If a _> 1 and b >_ 1, let us define @(a,b) as the smallest r- O, 1,... for which either

r a or r -b. We can interpret O(a, b) as the duration of games in the classical
ruin problem. See L. Takcs [11]. By the results of P.S. Laplace [8], p. 228 we have

E{wO(a,b)} [7(w)]a + [7(w)]b

1 + [7(w)]a + b (40)

if w < 1 where 7(w) is defined by (33). See also I. Todhunter [15], p. 169.

3. Sojourn Times

Let us consider now a stochastic process {(t), t >_ 0} with state space A tO B where A
and B are disjoint Borel sets. Let P{(0)E A}- 1 and denote by c1,/31,c2,/32,...
the lengths of the successive intervals spent in states A and B respectively in the inter-
val (0, oo). We suppose that {ci} and {/i} are discrete random variables which take
on positive integers only. Define 7n c1 q- c2 +""-t- ctn for n > 1 and 7o 0.
Furthermore, let 5n -/31 +/32 +... + fin for n >_ 1 and 50 0.

Denote by /3(n + 1) the total time spent in state B in the interval (0, n + 1). If the
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two sequences {ci} and {i} are independent, then we have

P{(n + 1) _< k} E P{hr -< k}[P{Tr _< n- k}- P{Tr +1 -< n- k}] (41)
r>0

for 0<k<n.
Proof of (41): Denote by a(t) the total time spent in state A in the time interval

(0, t) and by fl(t) the total time spent in state B in the time interval (0, t). If 0 <_
k_<n, denote by r-r(n-k) the smallest uE[0, c) for which c(u)-n-k+l.
Then we have {(n + 1) _< k} {/(r) _< k}. This follows from the following identi-
ties

{/?(n + 1) _< k} {c(v) _< c(n + 1)} {r _< n + 1}

{c(r)+ (r) _< n + 1} {fl(T) _< k}. (42)

Since (r) 5r (r 0, 1, 2,...) if 7r < n + 1 k _< 7r + 1, it follows from (42) that

P{(n + 1) _< k} E P{hr -< k and 7r -< n- k < 7r + 1} (43)
r>0

for 0 k n. This proves (41).
By forming generating functions, we obtain from (41) that

(1 w)(1 zw) E{z(n + 1)}wn

r+l(1 w)z + (1 z) E{(zw)ar}[E{wr} E{w }] (44)

if ]w] <1 and ]zw] <1.
Now we consider the case where {i} and {fli} are independent sequences of inde-

pendent random variables such that 2,3,’" are identically distributed, but 1 may
have a different distribution, and 1,2, are identically distributed. Let us write

E{z1} ao(z), E{zi} a(z) for i= 2,: and E{zi} b(z) for i= 1,2, In
this case by (44) we have

(1 w)(1 zw) E{z(n + 1)}wn 1 zw (1 z)
[1 b(zw)]a(w) (45)1

if w[ <land lzw <1.

4. On a Formula of Fa di Bruno

The nth derivative of the compound function f- f(y) where y- y(z)is given by
Fa di Bruno’s formula

dnf l-yY u Ydztl n (46)

where

Yn, (Y)
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(47)

See Fa di Bruno [3] and Ch. Jordan [5], p. 34.
In this paper we need to calculate the rth derivative of a function of the form

f(7(zw)) where 7(w)is given by (33) for w _< 1. In what follows we use the
abbreviation 7 7(w) for a fixed w. Since

w7: 27 + w 0 (48)

for w[ _< 1, we can easily see that

i!( + 7) +
7(i)(w)

(1 7)i- 1 gi(7) (49)

for i- 1,2,... and w < 1 where gi(x) is a polynomial of degree 3(i-1) in x. In
particular, 2gl(x 1, 492(x 3x- x3 and 8g(x) 1 + llx 5x4 -- g6. For the
determination of gi(x), >_ 1, we have the recurrence formula

(i + 1)gi + l(X) [3ix --k (i- 2)x3]gi(x)- 21-(x4 1)g(x). (50)

If we apply (46) to the function f(7(zw)), we obtain that

(dnf(7(zw))) 2nTn n

dzn
z- --(1 72)2n E f()(7)(1 -74’Q,n,(7)

=1

where

(51)

Qn, u(’Y)
el q- e2 +...E + an

C1!(2!. .On![gl (9’)] 1[g2(9’)]c2’’ .[gn(q/)]n (52)

a1+2a2+...+nan=n
for 1 _< u _< n. Clearly, Qn, r,(7) is a polynomial of degree 3(n- u) in 7.

By (50) we obtain that gi(1)- Ci_ 1/2 for i-1,2,.., where Ci_ 1 is a Catalan
number defined by (36). By (38) we have

Qn (1) n!P(n,u) u(2n 1 u)! (53), 2u! 2r’v!(n
ifl <u<n. We have also

u=i i- 1

ill <i<n.

(54)

We shall use the definition and some properties of the Kummer hypergeometric
function

M(a,b,z)- 1Fl(a;b;z)- E (b) n! (55)
n=O n

where (a)o-1 and (a)n-a(a/l)...(a+n-1)forn_>l. We have

M(a, b, z) e ZM(b a, b, z) (56)
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and
s-

0

1M(a,b, r(b)r()r(a- )-t)dt -(--_ s)

if 0 < Re(s) < Re(a). See L.J. Slater [10] and M. Abramowitz and I.A. Stegun [1].

(57)

5. The Local Time rn(a)

We defined rn(a as the number of subscripts r- 0, 1,2,...,n for which
a>_0. Ifa>_l, then

P{rn(a -O) P{p(a) > n),
and if a >_ 1 and k _> 1, then

a where

(58)

P{rn(a > k) P{p(a + k- 1) < n + 1 k}. (59)

The distribution of p(a)is given by (30).
Equation (58) is trivially true. To prove (59) let us denote by 01, 1 + 2,"’, 1 +
+ 0i,"" the successive values of r 1,2,....for which r a. The random vari-

ables 0i, (i _> 1), are independent, 01 has the same distribution as p(a) and i, (i _> 2),
has the same distribution as p(1)+ 1. Since

P{vn(a _> k} P{01 + 6t2 +...-k- Ok _< n} (60)

we obtain (59) by (34).
We note that

P{vn(0 > k) P{p(k) < n- k} (6..1)
ifl <k<n.

If in (59) we put a-[aV/- where c>0 and k-[x] where x0 and let
n, then by (28)and (31)we obtain that

{n([a]) < x}- 2O(a+x)- 1 (62)

for x 0 and a > 0. This proves (21).
By (32)and (59) we can prove that

r(a) (1 w)E E
n--O r

2r- 17a + 2r- 2(1 + 72)
W
n

(1 -72)r (63)

if wl <1, r_>l anda>_l. In (63) we used the abbreviation 3’-7(w), whereT(w)
is defined by (33), and we took into consideration that w- 27/(1 / 72).
We observe that if n + a is odd, then "rn(a has the same distribution as vn_ l(a).

If n + a is even, then by expanding (63) into Taylor series at w 0, we obtain that

(64)
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for a >_ l, n >_ l and r >_ l.
We can prove that

(65)

if n + a is odd, and

E{( n(a)r )} -2r+lE {( [(n+2--a)/2]+r
if n + a is even.

Theorem 1: /f a -[aVf where a > O, then

limE {(’rn(a)r}
)} (66)

(67)

for r >_ 1 where mr(a is given by (16).
Proof: If a -[aV/ where c > 0 and n--,, then by (65) and (66) we obtain that

E{[’n(a)]r} 2E{([(n a] + )r} (68)

for r- 1,2, Accordingly,

limE {(rn([aV/-]))r} 2limE r/- 2E{([- a] +

for r 1,2,... where P{ _< x} ((x) and (I)(x) is defined by (1). Since

(69)

2E{([ a] + )r) mr(a (70)

for c > 0 and r _> 1, where mr(c is given by (16), (69)implies (67).
The limit theorem (67) proves (24). We note that if in (67) a-an where

limn_,ooan/v/- a > 0, then the right-hand side of (67) remains unchanged.
Finally, we note that if n + a is odd then by (65) we can write that

and
E{rn(a)} (n + a + 1)P{(n a + 1}- 2aP{(n >_ a + 1} (71)

E{[rn(a)]2}

2(n + a2 + a + 1)P{n _> a + 1}- (n + a + 1)(a + 2)P{n a + 1}. (72)

Similar expressions can be derived for E{[rn(a)]r} if r _> 2.

6. The Sojourn Time wn(a)

We defined COn(a as the number of subscripts r 0, 1, 2,..., n for which (r -> a where
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a O, 1, 2, If 1 < a < n, then evidently

P{wn(a --O} P{p(a) > n} (73)

and the distribution of p(a) is given by (30). If 1 < j < n + 1 -a, then we can write
that

P{wn(a j} 1/2P{P(1) > j}[P{p(a) > n- j} P{p(a- 1) > n- j}]. (74)

See Theorem 2 in L. Takcs [14]. By (74) we can prove that

P{wn(a) J}
[(j- 1)/2] [(n + 1 -a- j)/2]

(75)

if 1 < j < n + 1 -a. Since wn(0 has the same distribution as n / 1 -wn(1), we have

P{wn(O j} { P{wn(1 j} if 1 < j < n,
(76)

P{wn(1 0} if j n + 1.

By using (74), it is easy to prove that (22) holds and that P{w(a)< x} is given
explicitly by (12)and (13).

Our next aim is to determine the binomial moments of w,(a). We shall show that
the rth binomial moment of Wr(a can be expressed as a linear combination of the
2rth binomial moments of v(a- 3r + k) for k = 1, 2,..., 3r.

By (74) we obtain that
O3

(1 w) E E{zn(a)}wn 1 -[7(w)]a + [1 7(w)][7(w)]a 1[1 7(zw)]zw
n=0 2(1-zw) (77)

if wl <1, [zw[ <1 and a>l, where 7(w) isdefined by (33). If we form the rth
derivative of (77) with respect to z at z- 1, we get

Wn(a 2r- 173 +r- 1(1 q_ 72)Lr(7)Or(a) (1 w) tn= .- 2r
.=o v (1

where
r

L,(x) (1 + x)2 + (1 x)2(1 + x)gr(x -(1 + x2) (1 + x)2r- 2j + gj(x)
=0

(78)

(79)

is a polynomial of degree < 3r in x. In (78) we used the abbreviation 7 7(w), and
in (79), gj(x) is defined by (49). If we use the abbreviation r(a) for (63),
suppressing w, then (78) can be expressed in the following way"

2r(I)r(a) 2r(a- 3r + 1)Lr(7). (80)

Since r(a)7- "q*r(a + 1) for any r- 1,2,... and a- 1,2,..., the right-hand side of
(80) can be expressed as a linear combination of 2r(a- 3r + k) for k 1, 2,..., 3r.
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In particular, we have

2(I)l(a 2(a- 2)+ 2(a- 1)

8(I)2(a 4(a- 5) -- 54(a- 4) + 54(a- 3) -- 4(a- 2).

(81)

(82)

Hence

and

2E{wn(a)) E + E
2 2

(83)

Theorem 2: If a > O and r > l, then

lim E cn([aV]) mr(c) (85)n n 2rr

Prf: Since g/(1)-Cj_I/2 for j-1,2,.., where Cj_ is defined by (36) we

have

ifrl. Ifin(80),a-[],a>0, andrl, we obtain that

or

(87)

E{[wn(a)]r} E{[vn(a)]2r} 1
2rr!

as ncx3. This proves (85), and (9) follows from (85).

(88)

7. The Sojourn Time w(a)

We defined w(a) as the nu,nber of subscripts r- 1,2,...,n for which Ir > a

where a 1,2, Let us associate a stochastic process {(t), t > 0} with the random
walk {r,r >_ 0}. We say that the process {(t),t >_ 0} is in state B in the interval
[r,r-4- 1) if Ir > a, and in state A if Ir < a where a-- 1,2, Then the process
{(t),t > 0} alternately is in the states A and B, and we can "nterpret w(a) as

/(n + 1) where/?(n + 1) is the total time that the process {(t), >_ 0} spends in state
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B in the interval (0, n + 1). If hi,/1, ct2, 2,’’" denote the lengths of the successive
intervals spent in states A and B respectively, then {hi} and {i} are independent
sequences of independent random variables. Now a1 has the same distribution as

@(a, a); hi, (i k 2), has the same distribution as (1, 2a- 1), and i, (i k 1), has the
same distribution as p(1). The random variables O(a,b) and p(a) are defined in Sec-
tion 2. If we use the notation

Ra, b(W) E{wO(a,b)} [7(w)]a + [7(w)]b

1+
where a 1 and b 1, then by (45) we can write that

(1 w)(1 zw)n:oE{zWn(a)}wn 1 zw -(1 Z)l :);:::) (90)

or

(1- w)n=0E{zn()}wn -1-217(w)](llw) A-BT(zw)I-7(zw) (91)

if [wl <land [zw[ <lwhereA-l+[7(w)]2aandB-7(w)+[7(w)]2a-1.
By forming the rth derivative of (91) with respect to z at z- 1 we obtain that

O;(a) (1 w)E -)-2-)-2 )Vr(7)
=0 r (1

(92)

fora>_l, r>_l and wl <1 where
r-1 s

Ur(7)- (1 ._,,/)2r- E E (1 -’)’2a- 1)(/-’"/2a- 1)’- 1

s=l u=l

(1 + + (93)

is a polynomial in 7. In (92) and (93), 7- 7(w) is defined by (33) and Qs, u(7) by

If we use the notation (63), we can write that

2r- l(I)(a) 2r(a- 3r -- 1)Ur(7). (94)

If we take into consideration that r(a)7- r(a / 1) for a _> 1 and r >_ 1, then the
right-hand side of (94) can be expressed as a linear combination of 2r((2j-1)a-
3r + k) for j 1, 2,..., r and k 1, 2,..., 3r. By forming the coefficient of wn on both
sides of (94) we can express the rth binomial moment of co(a) as a linear
combination of the 2rth binomial moments of rn((2j 1)a- 3r + k) for j 1, 2,..., r
and k 1, 2,..., 3r.

Theorem3: If a > O and r l, then

lim E w([a])
n n M:(a) (95)

exists and M:(c) is given by (10).
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Proof: By (39)and (54) we can prove that
r-1

2rx{1 E
8

E (1 x2)(1 + x2)u- 12Uu!Qs, u(1)/(22Ss!)}
v=l

=4 ( 2r-1 )2-- x2j 1

j=l r-j
(96)

for r >_ 1 and therefore if in (94) we put a -[CV/-], c > 0, we obtain that

r j=l r--3

rn((2j 1)a)
2r )}

as- or

E{[w(a)]r} (r- 1)! 1 E{[_n((2j 1)a)]2r}
2r 1 (r j)!(r + j 1)!

as n. We obtain (10) from (98) by making use of (24) and (26).
Clearly, (23)and (95)imply (8).
Threm 4: If > O, then

lim P n([]) < G()

(97)

(98)

(99)

for 0 < x < 1 where Ga(x) is given by (11) for 0 <_ x < 1 and Ga(1) 1.
Proof: By (9)and (10)we can write that

M:(a) 2r!(r 1)! (r k)!( + k 1)’Mr((2k 1)c) (100)
k=l

for r _> 1 and c > 0, and
1

Mr(c r i xr- 1[1 F(x)]dx (101)
0

for r >_ 1 and c > 0 where the distribution function Fa(x) is given by (12). We shall
determine Gu(x) by using Laplace-Stieltjes transforms.

Let us define
1

j (102)
-0

for Re(s) >_ O. Since
o r

(s)- 1 + (- 1)rs *r----Mr(c) (103)
r:l

for Re(s) >_ O, by (100), (101), (55) and (56) we obtain that

1

@;(s) 1 + 2 xr- 1[1 F(2k 1)c(x)]dx
k (r ])!(r + ]- 1)!

0
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1

1 + 2E (r k)!(:2 1)! [1 F(2k 1)c(x)]dx
k=l 0

(104)

1 + 2E (- 1)ksk j (- 1)JsJ(J + k)!xj + k- 1

k 1 0 J o J!(J + 2k -j[ [1 F(2k 1)c(x)]dx

1

l + 2E -1)kskk!
k=l (2k 1)!

e

0

SXxk- 1M(k 1,2k, sx)[1 F(2k_ 1)a(x)]dx.

Now by (55),
M(k 1, 2, sx) E Qk(j)(sx)j’

where Qk(O) 1, Qk(1) (k- 1)/(2k) if k _> 1, QI(J) 0 if j >_ 1, and

2k- 1)!(k + j- 2)!Qk(J) (_ 2)!(2k + j- 1)!j!

for k > 2 and j > 1. By using (105) we can write that

(105)

(106)

oo (_l)kk! oo

=l+2E (2k-1)’ Qk(j)sk + j e- SXxk + j-111. F(2k_
k=l "?=0 0

1

=1+2E 1)kk’i dk+Je -sz

(2k- 1) (- 1)k + JQk(J)
dxk=l 0

(107)

+ 2E (- 1)kk!
1 dee 111 F(2k_ 1)c(x)]

k 1 (2] -_-,aQ(e. )
o de d.

By (107) we can conclude that

a(0) 1+4. (- 1)kk!
k 1 (2k- 1)! Qa(e- k)(e- 1)! [1- (I)((2k- 1)a)] (108)
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for a>0.
more we have

dG(x) (- 1)kk!
k

dx-1[1 F(2k-1)c(x)l
dx =2k 1(2k-1)] Qk(- k) dx

if0<x<l.
By (107) it follows also that

d- lx- 111 F(2k_ 1)a(x)]+
=k d-I

By using (57) we can prove that (108) is indeed equal to (14). Further-

(109)

(110)

for0<_x<landa>0. This proves (99).
Finally, by (23) and (99) we can conclude that P{w*(a)_< x}- Ga(x) and Ga(x)

is given by (11) for a > 0 and 0 _< x < 1.

8. The Brownian Meander

The distribution of the sojourn time for the Brownian meander can be obtained in
the same way as we found the distribution of w*(a) for the Brownian motion. Let
{ + (t), 0 < t < 1} be a standard Brownian meander such that P{ + (0) 0} 1 and
P{+(t)>0}-lforall0<t<l. Define

1

w + (a) / 5( + (t) > a)dt
0

for a _> 0. We can prove that

E{[w + (a)]r} 4r! (_ 1)j- 1

j--1

(111)

[(r + j)m2r_ l((2j 1)a)- jm2r_ l(2ja)] (112)

for r > 1 and a > 0 where mr(a is given by (16).
The moments (112) uniquely determine the distribution of w + (a) and we have

(113)

for 0 _< x < 1, and P{w + (a)_< 1}- 1 where Fa(x)is defined by (12)and (13). The
coefficients Ak(j) and Bk(j) are defined by the series

M(k- 1,2k + 1,x)- E Ak(J)xJ (114)
=0
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and determined by (55).

M(k 2,2k, z) Bk(j)xJ (115)
j=O
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