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In high-speed communication networks it is common to have requirements
of very small cell loss probabilities due to buffer overflow. Losses are mea-
sured to verify that the cell loss requirements are being met, but it is not
clear how to interpret such measurements. We propose methods for deter-
mining whether or not cell loss requirements are being met. A key idea is
to look at the stream of losses as successive clusters of losses. Often clus-
ters of losses, rather than individual losses, should be regarded as the im-
portant “loss events”. Thus we propose modeling the cell loss process by a
batch Poisson stochastic process. Successive clusters of losses are assumed
to arrive according to a Poisson process. Within each cluster, cell losses
do not occur at a single time, but the distance between losses within a clus-
ter should be negligible compared to the distance between clusters. Thus,
for the purpose of estimating the cell loss probability, we ignore the spaces
between successive cell losses in a cluster of losses. Asymptotic theory
suggests that the counting process of losses initiating clusters often should
be approximately a Poisson process even though the cell arrival process is
not nearly Poisson. The batch Poisson model is relatively easy to test stat-
istically and fit; e.g., the batch-size distribution and the batch arrival rate
can readily be estimated from cell loss data. Since batch (cluster) sizes
may be highly variable, it may be useful to focus on the number of
batches instead of the number of cells in a measurement interval. We also
propose a method for approximately determining the parameters of a spe-
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cial batch Poisson cell loss with geometric batch-size distribution from a
queueing model of the buffer content. For this step, we use a reflected
Brownian motion (RBM) approximation of a G/D/1/C queueing model.
We also use the RBM model to estimate the input burstiness given the cell
loss rate. In addition, we use the RBM model to determine whether the
presence of losses should significantly affect the estimation of server utiliza-
tion when both losses and utilizations are estimated from data. Overall,
our analysis can serve as a basis for determining required observation inter-
vals in order to reach conclusions with a solid statistical basis. Thus our
analysis can help plan simulations as well as computer system measure-
ments.

Key words: Cell Loss Probabilities, Traffic Measurements, Communi-
cation Networks, Batch Poisson Process, Reflected Brownian Motion, Re-
verse Engineering, Planning Simulations.

AMS subject classifications: 60K25, 60K30.

1. Introduction

We are pleased to be able to participate in this tribute to our colleague Ryszard
Syski. His classic book, Syski [22], showed that many practical engineering problems
in communication systems can be understood and systematically analyzed by apply-
ing the theory of stochastic processes. His continued enthusiasm for this program,
and his enthusiasm more generally, have been an inspiration to us.

In this paper we hope to show once again how stochastic processes can provide
useful insight into an engineering problem associated with communication systems.
In particular, we are concerned with cell loss measurements and how to interpret
them. Emerging high-speed communication networks are being designed to have very
small cell loss probabilities. The proportion of arriving cells that are allowed to be
lost due to buffer overflow is typically in the range 10~ %—10719 A challenging
problem in this context is determining from simulations or actual system
measurements whether or not these stringent requirements are being met. To
illustrate, consider the following example.

Example 1: Suppose that the line speed is 105 cells per second. Suppose that a
buffer with capacity 4000 cells is deemed adequate to provide a cell loss probability of
10 =7 at an average utilization of 0.5 (an arrival rate of 0.5 x 105 per second). Sup-
pose that we measure the cells lost over an hour. If the cell loss probability is indeed
10 =7, then the expected cell loss per hour is 18 cells. However, we cannot expect
that exactly 18 cells will be lost each hour. The number of cells lost each hour
should be regarded as a random quantity which has expected value 18. Even if the
cell loss requirement is being met, some hours will have more losses and some fewer.
We want to know if observations are inconsistent with a random process having a
mean cell loss of 18 per hour. If 400 cells are lost in a given hour, can we conclude
that the requirement is not being met? On the other hand, if only 2 cells are lost in
an hour, can we conclude that the requirement is being met?

We develop two approaches for analyzing this problem. The first approachde-
pends on knowing when individual cells have been lost, but not on other characteris-
tics of the traffic or the strategy used for controlling the queue. Because it requires
statistics not measured today by switches in operating networks, it probably is most
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useful for interpreting the results of simulation experiments or for special studies.

The second approach, though not as precise as the first, does not depend on
knowing when individual cells have been lost, but only on the measured number of
cells arriving and discarded over an interval. Such measurements are generally avail-
able from switches today, so that the second approach is more readily applied in veri-
fying whether an operating network is meeting cell loss objectives. However, the
second approach assume that all data entering a queue is treated with the same dis-
card priority and is covered by the same cell loss objective. In practice, cell loss objec-
tives typically apply only for a subset of traffic and are supported by mechanisms
that reserve buffer space for this traffic. Extensions to the second method to account
for such mechanisms are possible, but not considered here.

Despite its simplifying assumptions, the second method provides qualitative in-
sights that we expect to hold more generally. It suggests that if low cell loss ratios
are achieved at queues with large buffers, then the cell loss process tends to be very
bursty with long periods in which no loss occurs. At current trunks rates (e.g., 105
cells per second), it implies that data collected over tens of hours is needed to verify
cell loss objectives.

Previous studies of cell loss processes in the context of video teleconferencing have
been made by Cohen and Heyman [7], Hughes, Changari, Pearson, Seferdis and
Xiong [14], and Heyman and Reibman [13]. They also conclude that the cell loss
process is quite busty.

We begin our analysis by introducing a probability model for the counting pro-
cess recording the number of lost cells in an interval of length ¢, for any ¢, which we
denote by {N(t):t > 0}. In particular, we model the cell loss process by a batch Pois-
son stochastic process (described in Section 2). We justify this model as follows: A
key idea is that cell losses are typically not isolated events. A period of overload or
component failure typically leads to a cluster of cell losses, so that the appropriate
“loss event” is the cluster rather than the single lost cell. When there are losses, the
spaces between losses in a cluster should not greatly exceed typical cell interarrival
times. However, since the cell loss rate is much smaller than the cell arrival rate,
there should be much larger times between successive clusters of losses. If we focus
on the larger time scale. (regarding the times between clusters as of order 1), then the
spaces between cell losses within clusters should be negligible. It is from this perspec-
tive that we model the cell loss process as a batch arrival process. Since we are inter-
ested in the total number of losses in the entire measurement interval, the local behav-
ior within clusters of losses is unimportant to us. If at some time we wish to develop
a higher fidelity model, which may be of interest to analyze the loss process as an arri-
val process elsewhere, then we could introduce spaces between successive losses within
each cluster. But we do not focus on that issue here.

A second key idea is that, since losses should be rare events, the counting process
of losses initiating clusters should be approximately a Poisson process, regardless of
the form of the cell arrival process. There is a substantial theoretical basis for the
Poisson property; e.g., see Lewis [18], Leadbetter [16], Chapter 8 of Keilson [15], Lead-
better, Lindgren and Rootzén [17], Aldous [4] and references cited there. It is now
well known that the Poisson process is often inappropriate to represent traffic process-
es in communication networks; e.g., see Paxson and Floyd [20]. Certainly a cell arri-
val process is very unlikely to be nearly a Poisson process. Nevertheless, the asymp-
totic theory suggests that the counting processes of losses initiating clusters should be
nearly Poisson. Thus the rarity of losses tends to make the batch Poisson model
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appropriate for analyzing cell losses in communication networks. We provide some
further evidence for the Poisson property here, but we primarily are concerned with
showing how to work with the batch Poisson model. In applications, the Poisson pro-
perty needs to be validated.

Given that the average spacing between points within a cluster is several orders
of magnitude smaller than the average spacing between clusters, it should not be diffi-
cult to reasonably identify the clusters from data. It suffices to regard all interval
lengths above an intermediate value as intervals between clusters. In this way, we
can easily obtain estimates of the batch-size distribution and the Poisson batch arri-
val rate from data. In particular, once the batches have been determined, the batch-
size distribution can be estimated by its empirical distribution function and the batch
arrival rate can be estimated by the observed number of batches divided by the
length of the total observation interval. Moreover, to better understand performance,
we believe that it should be useful to focus separately upon the rate clusters occur
and the size and structure of these clusters.

There are several complications, however. First, network and source controls
may make appropriate batches more difficult to identify. For example, the first cell
losses in a cluster may cause sources (on their own initiative or due to the network
controls) to temporarily reduce their offered load and then increase it again slightly
later. This phenomenon could cause clusters to consist of several subclusters. Clearly
it is important to properly identify the larger clusters. Since the space between clust-
ers is so large, we anticipate that it should be possible to distinguish new clusters
from subclusters. However, the subcluster phenomenon just discussed indicates that
we should be careful to allow enough space between what are considered bonafide se-
parate clusters. This discussion also indicates that it may well be difficult to model
the behavior within a cluster, but we avoid most of this complexity here by focusing
only on the total number of cell losses in the cluster. As a topic for future research,
the subcluster phenomenon should also be worth attention to better understand the
controls.

A second complication is a time-varying load. Typically the load on the network
will vary substantially over the long time scale encompassing several clusters of loss-
es. In that event, it is natural to regard the cluster process as a nonhomogeneous
Poisson process, i.e., with a time-dependent rate. It is significant that the successive
intervals between points are still independent in a nonhomogeneous Poisson process
model, but with time-dependent distributions. Alternatively, it is natural to look at
data over a collection of separate intervals for which the load is nearly constant.
Given the nonhomogeneous Poisson process model, it is significant that the cluster
counting process constructed by combining separate intervals that have essentially
the same rate is again a Poisson process, but now essentially homogeneous, i.e., with
constant rate. This is the approach we advocate. Since we have a homogeneous
Poisson process, there is only a single parameter (the rate) of the Poisson process to
estimate.

A complication with the procedure just described for real systems (but not for
simulations) is that we must measure the load as well as the losses. For example, in
the setting of Example 1 we must estimate the traffic intensity (which coincides with
the server utilization, i.e., the probability that the server is busy) by the ratio of the
observed average input rate to the known output rate. In our treatment of losses, it
is natural to regard this estimate of traffic intensity as exact. However, the presence
of losses could conceivably bias our estimate. If the presence of losses is coupled with
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higher average input rates, then we will think that the traffic intensity in the inter-
vals with losses is higher than it actually is. To illustrate, consider Example 1 where
the actual traffic intensity is 0.5. The question is whether, in that model, the estimat-
ed traffic intensity over hours with 100 losses, say, is significantly greater than 0.5,
e.g.,, 0.7. We contend that in the setting of Example 1 it is reasonable to regard the
estimated traffic intensity over one hour as exact, and we present a method for analy-
zing this question more generally (Section 8).

For modeling with limited data, and even for modeling with ample data, it is
often convenient to have a parsimonious model with few parameters. For this pur-
pose, we also consider the special case of a batch Poisson process with geometric
batch-size distribution. The model then has just two parameters, which can be taken
to be the mean batch size and the batch arrival rate. The product of the two para-
meters of this batch Poisson arrival process — the Poisson arrival rate and the mean
batch size - is determined by the overall cell loss rate. Without data, we obtain the
missing information to determine both parameters by introducing a probability
model for the buffer content over time. We initially model the buffer content as the
queue length process in a G/D/1/C queue, which has a single server, additional wait-
ing space of size C'—1 (and thus total capacity C'), deterministic service times and a
general stationary arrival process. We then approximate this system by reflected
Brownian motion (RBM), where there is reflection at an upper barrier as well as a
lower barrier. We choose the drift and diffusion coefficient of RBM to match the rate
and asymptotic variances of the net input process (arrival process minus the service
process). We then approximate the cell loss process by the upper barrier local time
process, and apply results for it derived by Berger and Whitt [5]. This enables us to
carry out a normal approximation and specify both parameters of the batch Poisson
process with a geometric batch-size distribution.

The two-parameter RBM process provides a greatly simplified view of the queue-
ing process, which usually has a highly complex superposition arrival process. The
simplicity is useful because exact expressions are available for the rate and asympto-
tic variance of the loss associated with RBM. This enables us to do a first-order
analysis relating the rate (characterized by the drift) and the burstiness (characterized
by the diffusion coefficient) to the buffer size and the loss probability. Indeed, we
show how the RBM model can be used to reverse engineer the burstiness; i.e., given
the buffer capacity, utilization and loss rate, we can estimate the input burstiness
(Section 7).

Here is how the rest of the paper is organized: We specify the batch Poisson
model and indicate how to calculate the probability distribution of the number of loss-
es in an interval of any specified length in Section 2. That probability distribution
can be used to build confidence intervals for cell loss estimates and to test the hypo-
thesis that the cell loss requirements are being met. We give procedures for estimat-
ing parameters of the batch Poisson process model in Section 3. We briefly discuss
long-range dependence there; e.g., see Willinger [25]. It is significant that our propos-
ed estimation procedure for the batch Poisson model offers a way to avoid statistical
problems caused by long-range dependence if it is present.

We introduce the G/G/1/C queueing model in Section 4. We develop the RBM
approximation for the G/G/1/C queueing model in Section 5. We indicate how to
fit the two-parameter batch Poisson model of the loss process to the RBM model in
Section 6. In Section 7, we show how to do reverse engineering to determine an
approximation for the asymptotic variance of the arrival process from given buffer
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capacity and loss probability. We complete the analysis of Example 1 there. Finally,
in Section 8, we discuss measurement schemes in which the traffic intensity and losses
are estimated simultaneously. Consistent with intuition, the traffic intensity esti-
mates are significantly affected by losses in short measurement intervals, but the
traffic intensity estimates tend to be unaffected by losses in suitably long measure-
ment intervals.

This work was motivated by the problem of interpreting existing network mea-
surements (about which we intend to write more in a subsequent paper), but our
analysis with RBM can also be used to help design simulation experiments involving
single-server queues with finite waiting rooms by determining the run lengths requir-
ed to estimate loss probabilities with desired statistical precision. In this regard, this
paper is a sequel to Whitt [23] and Srikant and Whitt [21]. Those papers determine
required simulation run lengths for different queueing models, in particular, for a sin-
gle-server queue with an infinite waiting room and for a multi-server queue without
any waiting room, respectively.

2. The Batch Poisson Process Model

As we have indicated above, it is natural to regard the rate of the cell loss process
over long intervals (e.g., over a day) as time-dependent. However, by collecting data
over separate intervals with essentially the same load, we can obtain an approximate-
ly constant cell loss rate, and we only consider the case of a constant arrival rate
here. For instance, in Example 1 we have assumed that we are working with a collec-
tion of hours with estimated utilizations all about 0.5. (Throughout this paper, we
use “server utilization” and “traffic intensity” interchangeably). Hence, we consider a
homogeneous Poisson process.

If we indeed collect intervals with a common utilization, then our primary goal is
to determine the probability distribution of the number of lost cells associated with a
given utilization. We can identify the overall cell loss probability distribution as the
weighted average of cell loss probability distributions associated with the different
utilizations, where the weights are the frequency of each utilization level. Alternative-
ly, we could choose to have a more stringent requirement, in which we focus only on
the intervals with high utilizations (busy-hour engineering). We can use the cell loss
probability distribution to construct confidence intervals for cell loss estimates and to
test the hypothesis that the cell loss requirements are being met.

Given a (homogeneous) batch Poisson process {N(t):t > 0} with batch size proba-
bility mass function py = P(X = k), k > 0, and batch arrival rate §, the probability
of having k losses in an interval of length ¢ has the compound Poisson probability
mass function oo - Bt i

Gz PN =k =3, B (2.1)
j=o T
where pi* is the j-fold convolution of the batch-size probability mass function
{pg:k > 0}. These probabilities can be quite daunting to compute directly, but they
are easily computed (exactly) by numerically inverting the generating function

()= ) gt = POPO), (2.2)
where k=0
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)= S pek (2.3)
k=0

e.g., see Abate and Whitt [3]. Since we are interested in tail probabilities, we directly
invert the generating function of P(N(t) > k), which is
[e.8]

Q° zkz P(N(t) > ket = L15) _a(j) (2.4)
=0

for g(z) in (2.2). In the rest of this paper we do not focus on the exact distribution in
(2.1)-(2.4), but it is readily computed in applications to fully describe the implica-
tions of the batch Poisson model.

Alternatively, for greater simplicity, a normal approximation of the cell loss pro-
bability distribution can be used, which only requires § and first two moments of X.
The mean and variance of N(t) are:

E[N(t)] = BtE[X] and Var[N(t)] = StE[X?), (2.5)

where Var is the variance. With the normal approximation, we treat N(t) as normal-
ly distributed with mean and variance in (2.5). A normal approximation is justified
for suitably large t, provided that the batch-size distribution has finite variance, be-
cause the distribution of N(t) is asymptotically normal as t—oo. Since {N(¢):t > 0}
has stationary and independent increments, the ordinary central limit theorem can be
applied to substantiate this claim. The central limit theorem is very important be-
cause it shows that only two parameters are relevant when ¢ is suitably large. In-
deed, with large ¢ the batch-Poisson model plays a minor role, only providing one of
many sufficient conditions justifying the normal approximation.

However, it should be noted that if the expected number of batches is small, then
the normal approximation is likely not to be accurate. Then it should be much
better to calculate the exact batch Poisson probabilities than to employ the normal
approximation. Moreover, for small values of §t, the actual batch-size distribution
can play a very important role.

The approaches above have been chosen largely because of their simplicity, to be
used with hourly summary statistics. Given full loss data, it is natural to consider
more general models, e.g., as in Section VI.C of Fendick, Saksena and Whitt [10].
One simple generalization is to make the successive idle and cluster periods an
alternating renewal process. From Cohen and Heyman (7], we would be led to
consider Weibull idle periods instead of exponential ones. Ignoring the cluster lengths,
we could consider a batch renewal process instead of a batch Poisson process.

3. Estimating the Parameters of the Batch Poisson Model

In this section we discuss three possible methods for estimating the parameters of the
batch Poisson process model. The first method — batch means — is a natural
simple way to identify the two parameters in the normal approximation. However,
we contend that a second method — identifying clusters — should be preferable.

Batch means

Suppose that we intend to use the normal approximation described in Sections 2, so
that we only need the first two moments of N (%), as in (2.5). Given a sample path of
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the cell loss process over an interval [0, ], we can divide the interval into n equal sub-
intervals of length t/n and count the number of losses in each subinterval. Let z; de-
note the observed number of losses in subinterval i. We can estimate E[N(t/n)¥] for

any k by the sample means n
Eﬁzn_lzxf. (3.1)

i=1
We then estimate SE[X] and BE[X?] in (2.5) by (n/t)i}1 and (n/t)(fi— (E}l)z), res-
pectively.

If {N(t):t>0} actually were a batch Poisson process, then the observations z;,
1 < i< n, would be independent and identically distributed (i.i.d.). If, in addition,
the batch-size distribution has finite variance and ¢ is suitably large, then z; is appro-
ximately normally distributed as well. Under these assumptions, we can estimate the
statistical precision of our estimates, i.e., we can form confidence intervals for the
mean and variance using standard statistical techniques; e.g., see Sections 11.2 and
11.3 of Mood and Graybill [19].

The major difficulty with this approach is that the underlying assumptions may
not nearly hold. The batch Poisson model may be reasonable, but it may well be
that ¢ is not big enough for the observations to be approximately normally distribut-
ed. The main difficulty is that the Poisson mean Bt may be too small. This is likely
to occur because @ may be very small. It may be significantly less than the cell loss
probability.

Moreover, high statistical precision will not be possible if the variance of the
batch-size distribution, Var X, is large. In particular, this estimation procedure
would break down completely if Var X = oo, which is a possibility that should be con-
sidered.

Let the number of cell arrivals to the queue in the interval (0,t] be denoted by
A(t). We partially characterize the general arrival process {A(¢):t > 0} by its rate

A =lim ¢t~ TA(t) (3.2)
. . . t—o0
and its asymptotic variance
ol= A2 =lim ¢~ War A(2), (3.3)

which we assume are well defined, positive and finite. It is useful to focus on the
variability independent of the rate via the variability parameter cg in (3.3); it is the
limiting value of the index of dispersion; e.g., see Fendick and Whitt [11].

Recent studies have shown that cell arrival processes may exhibit long-range de-
pendence, e.g., see Willinger [25]. This means that the asymptotic variance of the
cell arrival process (c2 in (3.3)) may actually be infinite. Large bursts in the arrival
process may then contributed to large bursts of losses, i.e., so that Var X may be-
come large or even infinite. This implies that the normal approximation and associat-
ed standard statistical techniques focusing on sample averages, such as just described,
may not apply, and that we should consider other methods. In particular, better esti-
mates should be possible if we can exploit the full batch-Poisson model, including the
batch-size distribution.

To some extent, we avoid difficulties caused by long-range dependence by basing
our analysis on a collection of intervals with similar utilizations. The observed long-
range dependence may result from the change in utilization over a longer time scale;
e.g., see Bhattacharya, Gupta and Waymire [6]. The change in utilization that usual-
ly occurs in a longer time scale is avoided by focusing on the collection of intervals
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with common utilization. Nevertheless, we believe that the long-range dependence
tends to make the batch means approach more suspect.

Identifying clusters

The second approach is to directly estimate the batch-size distribution and the batch
arrival rate. The key is to identify the clusters in the loss process. An infinite var-
iance for the batch-size distribution presents no difficulty if the batch-size distribution
is estimated from data by its empirical distribution. In that way we can avoid ano-
malies in sample means caused by fat tails.

Let {L;:i >0} be the sequence of spaces between successive losses, with L; being
the space between losses i — 1 and i for > 1. A second estimation procedure is based
on first estimating the clusters. Let the first loss belong to the first cluster. Let the
ith loss belong to the last cluster if L; < 7 and let the sth loss initiate a new cluster if
L; > 7, where 7 is an appropriately chosen threshold. Let each cluster be located at
the loss initiating the cluster.

In this case, we are assuming that the length of a cluster, i.e., the time from the
first loss until the last loss within a cluster, is negligible compared to the intervals be-
tween clusters. If this were not so, then we could delete the cluster subintervals.
Equivalently, we can think of the new cluster process being turned off in the middle
of a cluster, so that a new cluster can begin only after an old one has ended. How-
ever, our overall analysis is largely based on the length of clusters being small
compared to the intervals between clusters. Several methods for estimating the
parameters of a cluster Poisson process in more general situations are proposed by
Lewis [18].

We also need to account for the fact that the average space between clusters
should be substantially greater than the average space between losses, which is r ~1.
If the average cluster size is m, then the average space between clusters is m/r. Of
course, we do not known m in advance. In general, we could proceed iteratively
starting with a tentative estimate of m, and refining it after analysis.

Given the congestion control effect discussed in the introduction, we should be
careful not to make the threshold too short. Since congestion controls tend to operate
in the scale of an end-to-end roundtrip time, the threshold should be substantially
greater than a few roundtrip times for distant sources in the network. For example,
the propagation delay across the United States is of the order of 50 ms.

We want to choose the threshold in between the average cell interarrival time
XA~ ! and the average space between clusters m/r. A reasonable approach appears to
be to average the exponent but tending to the long side; e.g., we could let

r = 10708100 D8y =1 (2 p23)1/3, (34)

For example, in the setting of Example 1, A ™! = 0.00002 secs. Suppose that we
estimate m as m = 103. (Our rough analysis in Section 7 gives m ~ 250.) Since
mM/r & 1019, formula (3.4) dictates having 7 ~ 10571 =1 ~ 100 secs. In general, the
appropriate choice should depend on the situation, after examining the data.

Once the clusters have been identified, we can estimate the batch-size distribution
by the empirical batch-size distribution and the batch arrival rate by the observed
number of batches divided by the total length of the observation interval. We can
estimate statistical precision of the batch-size distribution by assuming successive ob-
servations are i.i.d. Moreover, standard statistical tests for independence can be used.



328 KERRY W. FENDICK and WARD WHITT

Alternatively, we can estimate the batch arrival rate 8 by estimating its recipro-
cal 371, The successive spaces should be mutually independent and exponentially
distributed with mean 8~ 1. With this framework, we can easily estimate the statisti-
cal precision and directly test the batch Poisson assumption.

It is also natural to use parametric models for the batch-size distribution. An ob-
vious candidate is the geometric distribution. If X is a geometrically distributed ran-
dom batch size, then its probability mass function is

P(X=k)=(1-p)p*~ 1, k=1,2,.., (3.5)
which has mean
m=FEX=1/p. (3.6)

A natural way to estimate the parameter p in (3.5) is to let p = 1/, where /i is the
sample mean, which of course is the natural estimator for m in (3.6).

We conclude this subsection by pointing out that there can be some censoring pro-
blems associated with clusters occurring at the ends of measurement intervals. A con-
servative approach is to include in such edge batches all losses in adjacent intervals
that would be considered part of the batch if the measurement interval were extend-
ed. Clusters would then be counted twice at the end of one interval and at the begin-
ning of another interval. We do not dwell on this effect because we believe it should
be minor. In practice that should be checked.

Identifying clusters from first passage times

The method above identifies the clusters by only looking at the observed losses. We
now propose an alternative method that use the observed buffer content process as
well. We now modify the previous procedure by stipulating that a loss initiates a
new cluster if and only if the buffer has completely emptied in the interval since the
last loss.

This procedure is appealing because it is not necessary to identify a threshold.
Moreover, in many cases this procedure should actually be very close to the previous
one. Assuming that buffer overflow is indeed a rare event, the buffer content process
should move relatively quickly from the upper barrier to the lower barrier, while mov-
ing relatively slowly from the lower barrier to the upper barrier. We demonstrate
this phenomenon for RBM below.

At first glance, this first-passage-time criterion would seem to be more conserva-
tive (lead to longer clusters), but it actually might not be in practice (in communica-
tion networks as opposed to queueing models). The buffer might empty completely
due to sources temporarily reducing input in response to losses, but then the buffer
might soon fill again and overflow when these same sources ramp up again slightly
later. So, for communication networks, the first method would actually seem prefer-
able. However, a combination could be used: a new cluster might be stipulated to
begin the first time the buffer is full, after it has been empty after a threshold r.

4. The G/G/1/C Queueing Model

We now introduce a more detailed queueing model in order to relate the cell arrival
process to the cell loss process. Our queueing model is a standard single-server queue
with a finite waiting room (buffer) with total capacity C. Waiting customers begin
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service in order of arrival as soon as the server becomes free. An arrival finding all
servers busy and the waiting room full is blocked and lost, without affecting future
arrivals. As in Section 3, let the arrival process by A(t), partially characterized by its
arrival rate A and asymptotic variance JZ = /\cg.

We are interested in deterministic service times, but the results apply more gener-
ally. Let the server have a potential service process {S(¢):¢ > 0}. The variable S(t)
is the number of service completions during the first ¢ units of time in which the ser-
ver is busy (excluding idle periods). We partially characterize the potential service
process {S(t):t > 0} by its rate

5 (t
p = lim 5() (4.1)
. . oo T
and asymptotic variance
2= pc? Etli'r&t ~Wars(t), (4.2)

which again we assume are well defined and finite. The deterministic (D) special case
of primary interest here is covered by letting af = cf =0in (4.2).

We can use the queueing model to provide some theoretical support for a geome-
tric batch-size distribution. For a GI/M/1/C model (with renewal arrival process
and exponential service times), successive losses are regeneration points for the model.
Thus the number of successive losses until there is an interval between losses greater
than any threshold 7 indeed has a geometric distribution, where p is the probability
that the interval from one loss to the next exceeds 7. Moreover, for the GI/M/1/C
model the sizes of the clusters and the spaces exceeding 7 are all mutually indepen-
dent. Hence, even though we do not have exactly a GI/M/1/C model, because ser-
vice is D and arrivals typically are not nearly GI, these provide supporting motiva-
tion for our approach. In the next section, we use RBM to provide additional sup-
port for this estimation procedure.

5. The RBM Approximation

Since the queueing model in Section 4 is complicated to describe and analyze in de-
tail, we approximate the number of cells in the system and the overflow process by re-
gulated or reflected Brownian motion (RBM) and its associated upper-barrier regula-
tor process. The RBM process Z = {Z(t):t > 0} is ordinary Brownian motion modi-
fied by reflection at the barriers 0 and C. These processes are specified by a
Brownian motion B = {B(t):t > 0} and a two-sided regulator map, mapping B into
the triple (Z,L,U) = {(Z(t),L(t),U(t)):t > 0}; see p. 22 of Harrison [12] and Berger
and Whitt [5]. Intuitively, the regulator (local time) processes L and U provide the
necessary corrections at the lower and upper barriers to keep the buffer content
process Z within the interval [0,C]. Formally, the two-sided regulator is the (unique)
map taking a continuous function z with 0 < 2(0) < C into the triple of continuous
functions (z,¢,u), where 0 < z(t) <C, z(t) =x(t) +¢(t) —u(t), ¢>0,¢ and u are
nondecreasing with £(0) = u(0) =0, £(¢) increases only when 2(¢)=0 and u(t)
increases only when z(¢) = C, i.e.,
T

T
/ 2(t)de(t) = / [2(t) — Cldu(t) = 0. (5.1)

0 0
The goal of the approximation is to choose the Brownian motion {B(t):t > 0} to
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approximate the net input process {A(t) —S(t):¢t >0}, such that the RBM {Z(t):
t > 0} accurately approximates the buffer content process. Then we use the upper-
barrier regulator process {U(t):t >0} to approximate the cell loss process {N(t):
t>0}.

In the queueing model the net input process is A(t) —S(t). We follow standard
practice by choosing the drift § and diffusion coefficient o of our driving Brownian
motion B to match the long run mean and variance of the net input process; e.g.,

§ = lim =2 () Ae = lim A =50 (5.2)
t—oo t—oo t
and
. Var (1) . . Var(A(t) - S(t))
2 2 2 _
o =tl—l-+oo ~ Acs + pcl _tll'rglo 7 . (5.3)

The parameters A, cg, 1 and cf are as specified in Section 3.
As indicated above, we approximate the cell loss process by the upper barrier
local time process {U(t):t > 0}. The loss rate is

o’ ifé6=0
=z __ 1 e
r Etlim g-g—t—) = 2¢ (5.4)
o =8 its#0
and the asymptotic variance is -
2 — 2 1 p—1
oy =rcy, ._.tl_l_)rgat VarU(t) (5.5)
where the associated asymptotic variability parameter is
& if6=0
C% = 2(1 _ 6290) +4oceec "y # 0 (56)
1 )
_ 0(1 _ 600)2
and o
0= ?; (5.7)

see Section 4 of Berger and Whitt [5]. The parameters r and c% provide all that is
needed to analyze the normal approximation in Section 2 and the batch means esti-
mation procedure in Section 4.

The asymptotlc variability parameter c2 7 in (5 6) is a deceasing function of 6.
For |6C| <1, cL~2C/3 while for [0C| >4, ¢2 ~ —2/0. A convenient rough
approximation overall is ¢? 7 ~ min{2C/3, —2/6}.

It is interesting to compare the asymptotic variance of the cell loss process to the
asymptotic variance of the cell arrival process. Since the rates are different, it is use-
ful to focus on the associated variability parameters cz and c%. The RBM approxima-
tion provides a way to do this. To focus on the application of interest, consider deter-
ministic service times (so that ¢Z =0) and assume that |6C| >4, so that 2~
—2/6. Combining this with (5.2), (5.3) and (5.7), we obtain

¢} ~ 1 f p 3 (58)

For p >1/2, formula (5.8) implies that ¢ > c? p whlch is consistent with intuition.
However, for p < 1/2, formula (5.8) implies that ¢2 < c2

An interesting feature of (5.8) is that it does not depend on the capacity C. In
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the parameter region of interest, the cell loss rate r depends strongly upon C, as indi-
cated by (5.4), but the approximation for the variability parameter c% in (5.8) de-
pends only upon c; and the server utilization p.

We can use the RBM formulas to roughly relate the lengths of the measurement
intervals required to estimate the two parameters r and A. The lengths should be pro-
portional to rc% and /\cg, respectively; e.g., see Section 2 of Whitt [23]. Now suppose
that » = Xe for ¢ < 1. We anticipate that the measurement interval required to esti-
mate r accurately should be about 1/¢ times as long as the interval required to esti-
mate A. However, an extra correction is required to account for differences in the
asymptotic variance. Formula (5.8) gives a rough indication of this difference.

Berger and Whitt [5] showed, through examples, that the Brownian approxima-
tion of queueing models is not especially accurate for the case of a low traffic inten-
sity and a small loss probability, but we believe that it nevertheless provides the basis
for important insights for the estimation problem. The Brownian approximation pro-
vides a simple way to capture the effect of the (often high) variability in the arrival
process (as measured by c2).

As reviewed in Section 2 of Abate and Whitt [1], any RBM with negative drift
can be rescaled to be represented as canonical RBM, which has drift —1 and diffu-
sion coefficient 1. To express the result, let R(t;u,02,C,X) denote an RBM with
drift p, diffusion coefficient o2, upper boundary at C' and initial random position X.
Then

{aR(bt; u,0%,C, X):t > 0} 4 {R(t; —1,1,aC,aX):t > 0} (5.9)

where a = | u| /0% b=0%/u? and £ eans equality in distribution. Hence, it
suffices to give formulas only for canonical RBM.

We now exhibit first passage time distributions in order to obtain insight into the
estimation procedures in Section 3. A great appeal of the RBM model is that for it
we can actually perform these calculations. Let T'(a,b) denote the first passage time
to b from a for canonical RBM. Then the Laplace transforms of T'(0,C) and T'(C,0)

e Ee—*T(0.0) = e € (5.10)
- sinh(yC) ’
cosh(yC) -
—sT(C,0) _ ¢
Ee = Snh(7C) (5.11)
cosh(yC) + ——=
where ¥ = /1 + 2s, while the first two moments are
2C
BIT(0,0)] = =] =2C (5.12)
-2C
E[T(C,0)] =—-2C_1;€ (5.13)
4C | 200y _ 2 _
Blr(o,0) =+ 620) +2(C*-1) (5.14)
_ -2C , ,—-4C
E[T(C,0)*] = AC-D+ 620)6 re (5.15)

see p. 151 of Abate and Whitt [2] and Williams [24]. From (5.10) and (5.11), it
follows that 7'(0,C)/ET(0,C) converges in distribution to an exponential distribu-
tion with mean 1, thus showing that the batch Poisson process model is asymptotical-
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ly correct as C—oo for the upper barrier local time process of RBM. Also, T(C,0)/C
converges in distribution to a unit point mass at 1 as C—oo, so that
T(0,C) > T(C,0) for C large, as indicated in Section 3. (However, the RBM model
does not account for congestion controls.)

Moreover, the amount of increase in U during a cycle (first passage from C to 0
and back to C) is exponentially distributed, see Remark 2 of Williams [24], which is
consistent with the geometric batch-size distribution. (The exponential distribution is
the continuous analog of the geometric distribution.) The exponential distribution
could also be deduced from the known geometric distribution in the GI/M/1/C
models by taking limits of queueing models approaching RBM, as in Theorem 4.5 of
Berger and Whitt [5].

6. Using RBM to Fit the Batch Poisson Process

We can use the RBM approximation to generate a batch Poisson process for the cell
losses. Then we model the loss process as a batch Poisson process with a geometric
batch-size distribution. Let 8 be the rate of the Poisson process of batch arrivals and
let m be the mean batch size. We show how to express the pair (3,m) in terms of
the rate r and variability parameter c% of the RBM upper barrier local-time process,
whose formulas are given in terms of the RBM parameters A, p and cz in (5.4) and
(5.5) respectively.
First, the overall rate is obviously

r = fm. (6.1)

Next, this special batch Poisson process is a renewal process, so that the asymptotic
variance coincides with the squared coefficient of variation (variance divided by the
square of the mean) of an interarrival time (here a mixture of an exponential and a
point mass at 0). Denoting the loss process by {N(t):t > 0} as before, this asympto-
tic variance is
rcd Etli»rgot “var N(t)

where

2 =2m-1. (6.2)

We obtain the parameters r and c% from the parameters of the RBM upper
barrier local time process {U(t):t >0} in Section 5. Then we solve for m and 3,

obtaining )

m=L+1and p=rF (6.3)

If more general models than the batch Poisson process are deemed necessary to
faithfully represent the loss process, then formulas for the asymptotic variability para-
meters in Section VI of Fendick, Saksena and Whitt [10] may be useful.

7. Reverse Engineering to Determine the Variability

The batch Poisson process parameters § and m in Section 6 are obtained from the
cell arrival rate A, the cell service rate p, and the arrival process asymptotic variance
2 _\.2 R 2 .
05 = Acg.  Unfortunately, however, the variability parameter c; may not be readily
available, although it can be estimated from data; e.g., see Cox and Lewis [8] and
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Fendick and Whitt [11].

Here we suggest an indirect way to estimate the arrival-process variability
parameter cg under the assumption that the cell loss probability is . We assume
that the relevant case is § # 0, where § is the drift in (5.2). Then, by (5.4),

~log1-27%)

0=——F—5 (7.1)
so that, by (5.7),
C¢21 = 2(1 - p()lc_ Y (72)
plog (1 S )

where p = A/u may be estimated from measurements. When € is small, the 1 can be
ignored inside the logarithm in (7.2).

To illustrate how we can apply the reverse engineering with RBM, we consider
Example 1 again.

Example 1 Revisited: Supposing that the system is indeed properly designed to
achieve a 10 =7 loss probability at utilization 0.5, we do reverse engmeenng using the
RBM model to determine an estimate of the asymptotic variance c of the cell arnval
process. The given parameters are A = 0.5 x 105, pu = 10 -5 C= 4000 r=A10"
.005. Hence, by (5.2), 6§ = 0.5x10° and, by (7.2), % = 496 3 & 500. Then, by (5. 8)
and (6.3), m ~ 250 and # =2x10°. Hence batches of mean size m = 250 should
arrive at rate 2 x 10 ~® batches per second or (2 x 10 ~5) x (3600) = 0.072 batches per
hour. The average interval between clusters of losses should thus be about 14 hours.

These parameters clearly indicate that an hour is not long enough to be confident
that the requirement is being met under the assumption that the loss probability is in-
deed 10 ~7. We anticipate that 93% of all hours will have no losses at all. Moreover,
if an hour does have losses, then 400 is not exceptionally large. On the other hand,
any losses at all should be regarded as a bad sign. Hence, even though 2 losses is well
below the mean of 18, it is more a bad sign than a good one. These calculations also
indicate what an appropriate threshold for identifying clusters might be. Since the
average time between clusters should be about 840 minutes, a good threshold might
be about 10 minutes. For the second method in Section 3, we estimated 100 seconds.

These parameters also indicate what are appropriate measurement periods. For
the example, an appropriate measurement period might be 200 hours. Then the
mean number of batches is 14.4. Since the distribution is approximately Poisson, the
variance is also 14.4. The number of cells lost in this longer period is approximately
normally distributed with mean 300 and standard deviation 1341. We would thus
regard more than 6282 losses (two standard deviations above the mean) as occurring
under the model assumptions only with probability 0.023.

We emphasize that our analysis assumes stationary steady-state conditions, in
which the arrival rate is constant over time. That situation is hardly likely to prevail
in real networks over 200 consecutive hours. However, as we have indicated, this diffi-
culty can be addressed by selecting a subset of hours with similar operating
conditions. Qur assumed conditions are routinely satisfied directly in computer
simulations and they can often be achieved in testbed networks.

It is also instructive to see how the RBM model looks when we transform it to
canonical RBM (with drift 1 and diffusion coefficient 1). For canonical RBM, the
buffer capacity becomes C' =8 and the hour becomes 36. Recalling that the steady-
state distribution of canonical RBM is exponential with mean 1/2, we can see that
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the level 8 is unlikely to be reached within the interval [0, 36].

8. Measured Losses and Utilizations

In actual system operation, it may be necessary to estimate the traffic intensity as
well as losses. For example, a knowledge of the queue’s traffic intensity is needed for
the reverse engineering of Section 7. For fairly long measurement periods, such as
hours, it is natural to assume that the actual traffic intensity coincides with the mea-
sured utilization. Then one could collect a set of hours with nearly identical traffic in-
tensities and see if the losses with this traffic intensity are consistent with predictions.
This reasoning assumes both that the underlying arrival process is stationary within
the selected intervals and that the presence of losses does not alter the distribution of
its realized traffic intensity significantly. The later assumption would clearly be inval-
id for short measurement periods, since cell loss is necessarily preceded by a period
during which the number of cells arriving exceeds the number of cells served by the
size of the buffer. Nevertheless, if the arrival process is stationary, we would expect
the dependence between measurements of traffic intensity and cell loss to be small
when the numbers of cells arriving and served over the interval are large relative to
the size of the buffer.

To understand this phenomenon quantitatively, we again consider the RBM Z
from Section 5, this time without an upper boundary (C' = c0), and we apply results
from Fendick [9], which shows how the realized drift of the underlying Brownian net-
input process B builds up prior to the RBM exceeding a given level ¢. Even though
the RBM can fluctuate above ¢, we equate ¢ with the buffer limit of the queue that
we are modeling, since we are primarily interested in how the buffer content reaches ¢
from below. We assume that RBM exceeds ¢ at the end of the interval, rather than
at some other point in the interval, because this maximizes the impact on the drift.
If, for example, we were to condition on the RBM exceeding ¢ at the beginning of the
interval, then the impact on the drift would not be felt over the interval, but over pre-
vious intervals. Fixing the time T at the end of an interval of length ¢ and condition-
ing on the event that Z(T) > c, we define the realized drift §, . over the interval (a
random variable) as

8,0 = (B(T)-B(T -1t)| Z(T) > ¢).

In addition, we let d, c(z) denote the probability density of the random-variable 6, .
By Theorem 1 of Fendick [9],

d, (2) ~ Lexp(6(z — 2¢)/o? — 8%t /20%)t ~ 1/ (8.1)

x((l_exp (2‘5(07_;”)-*-_>>¢<(‘2t—1/2;))+exp (2e=27) "5(0:5/2))

for T> 1 and all z, where ¢(w) = (27r)"1/2 exp(—w?/2) is the density for the
standard normal distribution and w* = max{w,0}. Since t is fixed, the condition
that T > 1 implies that T' —¢ > 1, which assures that only the assumed boundary
condition Z(T) > c at the end of the interval, and not the initial buffer content Z(0),
affects behavior over the interval [T —¢,T].

To apply this result, we again consider the framework of Example 1, in which the
service times are fixed (deterministic) with value u~!. Analogously to (5.2), we
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think of the effective drift per unit time 6, ./t over the interval as the difference
between an effective input per unit time A, and output per unit time y. We then
define the effective traffic intensity p, . over the interval (again a random variable)

as A 8, Jt+u
t, t,
t,cETc':——cp ) (8.2)
We now can determine the density of Pt,cr SAY Ty o by setting
0, .+ ut
P(py, <2)= P(t’cu—tp < x)
= P(5,, < pt(z— 1)
to obtain
o o(x) = ptdy (ut(z ~ 1)) (83)

We now examine the behavior of the random variable p, . in the setting of
Example 1. Figure 1 shows the mean Ep, . for Example 1 as a function of the length
t of the interval preceding the conditioned event that Z(T) > c¢. The expected traffic
intensity over the interval is very close to its steady-state value of 0.5 for intervals
larger than a few seconds, thus confirming that the presence of cell loss should not
significantly bias the estimate of traffic intensity obtained over reasonable measure-
ment intervals such as hours or days.

Figure 2 shows the full density Tt e of the traffic intensity for Example 1 for four
different interval lengths. As expected the density rapidly concentrates around the
steady-state mean for intervals larger than a few seconds.

1.6 +

Ep;.
14 4

logyo¢

04 L

Figure 1. The expected traffic intensity Ep, . over the interval of length ¢ seconds
that precedes a buffer content in excess of ¢ = 4000 cells for Example 1.
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Figure 2. The probability density function Tic of the traffic intensity over the
interval of length ¢ seconds that precedes a buffer content in excess of ¢ = 4000 cells
for Example 1.

9. Conclusions

We have presented two models for interpreting and statistically analyzing cell losses
in communication networks. The first model is the batch Poisson model for cell
losses; the second model is the reflected Brownian motion (RBM) model for buffer
content and cell loss. The main idea in the batch Poisson model is to focus on succes-
sive clusters of losses, and separately consider the size of these clusters and the spaces
between them. Since the sizes may prove to be highly variable, the spaces may prove
to be the more reliable predictor of performance. We have presented arguments sup-
porting the batch Poisson model and shown how it can be fitted and used. The
natural next step is to try our approach on system measurements and simulations.

The batch Poisson model directs attention to identifying loss clusters and their
rate and size. For the purpose of verifying whether or not cell loss requirements are
being met, we suggest ignoring the structure of losses within clusters. However, the
within-cluster structure may prove useful in understanding controls. That is a promis-
ing direction for future research.

The RBM model is a relatively simple model characterized by two parameters re-
presenting the rate and burstiness. The great appeal of RBM is that the desired calcu-
lations can be performed for it. With the RBM model, it is possible to obtain at
least rough answers analytically. In Sections 6 and 7 we showed how the RBM model
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could be used to fit a batch Poisson model by reverse engineering, given the buffer
size, cell arrival rate, cell loss rate and utilization. From this analysis of RBM, we
are able to obtain reasonable answers to the questions raised in Example 1 at the out-
set. These answers may be sufficient for some analyses, e.g., for determining appro-
priate measurement intervals. Even if more elaborate models are deemed appro-
priate, RBM is useful as a frame of reference or base case.

Finally, our analysis indicates that fitting measurements to stationary Poisson
and RBM models and, more generally, making reliable estimates of cell loss rates,
requires long periods of stationary traffic. We conclude that such long intervals of
stationary traffic can be obtained by piecing together separate shorter intervals with
similar utilization.

Acknowledgement

We thank K.K. Ramakrishnan for helpful discussion about the influence of congestion
controls and D.P. Heyman for helpful discussion about his studies of cell loss with
video teleconferencing.

References

[1] Abate, J. and Whitt, W., Transient behavior of regulated Brownian motion, I:
starting at the origin, Adv. Appl. Prob. 19 (1987), 560-598.

[2] Abate, J. and Whitt, W., Transient behavior of the M/M/1 queue via Laplace
transforms, Adv. Appl. Prob. 20 (1988), 145-178.

[3] Abate, J. and Whitt, W., Numerical inversion of probability generating func-
tions, Opns. Res. Letters 12 (1992), 245-251.

[4] Aldous, D., Probability Approzimations via the Poisson Clumping Heuristic,
Springer-Verlag, New York 1989.

[5] Berger, A.W. and Whitt, W., The Brownian approximation for rate-control
throttles and the G/G/1/C queue, J. Disc. Event Dyn. Syst. 2 (1992), 7-60.

[6] Bhattacharya, R.N., Gupta, V.K. and Waymire, E., The Hurst effect under
trends, J. Appl. Prob. 20 (1983), 649-662.

[7] Cohen, D.M. and Heyman, D.P., Performance modeling of video teleconferenc-
ing in ATM networks, IEEE Trans. Circuits and Syst. for Video Technology 3
(1993), 408-420.

[8] Cox, D.R. and Lewis, P.A.W., The Statistical Analysis of Series of Ewvents,
Methuen, London 1966.

[9] Fendick, K.W., An asymptotically exact decomposition of coupled Brownian sys-
tems, J. Appl. Prob. 30 (1993), 819-834.

[10] Fendick, K.W., Saksena, V.R. and Whitt, W., Dependence in packet queues,
IEEE Trans. Commun. 37 (1989), 1173-1183.

[11] Fendick, K.W. and Whitt, W., Measurements and approximations to describe
the offered traffic and predict the average workload in a single-server queue,
Proc. IEEE T7 (1989), 171-194.

[12] Harrison, J.M., Brownian Motion and Stochastic Flow Systems, Wiley, New
York 1985.

[13] Heyman, D.P. and Reibman, A.R., Comparisons Among Models of Cell Losses



338

[14]

[15]

(16]

(17]

(18]
(19]
20]
(21]
(22]
23]

(24]

(25]

KERRY W. FENDICK and WARD WHITT

for Video Conferences, AT&T Labs, Holmdel, NJ 1997.

Hughes, C.J., Ghangari, M., Pearson, D.E., Seferdis, V. and Xiong, J., Modeling
and subjective assessment of cell discard in ATM video, IEEE Trans. Image
Proc. 3 (1993), 212-222.

Keilson, J., Markov Chain Models — Rarity and Ezponentially, Springer-Verlag,
New York 1979.

Leadbetter, M.R., Point processes generated by level crossings, In: Stochastic
Processes:  Statistical Analysis, Theory and Applications, (ed. by P.A.W.
Lewis), Wiley, New York (1972), 436-467.

Leadbetter, M.R., Lindgren, G. and Rootzén, H., Ezireme and Related
Properties of Random Sequences and Processes, Springer-Verlag, New York
1983.

Lewis, P.A.W., A branching Poisson process model for the analysis of computer
failure patterns, J. Roy. Statist. Soc. Ser. B 26 (1964), 398-456.

Mood, A.M. and Graybill, F.A., Introduction to the Theory of Statistics, second
ed., McGraw-Hill, New York 1963.

Paxson, V. and Floyd, S., Wide-area traffic: The failure of Poisson modeling,
IEEE/ACM Trans. Networking 3 (1995), 226-244.

Srikant, R. and Whitt, W., Simulation run lengths to estimate blocking
probabilities, ACM Trans. Modeling Computer Sim. 6 (1996), 7-52.

Syski, R., Introduction to Congestion Theory in Telephone Systems, Cliver and
Boyd, Endinburgh 1960 (second ed., North-Holland, Amsterdam 1986).

Whitt, W., Planning queueing simulations, Management Sci. 35 (1989), 1341-
1366.

Williams, R.J., Asymptotic variance parameters for the boundary local times of
reflected Brownian motion on a compact interval, J. Appl. Prob. 29 (1992), 996-
1002.

Willinger, W., Traffic modeling for high-speed networks: theory versus practice,
In: Stochastic Networks (ed. by F.P. Kelly and R.J. Williams), IMA Vol. in
Math and Appl., Springer-Verlag, New York 1995.



