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The relaxation time TREL of a finite ergodic Markov chain in continuous
time, i.e., the time to reach ergodicity from some initial state distribution,
is loosely given in the literature in terms of the eigenvalues Aj of the in-
finitesimal generator Q. One uses TREL --0 -1 where 0- min,xj0
{ReAj[- Q_ ]}. This paper establishes for the relaxation time 0 1 the theo-
retical soffdity of the time reversible case. It does so by examining the
structure of the quadratic distance d(t) to ergodicity. It is shown that, for
any function f(j) defined for states j, the correlation function p](v) has
the bound ]pl(r)] < exp[-0]7 I] and that this inequality is tight. The
argument is almost entirely in the real domain.
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1. Introduction

Let J(t) be any ergodic Finite Markov Chain in continuous time with generator Q.

A single underscore will be used to denote vectors and a double underscore will be

used for matrices. Let p_T(t)- p_T(O)et= be the state probability vector so that

e )K Ttli_,%P_T( t) eT n 1 > OT; e-TQ= --0

We are interested in the relaxation time of J(t). For time-reversible chains where
all eigenvalues of Q are real the relaxation time is well understood (cf. Keilson [1]).
For more general chains with real eigenvalues and eigenvalues occurring in complex
conjugate pairs, all eigenvalues Aj[__Q] other than zero have ReAj[Q__ < 0 (see appen-

dix). Let 0 min,x
j

0{ReAj[- Q__ ]}. The value TREL 0- 1 is employed loosely

for the relaxation time in the literature. This paper establishes for the relaxation time
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392 JULIAN KEILSON- 1 the theoretical solidity of the time reversible case.

Let- diag(en). Recall that /_xT=u_x is a vector norm when =U is positive de-
finite. The scalar function

d(t) V/(pT(t) e_T)e_ l(pT(t) _eT) (1)

is then a vector norm and a distance to ergodicity.
It has been shown by D.G. Kendall [3] that the distance d(t) is monotone decreas-

ing for time reversible chains. It has also been shown by Keilson and Vasicek [2] that
this distance decreases to zero for all ergodic chains. An independent proof will be
given in this paper.

2. The Structure of the Distance to Ergodicity

The structure of d(t) for all finite ergodic chains is examined more deeply here. This
structure is used to establish the relaxation time 0- a entirely in the real domain with-
out any reference to complex eigenvalues until the end. We use the following nota-
tion:

Definitions:

2a) e=D diag(en) 2b) ET(t) (p_.T(t) e_.T)e_ 1/2

c) (t) z(t)z (t) (t)- t)

-1/2 [__, +
Note that Q, QR, and Q# all

ITe2) Q-S
_

The superscript R refers to the reverse chain.
generate chains which have the same ergodic vector e__T.

Theorem A: For any finite ergodic Markov chain J(t)"
(a) Q# is the Q-matrix of an ergodic chain;

(c)

=C -e__2_i#S 1/2 i8 symmetric and negative-semidefinite with eigenvalues

1--0, j<0, j :/: 1.
The stationary chain generated by Q# is time-reversible.

l3Te have the zero structure needed to be an ergodic QProof: __Q and __QR__ w__
matrix as does =Q#-1/2 ,-]-Q -4-_JQ-R]" The matrices __Q, __QR and __Q# all have row sum

zero. Also _e29e_ 1/2 2_Qe_ 1/2 + _e.2_QRe_ 1/2 2Q_e 1/2 _.]_

is y:-is s:,r n  tri

and J#(t) governed by Q# is time-reversible (cf. Keilson [1]). !-!

Theorem B: Let 0 min)j# o{j[- C= ]} min)j# o{.j[ Q#]}.= TEL

0-1 is then the relaxation time of the ergodic time reversible chain J#(t). For any
finite ergodic Markov chain, it has been shown in [4] that
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d(O)- (3)

The rate 0 will be called the global decay rate of d(t)- V/-(t). The proof is
given here.

Proof: From the definitions, one has at once u_T(t)- u_T(t)B= and _u(t)-
B=TE (t). Hence tw(t) t[u_T(t)E (t)] u_T(t)B= u_ (t) + ET(t)B=TE (t). This implies

Since _xT=c_x < 0, for all real _x -fi 0, tw(t)<_ 0 and w(t) decreases in t. The

matrix _C has principal left eigenvector

_
-(eln/2) corresponding to eigenvMue 0 and

_T(t)g_C --(p_Tt)--e_T)l- O. Thus _T(t)is orthogonal to the principal rank one

eigenspace of =C. When pT(0) :_eT, ET(t) moves in this space, and does not vanish.

One has from the Rayleigh-Ritz principal

uT(t)C=E(t) _<_ 2.min_{A[-C_]} 20.(a*  -zT(t)z (t) > o

If one integrates from 0 to t, Theorem B follows.
Convexity Lcmma: The function w(t) is convex and

d2

--dw(t) 4ET(t)C=z (t) >_ O.

Proof: From tw(t) [_T(t)_ (t)] 2_T(t)=C_ (t) one has

d d[uT(t)C_ (t 2T(t)[B + (t).-d-w(t)- u- =/2 )]- __c _c_BT]
But

(5)

2[_B _C -b =C =BT] _B [_B + =BT] + [=B + B=T]B=T (B= -J- =BT)2 + (B BT B=TB=
and (B_ B_T- _BT_B is antisymmetric. The lemma then follows.

A stronger result is available.
Theorem C: For any finite ergodic Markov chain, with d(O) 5 O,
(a) w(t) is convex and decreasing in t;

’(t)(b) log w(t) is convex in t, i.e. (t) increases with t;

(c)

Proofi

w’(t)
w(t) <- -20. This equality is tight, i.e., an initial state vector can be

o’(t)found for which
w(t)

-20 for all t.

From the proof of Theorem B, w’(t) < 0. We must show that

[1ogw(t)]" w(t)w"(t)- [w’(t)]2 > 0. Calculation gives2
W

where =C _e_2_Q#_ 1/2. Moreover since _C is symmetric, the Schwartz inequality
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gives

and w(t)w(t) [w’(t)]2 > 0. This proves log-convexity.
w(t)For (0) T, thechwartz inequality is strict and the convexity of og is

strict unless gT(t) --KgT for some constant K. This can only happen when gT(t)
is an eigenvector of , i.e., when (T(t)_T) 1/2 Aj[](T(t)_T) 1/2.

We next show that the inequality (3) in Theorem B is tight in that, for any ergo-
(t)dic chain one can always find a pT(O) for which

w’(t) w’(t)knowledge that is increasing and < -20 implies that w’(t)_
w(t)

20 for all t.

Let be any real orthonormal eigenvector of for the eigenvalue -0, and be

small and real. If gT(0)- (T(o)--T)I/--, so that ET(0) --0 then

(o)
20 as needed. If one chooses T(0) eT +u2 one(o) 2

zT(0)e (0)
will have pT(O >T for sufficiently small. Moreover one will also have
eT(0)l 12 For

(_pT(0)--_eT)l c_u1T_e_/21 and -0_ulT_e_21 u1T=Ce__21 _ulTe__2_Q#1 0. []

Time-reversible ease: When J(t) governed by Q is time reversible, a special case
of the above, Q- QR_ Q# and 0 is just the eciprocal of the relaxation time

described in [1]. For this time reversible case, for any Aj and real eigenvector _u of

__Q, one can find initial vectors pT(0) for which w(t) will have purely exponential

decay at rate 21Ajl faster than 20. The global decay rate is still 0.

3. The Covariance Function

Let J(t) be any finite ergodic Markov chain which is stationary. Let f(j) be any real
function of state j. The covariance function is R$(7) cov[f(J(t),f(J(t + 7-)] and
(cf. [1]) R/(r) fTe=D[_p (7")-le_T]f_ for r > 0.

The correlation function is pl(r) Rl(Ir I)

f(o)
Theorem D: For any finite ergodic Markov chain J(t) which is stationary, the

correlation function satisfies

ps(=) _< p[- 01= I]

and the inequality is tight.
Proofi Without loss of generality, we may assume that fn > 0 since a positive

constant may always be added to fn without altering the covariance. Let p (7-)-
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[pmn(V)] be the transition probability matrix of J(t). For

/_Te__D_I [=p (v)- _l_eT]

_
algebra gives

RI(r) fTe_D[p (r) !_eT /2_ 1/2[___Df (fT__l)_e

(fl)[_()_. (0)].

From the Schwartz inequality,

n}() [()e (0)] I-()1 w()--= < <exp[-207].P}() n}(0) [_-r(0)_ (0)] I_ (0) (0)

The tightness of the inequality follows from the tightness in Theorem C. This
proves the theorem.

4. The Relaxation Time

In [1] the relaxation time was defined by TREL --sup/of pl(r)dr. This was motivat-

ed by the similarity of pl(r) to a survival function. One then has at once from Theo-
rem D, TREL 0 1.

One must finally relate the decay rate 0 to the eigenvalues of Q. Suppose that

there are eigenvalues of Q with negative real part - and that other eigenvalues

have a more negative real part. Consider w(t)- _uT(t)g (t)- (__pr(t)- e_T)e_ l(p (t)-
e__ ). e2tw(t) [eCt(p_T(t) e__T)e_e l[eCt(_p (t)--_e )]- [eCtd(t)]2 and that this is log-

convex in t, all . For pT(t)--e__TT O, limsuPt_.,oce2tw(t)- O, when < -0" and
limsupte2tw(t)- cx,-when > -0". From the tightness in Theorem C, we

must then identify 0* with 0.
A calculation has been carried out using the symbolic and numerical power of

Maple for the chain J(t) starting in any state and generator

-1 1 0 0 0

0 -1 1 0 0

0 0 -1 1 0

0 0 0 -11

1 0 0 0 -1

The graph given by Maple is found to be log-convex as predicted.
expression for w(t) has the asymptotic decay rate predicted.

The symbolic
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Appendix

Lemma: If ,j[Q_] is the eigenvalue of an ergodic finite Markov chain in continuous
time with infinit-esmal generator Q, then apart from the principal eigenvalue at O, all
eigenvalues of Q have a strictly n-ggative real part.

Proof: We-may use uniformization [1] to write Q -v[=/ -_av] where v is any

positive rate exceeding the largest exit rate from a state and _av is a stochastic ergodic

(irreducible and aperiodic) matrix. Then &j[Q= (1 Aj[_a]) and < 1

for other than Al[_a]- 1. The lemma then follows.

Remark: One can have a stochastic matrix which is ergodic and has purely
imaginary eigenvalues.

An example with eigenvalues 1, -1/2, 1/2i, z is

1 5 1 1
8 8 8 8

1 1 5 1
8 8 8 8

1 1 1 5
8 8 8 8
5 1 1 1
8 8 8 8
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