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1. Introduction

In this paper we are concerned with Volterra and Urysohn equations in Banach
spaces. The paper will be divided into two main sections. In Section 2 general
existence principles are established for these equations. The technique relies on a
nonlinear alternative of Leray-Schauder type [2]. Our results improve and extend
results in [15]; in addition some of the results are new even in the finite dimensional
setting. In Section 3 some applications are given. First an existence principle of
Brezis-Browder type [1] is established for Hammerstein equations in Banach spaces.
Also in Section 3 we give a notion of “solution tube” for singular second order
differential equations in Hilbert spaces.

Throughout E will be a Banach space with norm || -|. We denote by
C([0,T],E) the space of continuous functions u:[0,T]—E. Let u:[0,T]—E be a
measurable function. By f (7; u(s)ds we mean the Bochner integral of u, assuming it
exists (see [16] for properties of the Bochner integral). The semi inner products ([7,
9]) on E are defined by

et =]
w0}y = llellim_ t ;

(e,9) _ = || | tim, o~ AL2T I = 2]l

Let Qf be the bounded subsets of E. Let X € Q. The diameter of X is defined by

diam (X) =sup{||z—y]||:z,y € X}.
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The Kuratowskii measure of noncompactness is the map o: Qp—[0,00] defined by
a(X) =inf{e > 0: X C U7_ X, and diam(X;) < €}.

Theorem 1.1: Let T > 0 and E be a Banach space.
(1) Let ACC([0,T],E) be bounded. Then

sup_a(A(1)) < a(A[0, T) < 2a(A)
tef0,T]
where A(t) = {¢(t): ¢ € A} and A[0,T]= U, [O,T]{¢(t):¢ € A}
(76) Let ACC([0,T),E) be bounded and equicontinuous. Then

a(A) TP ]a(A(t)) = a(A[0, T]).
Proof: (i) For each t€[0,T7] we have A(t) C A[0,T] and so a(A(t)) <
a(A[0,T]) which gives

sup_a(A(t)) < a(A[0, T]).
te0,T]
The other inequality follows from the ideas in [7, page 24].

(i7) The result follows from [7, 9]. 0

Let £, and F, be two Banach spaces and let F:Y C E;—FE, be continuous and
map bounded sets into bounded sets. We call such an F a «o-Lipschitzian map if
there is a constant k£ >0 with «(F(X)) < ka(X) for all bounded sets X CY. We
also say F is a Darbo map if F is o-Lipschitzian with £k < 1. Next we state a fixed
point result due to Sadovskii [2].

Theorem 1.2: Let K be a closed, conver subset of a Banach space B and let
N:K—K be a bounded Darbo map. Then N has a fized point in K.

We also have the following nonlinear alternative of Leray-Schauder type for
Darbo maps [2].

Theorem 1.3: Let K be a closed, convez subset of a Banach space B. Assume U
is a relatively open subset of K with 0 €U, N(U) bounded and N:U—K a Darbo
map. Then either

(A1) N has a fized point in U; or

(A2) there is a w € OU and X € (0,1) with u = ANwu.

2. Existence Principles

In this section we establish existence principle for the Volterra integral equation

t

o) =h(0)+ [ K(ts,u(s)ds, te(0,1] (2.1)
and the Urysohn integral equation °
T
y(t) = h(t) + / K(t,s,y(s))ds, te[0,T]. (2.2)

0
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We will look for solutions in C([0,T], E); here E is a Banach space with norm || - ||.
The ideas involved in establishing existence principles for both (2.1) and (2.2) are
essentially the same; as a result we will examine (2.1) in detail and just state the
results for (2.2).

Theorem 2.1: Let K:[0,T]x[0,t]x E—E. Suppose

{ there exists a constant v > 0 with a(K([0,T]x[0,t]xQ)) < va(R) (23)

for each bounded set Q C E

29T < 1 (2.4)
K:[0,T]x[0,t]x E—E is L'-Carathéodory uniformly in t; by this we mean
(1) for each t €[0,T], the map u—K (s,u) is continuous for almost all s € [0,1]
(note for each t € [0,T], K,:[0,t]x E—E is defined by K,(s,u) = K(t,s,u))
(i7) for each t €[0,T), the map s—K,(s,u) is measurable for allu € E
(¢35) for each t €[0,T] and for each r > 0 there exists by , € L'([0,T),R)
such that ||u]| <r implies || K(s,u) || <hy (s) for almost all s €[0,1]
(iv) for each r >0 there ezists h, € L'([0,T],R) and a >0
such that for z < z in [0,T], {zhz’r(s)ds < (izhr(s)ds)o‘

(2.5)

for any r > 0 and any z,t € [0,T] we have that
t
1
sup K(z,s,u)— K(t,s,u) || ds—0 as z—t 2.6
) SUP )| <

where t; = min{t,z}

and
heC([0,T],E) (2.7)
hold. In addition assume that there is a constant My, independent of A, with
yllo=sup [[y(t) [ #M
llyllo [O’T]II @) [l # M,

for any solution y € C([0,T],E) to

t
y(t) = A (h(t) + / K(t,s,y(s))ds), te[0,T] (2.8),

0

for each A €[0,1]. Then (2.1) has a solution in C([0,T), E).
Remark: Theorem 2.1 improves a result in [15, Section 3].
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Proof: Define the operator N:C([0,T], E)—C([0,T], E) by

t

Ny))=ht)+ [ K(ts,u(s)ds

0

Now (2.8), is equivalent to the fixed point problem y=ANy. We would like to
apply Theorem 1.3. First we show N:C([0,T], E)—C([0,T],E) is continuous. To
see this, let u,—u in C([0,7],E). Then there exists r >0 with || u,(s) l[ <r and
[lu(s) || <r for all s €[0,T]. Also for each t € [0,T] there exists h, . € L°([0,T],R)
with

Il K(t,5,0) || < hy () for ae. s€[0,T] and all ||v] <r.

Now from (2.5) we have for each t € [0,T] that
K(t,s,u,(s))—K(t,s,u(s)) for almost all s € [0,T].

This together with the Lebesgue dominated convergence theorem yields N u,(t)—
N u(t) pointwise on [0,7]. Now (2.6) guarantees that the convergence is uniform
(i.e., the argument below will show that for any € > 0 there exists § > 0 such that for
t,t' €[0,T] with |[t—t'| <6 we have | Nu,(t')—Nu,(t)|| <e¢ for all n and
[| Nu(t')— Nu(t)|| <e€). Hence Nu € C([0,T],E) and N is continuous.

Next, let Q be a bounded subset of C([0,T],E). We first claim that NQ is
bounded and equicontinuous on [0,7']. Then there exists r >0 with || u(s)|| <r for
all s€[0,7] and u€ Q. Also there exists h, , and h, as in (2.5). Now NQ is
bounded since for t € [0,T] and u € Q we have

t
I ¥u@) ] <sup (1BO1 + [ sup 1| K(ts,0)[1ds
[OxT] 0 <r

v

T [e]
s[gg;]nh(mu( / h,<w)dw).

0

Also, for t,t' € [0,T] with t' >t and u € €2, we have
t

| Nu(t)—Nu(t)|| < ||ht")=h()]| + / sup< || K(t',s,v) — K(t,s,v) || ds
v r
5 <
tl

+/ sup || K(t',s,v) || ds
A I

t
SURO KON+ [ s K00~ K50 1 ds
T
0

vl <
+( /tlhr(s)ds)a.

t
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Consequently N Q is equicontinuous on [0,T]. We now show

a(NQ) < 29T ().
For t € [0,T], we have

t
a(NQ(t) =« {h(t) + / K(t,s,u(s))ds:u € Q}

0
< oteo{K(t,s,u(s)):y € 25 €[0,1]})
= ta({K(t,s,u(s)):y € Qs €[0,1]})
< Ta(K([0,T]x[0,t]x2[0,t]))
< Ty (90, 2])
where Q[0,t] = U, ¢ (o, ;{#(5):¢ € Q}. Theorem 1.1 (i) implies

a(N Q1)) < 29T ().

453

(2.9)

(2.10)

In addition since N © is bounded and equicontinuous on [0,7'] we have from Theorem

1.1 (i) that
a(NQ) =sup a(NQ(1))
te[o,T]
and this together with (2.10) implies that (2.9) is true. Let

U={uel(0,TLE): [[ullo <M}, B=K=C(0,T],E).

Now Theorem 1.3 (notice (A2) cannot occur) implies that (2.1) has a solution in U. O

A special case of (2.1) is
t

y(t) = h(t) + / k(t,8)f(s,y(s))ds,t €[0,T]
0
where k takes values in R.

Theorem 2.2: Let k:[0,T]x[0,t]—R and K(t,s,u)=k(t,s)f(s,u).

(2.3), (2.4) and (2.7) hold. Also suppose

constant); by this we mean
(1)  the map t—f(t,z) is measurable for all z € E
(74)  the map z—f(t,z) is continuous for almost all t € [0,T]
(#3) for each r >0 there exists p, € LI([0,T),R) such that

f:[0,T]x E—~E is a LI-Carathéodory function (here ¢ > 1 is a

| z|| <r implies || f(t,2) || < p,(t) for almost all t €[0,T]

(2.11)

Assume

(2.12)
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k,(s) € LP([0,t],R) for each t € [0,t]; here %—{——é— =1 and for (2.13)
each t € [0,T), k,:[0,t] >R is defined by k,(s) = k(t,s) .
and
for any t,t, € [0,T] we have that
¢
3
I ktl(s) - kt2(s) | Pds—0 as t;—t, (2.14)
0

where t; = min{t,t,}

are satisfied. In addition, assume there is a constant M, independent of A, with
vl o # Mg for any solution y € C([0,T], E) to

t
y(t) = A (h(t)+/k(t,S)f(s,y(s))ds>, te0,7] (2.15),

0

for each A €[0,1]. Then (2.11) has a solution in C([0,T], E).

Remark: One could also discuss the case ¢ = 1 in Theorem 2.2.

Proof: The results follows from Theorem 2.1 once we show (2.5) and (2.6) are
true.  Notice first for any r>0 and any u€ E with ||u]|| <r there exists
p, € LI([0,T],R) with || f(s,u)|| < p,(s) for almost all s €[0,7]. Then for each
t€[0,T] and ||u]|l <r we have

| K(t,s,u) || < |k(2,5) | 1 (s) = hy ,(s) for almost all s € [0, T'].
By Hélder’s inequality for z,z € [0,T] with z < z, we have

L N 1
/hz,r(s)ds < (/ |Icz(s)|pds)p( / u‘r’(s)ds)q
z 0

x

: VA 7
Szén[gfcﬂ(/ Ikz(S)I”dS) (/u?(S)dS)
0 T

/zhz,r(s)ds S( /zhr(s)ds)a

and so

T x
where

: »
1 .
a=g>0and h, =[cp,]? with :_;én[%?(T] ( Z | k,(s) | Pds) .

Consequently (2.5) is true. Finally (2.6) follows since if t > z, we have

/ sup HK(z,s,u)—K(t,s,u)Hds:/ |k(z,s)—k(t,s)]m|1|p< || f(s,u)|| ds
A ul| <r

| lull <r I
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0

z % T 711_
< ( / | k,(s) = k,(s) | pds) ( / ,ug(s)ds) —0 as z—t.
0

Essentially the same reasoning as in Theorem 2.1 establishes the following exist-
ence principle for the Urysohn integral equation (2.2).
Theorem 2.3: Let K:[0,T]x[0,T]x E—E. Suppose

there exists a constant ¥ > 0 with o(K([0,T]x[0,7T]x Q)) < ya(R) (2.16)
for each bounded set QC E ‘
29T < 1 (2.17)
K:[0,T]x[0,T]x E—E is L'-Carathéodory in t;
by this we mean for each t € [0,T);
(1)  the map w—K(s,u) is continuous for almost all s € [0,T] (2.18)
(7%)  the map s—K,(s,u) is measurable for all u € E '
(iii) for each r >0 there exists b, . € LY([0,T],R) such that
lull <rimplies || Ky(s,u) || < hy (s) for almost all s €[0,T]
bly bounded fTh (s)d
K s integrably bounded in t i.e. sup s)ds < oo
Y t e [O,T] 0 t,r (2'19)
where hy ,(s) is as in (2.18) (i1)
T
lim sup || K(z,s,u)— K(t,s,u)||ds =0 (2.20)
#ot o el <r
and
he C([0,T],E) (2.21)

hold.  In addition assume there is a constant M, independent of A, with
||yl o # Mg for any solution y € C([0,T], E) to

T
y(t)=f\(h(t)+/ K(t,s,y(s))ds), tel0,T) (2.22),

0

for each A €[0,1]. Then (2.2) has a solution in C([0,T), E).
Theorem 2.3 immediately yields the following result for the Hammerstein integral
equation
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T
y(t)=h(t)+/ k(t,5)f(s,y(s))ds,t € [0, T). (2.23)

0

Theorem 2.4: Let k[0,T]x[0,T]—R and K(t,s,u) = k(t,s)f(s,u). Assume
(2.16), (2.17) and (2.21) hold. Also suppose

[:[0,T)x E—E is a LI-Carathéodory function (here ¢ > 1 is a constant)  (2.24)
ky(s) € LP((0,T),R) for each t € [0,T}; here L +4=1 (2.25)

and
the map t—k, is continuous from [0,T] to LP([0,T],R) (2.26)

are satisfied. In addition assume there is a constant M, independent of A, with
|yl g # Mg for any solution y € C([0,T], E) to

T
y(1) = X (h(t) + [ koG y(s))ds), te[o,T] (2.27),
0
for each A €[0,1]. Then (2.23) has a solution in C([0,T], E).

3. Applications

In this section we use the existence principles of Section 2 to establish existence
theory for various integral equations. We begin by discussing the Hammerstein equa-
tion

T
y(O) =)+ [ Kt (u(s)ds, telo,T) (3.1)
0

Remark: An existence theory of “superlinear” type could easily be developed for
(3.1) (or indeed the Urysohn integral equation (2.2)) using the ideas in [13]; however
since the reasoning involved is essentially the same, we as a result will not include
results of this type here.

We first establish a result of Brezis-Browder type [1] for (3.1).

Theorem 3.1:  Let k:[0,T]x[0,T]—R and K(t,s,u) = k(t,s)f(s,u) and assume
(2.16), (2.17), (2.21), (2.24), (2.25) and (2.26) hold. In addition suppose

(3.2)

there erists R > 0 and a constant ay > 0 with
(P4 Zaollyll 1Y) Il for 1yl = R and ace. t €10,T]

{ there exists constants n >0,y with v > q—1 and a function ¢ € LP([0,T],R) (3.3)

with [[y|| 201l f(t,9) |7 +6(2) for |y]| = R and a.e. t €[0,T]
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T (3.4)

and there exists a constant Ay > 0 with for any u € C([0,T],E),
{ (F(tu(t)), [ Tk(t,5)f(s,u(s))ds) | dt < Ag

are satisfied. Then (3.1) has a solution in C([0,T], E).
Proof: Let y be a solution of (2.27),. We have (recall (z,y+2), <(z,y), +
(z,2) , where z,y,2 € B, a Banach space),

T T
[ wtaaoryae < [ ru).mo)
0 0

T T
o2 [ (seuw), [ ko) us)ds)
0

0
and so T
Juve vy aes [ IO @oe) lder 1401 @5)
I 0
Let
T={tel0.T] (0]l 2 R} and T = {t€[0,T] |o(0) | < R).
Notice

T
[ ey uw) ez a0 [ w17t v(e) )
0 I

2 naq [ 1 £(2,(0) 17+ 1at +aq [ 6(0) 1| £(t0(0) ) .
Put this into (3.5) to obtain ! !
mao [ 11 56 u(e) 117+ et
I
<aq [ 16011 7wt + [ 1@ 1 Fu0) e
I J

T

+ [ IHO 1 w1t 4o

0

Since f is L9-Carathéodory there exists pp € L([0,T],R) such that |u| <R
implies || f(t,u)|| < pg(t) for a.e. t €[0,T]. Thus

J IO 1seu@ e+ [1HO1 1 v e+ | 4]
J J

T T
SRZMAWH+ZHMUMmMﬂ+I%IE&
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and so

oo [ 11 7(6u(e) 117+ 1t
I
sao/ L o) | I f(ty(D) || dt + / 1B || 1 £, u(0)) || dt + A;.
I I

Apply Holder’s inequality to obtain

0 / OB

1

py—(v+1) T 5 g
<apr PO ( / |¢<s>|"ds) ( / ||f<t,y<t)>||7+1dt)”
0 I

~
1

T S

+1 7!
+( / Il h(8) ||7Tdt) (/” f(t,y(t))||7+ldt)7+l~
0 I

There exists a constant A, with

[ 1stu@) 7+ 1ae < a,

I
Returning to (2.27), we have for t € [0,T] that

()l 5[3\,1% Il A (2) ] +[I| k(t,8)f(s,9(s) |l dHZIIk(t,S)f(s,y(S))lldS

RPR
<[(s)u713 || A(2) || +sup (/ | k(t, s)|pds) ( ZMR(s)ds)

k]

py—(v+1) T Py
+7 PO+ gy / | k(t,s) | Pds | A7 +T= M,
teo,T] 5
and so
sup [|y(t) || < Mg
(0, 7]
for any solution y to (2.27),. The result follows from Theorem 2.4. ]
Essentially the same reasoning as in Theorem 3.1 establishes the following exist-
ence result for the Volterra equation

t
y(t) = h(t) + / k(t, $)f (5, y(s))ds, t € [0, T]. (3.6)
0
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Theorem 3.2:  Let k:[0,T]x[0,t]-R and K(t,s,u) = k(t,s)f(s,u) and assume
(2.3), (2.4), (2.7), (2.12), (2.13), (2.14), (3.2) and (3.3) hold. In addition, suppose

there exists a constant Ay > 0 with for any u € C([0,T], E),

{T(f(t,u(t)), F5k(t,$)F (s, u(s))ds) , di < A,

is satisfied. Then (3.6) has a solution in C([0,T], E).

Remark: Existence theory of “growth type” could also easily be developed for
(3.6) (or indeed (2.1)) using the ideas in [12].

For our next application we will examine the abstract Dirichlet boundary value
problem

(3.6)

¥y + f(t,y) =0 a.e. on [0,1
( [0,1] (3:8)
y(0) = y(1) = 0;
here y:[0,1]—H where H is a Hilbert space with inner product (-, -). We give a
notion of “solution tube” for such problems in the Hilbert space setting. Our theory
was motivated by ideas in [4, 5. We will assume that f:[0,1)x H—H is a L}, -
Carathéodory function. By this we mean
(?)  the map t—f(t,2) is measurable for all z € E;
(#1)  the map z—f(t,z) is continuous for almost all ¢ € [0,1];
(ii1) for any r > 0 there exists h, € L}, (0,1) with || f(¢,2) || < h,(t) for almost
1
all t€[0,1] and all || z|| <r;also [ &(1—z)h(z)dz < oo with Iimt ot
1 0 -
t2(11— t)h,(t) = 0 if {) (1-2)h,(e)dz = co and lim,__ _ ¢(1—1)*h,(t) =0
if [ zh(z)dz = oco.
0

Remark: It is worth remarking that other boundary data (homogeneous and non-
homogeneous) could also be considered here. However in our opinion (3.8) is the
“most difficult” to examine (i.e., the “most singular”) and as a result we will concen-
trate our study on (3.8).

By a solution to (3.8) we mean a function y € AC([0,1], H)nCY([0,1], H) with
y' € AC},.((0,1),H) which satisfies the differential equation in (3.8) almost every-
where, and the stated boundary data. One can check (see [10, 14]) that solving (3.8)
is equivalent to finding a function y € C([0,1], H) to

1

v(0)= [ Kt ue)ds, tefo] (3.9)
0
where

k(t,s):{ (1—1)s, 0<s<t

(1—s)t, t<s<l.

Remark: Notice h, in (i77) above is not necessarily in Lo, 1].
Theorem 3.3: Let K(t,s,u) = k(t,s)f(s,u) and suppose the following conditions
are satisfied:
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there exists a constant 0 < 2y < 1 with (K ([0,1]x[0,1]xQ)) < ya(Q)
for each bounded set Q C H (3.10)

£:10,1]x H—H is a L}, -Carathéodory function (3.11)

for any ty € (0,1), t; € (0,1) with ty < t,, there exists
v € AC([0,1], H)NC((0,1), H) with v’ € AC,,.((0,1), H),
and M € AC([0,1],[0,00)) N C((0,1),R) with M' € AC,,.((0,1),R)
(v and M are independent of t,,t,) with
(v —v(t), — F(Ly) —v"(D) = M (OM()
for a.e. t € [ty,t,] and ally € H with ||y —v(t) || = M(t) and M(t) #0

(3.12)

for any ty € (0,1),, € (0,1) with ty < t, there exists v and

M as in (3.12) with
(3.13)

<
(5= o(t), — £t () =" () 2o
IPESIOI] 2 M"(t)

for a.e. t € [ty,t,] and ally € H with ||y —v(t)|| > M(t) and M(t) =0

\
and

1 0(0) || < M(0) and ||o(1) || < M(1). (3.14)

Then (3.8) has a solution y with || y(t)—v(t)|| < M(t) for all t €[0,1].
Proof: Consider the problem

1

y(t) = / k(t,s)f(s,p(s,y(s)))ds,t €[0,1] (3.15)
where 0
= min M) i Mo ),
p(ty) = { My —v(®) ||} ( { Ty =oOT }) (t),
p(t,y) = Y if ly—o(®) |l <M(2)
| MO o), ly— o) | > M)

is the radial retraction of H onto {y: ||y —v(t) || < M(t)}. We now show (3.15) has
solution in C([0,1],H) by applying Theorem 1.2. Define the operator N:
C((0,1], H)—C([0,1], H) by

1
Ny(t) = / k(t,s)f(s, p(s,y(s)))ds.
0

Let u,—u in C([0,1], H). Then
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t

I ¥ = N u) | < (1= 0) [ 1) 7G5, ploy1,50) = £, () [ ds

0
1

[ (= 5) I 10(5)) = F o0 () | s

t

t
< [ =511 5, b5, 1a(6))) = £ 5,52 ] ds
0
1
4 [ =911 75, p6,(6))) = S5 5,u(5)) [ ds
t

1
= / (L =s)s || f(s,p(s,un(5))) = f (s, p(s,u(5))) || ds.

0

So N:C([0,1], H)—C([0,1],H) is continuous. Now let Q@ C C([0,1], H) be bounded
i.e., there exists » >0 with ||u(s)|| <r for all s €[0,1] and u € Q. There exists h,
as in the definition of L}OC-Carathéodory with

| f(s,u) || < h,(s)for a.e. s €[0,1] and all ||u]|| <r.

Now N  is bounded since for ¢t € [0,1] and u €  we have

t 1 1
I Nu(t) || <(1-1) / sh,(s)ds +t / (1= 8)h,(s)ds < / s(1— s)h, (s)ds.
0 t 0

Notice also for u € @ and t € [0,1] that
t 1

(Nu)(t) = /sf(s,u(s))ds + / (1=s)f(s,u(s))ds
0 t

so we have

t 1
IOl < [ #6ds+ [ @=sh(s)ds=7,(0) (3.16)
0 t

1
It is easy to check since { s(1 —s)h (s)ds < co that 7, € L'[0,1]. Consequently N

is equicontinuous on [0,1]. Next we show

a(N Q) < 2ya(Q). (3.17)
For t € [0,1], we have

1
a(NQ(t) =« { / K(t,s,p(s,u(s)))ds:u € Q}

0
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< a({K(t,s,p(s,u(s))): u€Q,s€ [0’ 1]})
< o(K([0,1]x[0,1] x2o(2[0,1] U [0, 1])))
since if u € Q and s € [0,1] we have

p(s,u(s)) = Au(s) + (1 — A, )v(s) € €o(2[0,1]U v[0,1])

where . M(s)
R ol
Thus
(N Q(t)) < ya(eo(Q[0,1]U[0,1])) = ya(2[0,1] U v[0, 1])
. = 7a(Q[0,1]) < 27a()

a(N Q) ?esup a(N Q) < 2ya(Q).

’

Thus (3.17) is true. Theorem 1.2 implies that (3.15) has a solution y € C([0,1], H).
Next we claim || y(t)—v(t)|| < M(t) for t €[0,1]. If the claim is true then y is a
solution of (3.9) and consequently y is a solution of (3.8).

It remains to prove the claim. If the claim is not true then

ly(t) —o() || — M(2)

has its positive (absolute) maximum at, say, t, € (0,1). Choose t; >0, t; <1, t; <
ty <ty with || y(t) —v(t) || — M(t) > 0 for t € (t,,t,) and

Iyt = o) || = M(t) < [[a(ts) = o(t5) | - M(t) (3.18)
this is possible since || y(1) —v(1) || — M(1) <0. Also we have
(lly=vll = M)(t;) =0. (3.19)
In addition for a.e. t € (ty,t,) we have

[l y(8) = (@) ||
(y(®) = v(®),y"(1) = v" () + [ y'() ='W [|* _ [w(t) = v(t), y'(t) = v' (1))

[FOEXION ly(t)~v(®) ||
S () —v(), y"(t) — v" (1))
- ly(8) — () ]
_ (y() —v(®), — f(& p(t,y(1))) —v"(2))
ly(1) ()|l

> M"(1).
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To see the last inequality there are two cases to consider, namely M(t) # 0 and
M(t)=0. If M(t)# 0 we have

(y(t) —v(t), — f(¢, p(t,y(1))) — v"(2))
1y(2) —v(@) |l

— (p(ta y(t)) — v(t)’ _Mf((ttj p(t, y(t))) _ ’U"(t)) > M"(t)
by (3.12), whereas if M(t) = 0 we have
<y(t) — U(t), — f(t1 p(t, y(t))) - U”(t)) <y(t) _ ’U(t), - f(ta U(t)) - v“(t)) > M“(t)

ly(t) — (@) |l ly(t) —v(@) ]|
by (3.13). Consequently,

(ly—v]| —M)"(t) >0 for a.e. t € (ty,1,) (3.20)
Now (3.19) and (3.20) imply
(ly=vll =M)(t) 2 0 for t € (25, ;)

and consequently

ly(t) —o(t) || = M(2)) > [1y(ty) —v(ty) | — M(2y)-

This contradicts (3.18). Thus our claim is true and we are finished. 1]

Remark: Let H = R and suppose o, 8 € AC([0,1],R) N C([0,1],R) with o', 8’ €
AC,,.((0,1),R), are respectively lower and upper solutions of (3.8) (i.e., o'+
f(t,a) >0 ae. on [0,1], «(0)<0, (1)<0 and B"+ f(t,6) <0 a.e. on [0,1],
B(0) >0, B(1) > 0) with a(t) < f(t) for t € [0,1]. Its easy to check that

v= 9_%’_:@ and M = ,82;a
satisfy (3.12), (3.13) and (3.14) in this case. Of course, (3.10) is satisfied with y = 0.
Consequently a special case of Theorem 3.3 is the result in [3, 10].
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