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1. Introduction

Consider the infinite horizon filtering problem for a continuous time signal (Xt) > o
observed only at time points tk, k 0, 1,... where tk tk 1 z. Suppose the sigffal
is distorted by a linear transformation AXtk_ 1

1 that is A I_A_tional to -, Yk AXtk 1 k"

tinuous time process

0 t-0,
Yff ya tk- 1 t < tk, k > 1tk_ 1

and corrupted by white noise propor-

For convenience, we introduce a con-

Yk )k > 1"where Y Y + Yk A with similar signal information as A

1

Both (Xt) and (Yff) are assumed to be vector processes of sizes n and l respective-
ly. The signal is a homogeneous diffusion process with respect to the vector Wiener
process (Wt) > 0 with independent components. The initial condition X0 is the ran-

dom vector wit--h E II X0 II 2 < oc. Then the filtering model

dX aXtdt + bdW (1.1)
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AXtl_ A + kX/-, (1.2)YtAk YtAk 1 1

where matrices A, a and b are known may be analyzed as follows. The noise (k)k > 0
forms an i.i.d, sequence of random vectors independent of (Wt) > 0 and X0. CoYn-
ponents of the vector 1 are independent random variables and-their distributions
obey densities so that the Fisher information of each component of 1 is well defined
and positive. The assumptions made about the distribution of imply that the
Fisher information matrix of 1 is scalar and nonsingular.

If E ]] 2 < , the Kalmn filter with continuous time signal and discrete time
observation, that is being adapted to the setting, might be used as an optimal linear
filter in the mean square sense. If E 1 1 2 is infinite or even if E l 1 1 2 is finite
but too large, the Kalman filter becomes useless though the optimal filtering estimate

t(YA) E(Xt Y, tk t)
would probably be reasonable from an applied view of filtering quality. Such situa-
tions, where E ]] 1 ]] 2 is large because of "heavy tails" of the distributions of 1 com-

ponents are typical in engineering practice.
An essential role in the verification of a nonlinear filter quality is to be the lower

bound for the mean square filtering errors matrix

V E(X- (Y))(X- (Y))
where T is the transpose operator.

The lower bound for V is found by a method borrowed from Bobrovsky and
Zakai [2,3], Bobrovsky, Zakai, and Zeitouni [4], Bobrovsky, Mayer-Wolf, and Zeitouni
[5]. Under the assumption that the Fisher information matrix if0 of the random
vector X0 exists, we show that

t 0

in the sense that V-P is a nonnegative definite matrix. Here, P is the filtering
mean square error matrix for Gaussian filtering model

d atdt -1-bdW

gtAk gtAk 1 1n.tk /k -- 1/2k
subject to 0A- 0, " is the Gaussian vector with E0 = EXo, the covariance
matrix is equal to ff (fro+ is the Moore-Penrose pseudoinverse matrix [1])and
(k)k > 1 is an i.i.d, sequence of zero mean Gaussian vectors with unit covariance
matri-es.

In general, this lower bound might be unattainable. However, in this paper we
show that it can be closely approached if the parameter A is small enough. More-
over, we use this fact to construct a nearly optimal filtering estimate by applying a
Kalman type filter to a nonlinearly preprocessed observation. The use of a prelimin-
ary nonlinear transformation (limiter), to improve filtering accuracy is well known
from Kushner [8], Kushner and Runggaldier [9], Liptser and Lototsky [10], Liptser
and Runggaldier [12], Liptser and Zeitouni [14], and Liptser and Muzhikanov [11]. In
[11] and [14], the choice of an appropriate limiter depends on the diffusion
approximation of the observation process so that the drift and the diffusion
parameters in the associated diffusion limit determine the signal to noise ratio, and
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thus, the filtering quality. Moreover, the filter with the limiter which gives the
largest signal to noise ration (for the limit model) turns out to be optimal in the
mean square sense, as A0 for any finite interval. This is readily verified by
applying Goggin’s approximation [7] for the conditional expectation.

In this paper, we consider the filtering problem on the infinite time interval
(infinite horizon) in the situations when Goggin’s approach can not be effectively
extended for the analysis of limA_0 limt__,o asymptotic. Our approach exploits the
lower bound from (1.3) and conditions under which

lim tli_,rnPt:-P, (1.4)
A0

where P is a positive definite matrix. We show that the estimate t(YA), generated
by the Kalman filter with limiter, satisfies the asymptotic optimal property

lim tmE(Xt- t(YA))(Xt- t(YA))T P. (1.5)
A--,0

This paper is organized as follows. In Section 2, we make a revision of the finite
horizon case and show that the filter, with the relevant limiter, guarantees the
asymptotic optimal property in the sense that

limVtA-limP Vt>O.
A---*0 A0

In Section 3, the main infinite horizon result is presented. Several practical aspects
are discussed and demonstrated with computer simulations in Section 4.

2. Preliminaries

2.1 A Diffusion Approximation and the Filter

nent of 1"
into

As in [11], to keep the heredity of property of asymptotic optimality for a wider
range of sampling intervals A, the limiter is applied to the innovation difference.

The limiter is chosen to be a column vector-function G with components

Pi(X),
i- 1,..., , where pi(x) is the distribution density of the ith compo-

To incorporate the limiter into the filtering algorithm, YtA is transformed

k=l

yA _Atk_tk-1 1 (2.1)

Here, Ix] stands for the integer part of x, t(YA) is a random process defined by the
linear equation

dt(YA) at(YA)dt + PtA3:dzxt "o EXo, (2.2)
and Pt is a solution of the Riccati equation

Pt aPt + PtaT + bbT- PtATzj’APt (2.3)

subject to P0 cv(Xo, Xo) in which the Fisher information is a scalar matrix
with diagonal elements
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The process t(YA) is suggested as the nonlinear filtering estimate for the signal X
given {Y 0<s<t}. It should be noted that yA_yA --Atk_ (YA)A istk tk 1 1

regarded as "innovation difference" and the proposed filter can be seen as a Kalman
filter with a limiter which is applied to the innovation process (see the block diagram
on Figure 1).

Figure 1. Block diagram of the proposed filter.

The choice of such a nonlinear filter is warranted by the diffusion approximation
arguments given below. We fix the following assumptions

Gi(x is continuously differentiable

E[G(i))]2 <

EG,4.(1)<
IGi(x) < C(1 + [z I), for some C > 0, (2.4)

and extend the proof of Theorem 2.1 from [11] to the vector case. As in [11], we have

(X,, At t(yA)) l__a__ (Xt, t, t(P )), (2.5)
where Y0- 0, 7r0 EXo and

dX aXtdt + bdW
(2.6)

d,7 A(X /

with Wiener process (Vt) > 0 independent of (St) > 0 and
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d (")t a ( )tdt + PtATdt (2.7)
Despite the trajectories of the prelimit triple (xt, ,rt(Y )) which belong to

1C0, o)XDfo, oc) xD0, o)’
the trajectories of the limit (Xt,t,t()) belong to

C0 o)x Cf0 )x C0 ), so that ,,l__a_,, holds in the local supremum topology with

the metric

p(u u") 2-m{1Asup h(t)}, E [0, o)xD o)x [0, o)’
m=l t<_m

II yll IIwhere u’ (xl, Yl, zl), u" (x t, zt and
n n

h(t)- - xi(/) -xi’(i)l+ Y(i)- Yi’(i) l+ zi(/)- zi’(/)
=1 i=1 i--1

Consider now the filtering problem for the limit pair (Xt, Yt) (see (2.6))in which
X is treated as the signal and Yt as the observation. Clearly, the optimal, in the
mean square sense, linear filtering estimate is generated by the Kalman filter given by
equations (2.7) and (2.3). Note also that the nonlinear nt proposed in (2.2)is
nothing but this Kalman filter with t replaced by ’tzx.
2.2 A Lower Bound Over a Finite Horizon

Let us introduce the essential notation. Set

xk-- X and yk-- Y-Ytk 1

x E(Xk Yj, 1 <_ j <_ k)

V E(xk k)(xk- ’k)T

k

Xk eaAxk- 1 + f ea(tk- S)bdWs
tk_ 1

0

po %+.
Lemma 2.1: Assume

--( b ab an- lb’)r(ba) /n x (n. rn)
1Ci0, oo),Di0, o) are the spaces of continuous and right continuous (having limits

to the left) vector-functions of size r.
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where the block-matrix has the full rank.
Then, for every k > 0

V > pA
k"

Proof: Under (FR), for every t > 0 the distribution of X obeys a density (e.g., see
the proof of Lemma 16.3 in [13]). Hence, the joint distribution of k- (xk,’",Xl)
has a density as well. For convenience, introduce the vector Ok -(Yk,’",Yl)" The
signal and noise independence guarantees the existence of a smooth and strictly
positive distribution density p(u,v) for (k, Ok). Set

f(u)- i p(u, v)dv (density of

g(v)- / p(u, v)du (density of Ok)

p(u, v)
(conditional density of k given 0k)q( Iv)-

r(v [u)
p(u, v)

(conditional density of Ok given k) (2.9)f(u)
and denote by V uq(UlV) the row gradient vector with respect to u. Let us define a

nonnegative definite matrix

/ i V T (u V) V uq(U
ik

uq
ke q(u Iv)

V)g(v)dudv" (2.10)

We show that the mean square error for the estimate k E(klOk) of k given 0k is
bounded below (a version of the Rao-Crammer inequality):

E( )( ) I, (.)
where I is the Moore-Penrose pseudoinverse matrix for Ik. The inequality (2.11)
becomes an equality if (k,0k) is Gaussian pair.

Integrating by parts we find f NkuV q(u Iv)du--I, where I is the unit
matrix of relevant size, so that

-I- f f (u-k(v))T V uq(U v)g(v)dudv

vp(, v)aev. (.1)

kkn
Since

g2(v) p(u,v)_ g(v)

(, )p(, v) ( ;) q(= I.)’
we hve

p q

u q(u Iv) v uq(U v)p(u, v)dudv.
kkn
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Now, the matrix Cauchy-Schwarz inequality, applied to the right side of (2.12), gives

q(u ")
).q(u v)g(v)dudv

kkn

q( I
q(u Iv)

)q(u v)g(v)dudv

Thus, (2.11)is implied by (2.12).
We now use another representation for Ik (comparable to (2.10)).

introduce the operator V 2

argument u E [kn,

To this end,
that is, for every smooth scalar function h(u) with rector

v )-(

matrix

with elements

Oh()
OuiOuj

The direct verification shows f Nk f Nknp(u,v) V 2ulogp(u,v)dudv Ik

taking into account p(u, v) r(v )I() ( (2.9)), leads

f(u)

kn
V ulog f(u)du

V Tuf(u V uf(u).du"-t- f(u) (2.13)
[kn

Since r(vlu is the conditional distribution density of 0k given k( u), the matrix

(v I)
dv d

can be explicitly expressed in terms of matrices A and , or more exactly, as a block
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diagonal matrix with blocks ATffA. The detailed computation is omitted here
whereas the rest of the proof does not relay on a specific structure of this matrix.

Consistent width (k, Ok), consider an auxiliary Gaussian pair (k, Ok), where Ok
(k,"" 1) and k (k,’’ 1) with

t.

j eaA’j _1 + / ea(tj S)bdWs
t.-1

"j A’j_ 1/k - l"- 1/2jr, (2.14)

where (j)j _> 1 is a sequence i.i.d, zero mean Gaussian vectors with i.i.d, elements of
unit variance and 0 is a Gaussian random vector with E- EX0and covariance
matrix r0+. Denoted by (v u) the conditional density of Ok given k( u) and by
f (u) the distribution density of k" Using the fact that under a Gaussian
distribution, the covariance matrix coincides with the pseudoinverse of the Fisher
information, we get

and hence, with k- E(klYk), we have E(k -)(- k)T
equality and (2.11) imply

Thus, the above

E(k ’k)(k ’k)T >-- E(k k)(k k)T" (2.15)

It is clear that the matrix V is the sub-block of E(k -k)(k- ’k)T located on the
left upper corner. Denote thesame sub-block of E(k -k)((k- k)T by Pta.. Recall
that the Gaussian pair (k, Ok) is generated by the recurslon (2.14), so that the
matrix pA gives the mean square filtering error and is defined by the recursion given

kin (2.8) as a part of the Kalman niter corresponding to mode (2.14).
The property given in (2.15) is nothing but the statement of the lemma for k _> 1

(for k 0 the proof uses the same type arguments and is omitted).

2.3 An Asymptotic Optimal Property Over a Finite Horizon

X0 is Gaussian vector, so P0- 0+" By virtue of (2.5) we have

Tl__a.w {y(Xt t(Ya))(Xt rt(YA)) A""t- t(v ))(Xt t(Y ))T. (2.16)

Moreover, under (2.4) and (FR), for every t> 0 the trace of the matrix on the left
side of (2.16) is uniformly integrable for A > 0. Therefore

lim E(X t(YA))(Xt t(YA))T E(X ’t( ))(X t( ))T. (2.17)
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We now show that with Pt the solution of (2.3)

E(Xt ,t( ))(X t(.. ))T Pt, Vt > 0. (2.18)
To this end, introduce t-E(Xt]’s, s<_t)and Ft-E(Xt-t)(Xt-t)T.
Taking into account..ing (2.6) and applying the conditionally Gaussian filter (see Ch.
11 in [13]) we find X0 EXo and F0 P0 and

d. a2tdt + FtATzf(dt- A(. "t( ))dr)

t aft + FtaT + bbT FtATAFt
Hence, for 5t- 2t-t(), we have 50-0 and d5t- (a-FtAT’A)dt. That is
5 0. Since Pt Ft’ (2.18) holds.

Let us show also that

li_.moE(Xt- rt(YA))(Xt- rt(YA))T Pt"
Since rt(YA) is the optimal filtering estimate, we have the inequality

E(X rt(gA))(Xt rt(gA))T <_ E(X t(gA))(Xt t(YA))

(2.19)

and thus, by virtue of (2.17) and (2.18), to verify (2.19), it remains to show only that
for every t >_ 0

lim E(X rt(YA))(Xt- rt(YA))T >_ Pt" (2.20)
A0

(2.21)

For fixed t > 0, let k be an integer such that k _< t < tk + 1" Then for such t,

X ca( tk)xt
k

q- / ea(s S)bdWs
k

a(t-tk)
kand, therefore,

X rt(YA) ca(t- tkl(xtk rtk(YA)) + / ea(t- Slbdws"
k

Consequently,
E(X rt(YA))(Xt- rt(YA))

a(t- tk) A aT(t-- tk)--e V + / ea(t- S)bbTeaT(t S)ds"

k

By Lemma 2 1 we have VA > pa and with Pta -Pt for tk < t < tk + 1, the in-
k kequality

E(X rt(YA))(Xt- rt(YA))T_
a(t- tk)PtAeaT(t- tk) q- / a(t- S)bbTeaT(t- S)d8 (2.22)

k

holds. Now, the proof of (2.20) is reduced to verifying
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lim PtA P (2.23)
A--0 t"

Proof of (2.23): The matrix pA the filtering error of X is upper bounded bytk k

the matrix Qtk-cov(Xt,k Xtk) with pA<tk-Qt’k That is, for every fixed t>0,

<t P]I is bounded by a constant independent of A; in particular,supt,

suPt’ < Pt’- PAt’ II inherits the same property. Setting UtA Pt- PtA, we show
that fSr every t > 0

lim I[ UtA ]] 0. (2.24)
A--,0

From (2.3), it follows
k

Ptk eaAPtk- leaTA -- J ea(tk S)bbTeaT(tk s)ds
tk_l

k

ea(tk S)PsAATPsea (tk ds

tk_l

A

eaAP eaTA A- [ eaSbbTeaTsds
tk_ 1

0

eaAP ATAPtk_ eaTAA -4- r’tk-1 1 tk-1 (/k)’ (2.25)

where r’ (A) is the residual matrix with I] rtk_ 1tk_l
hand, taking into account

eaApA AT( -1 -t- AP ATA) -1AP eaTAAtk-1 -1 -1

- -1 - -1 tk-1

On the other

with residual matrix r"tk_l
have

(A) with ][ r" (A) II o(), by virtue of (2.8) we
tk_ 1

A

eaTA _[_ / eaSbbTeaTsds
0

pA eaAPtAktk -1

AT(-
__
APtAk ATA)- 1ApA aTA/x

-1 tk-1
_eaApA

tk_l

A

-f- / eaSbbTeaTsds
0

eaApA eaTAtk_ 1

eaAPtAk 1 1 tk- 1ATAPtAk eaTAA + r’" (A) (2.26)

tk_ (A) II x o(A) as well. Therefore (2.25) and (2.26) imply

AUtk_ ea/ku/k eaT/k eaAutAk ATafAPt eaTAtk-1 -1 k-1
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A A--eaAPAtk-1AT?YAUtk 1
caT /% d- rtk I(A) (2.27)

with I1 rtk 1
(A) ]l o(O(/) (for fixed t > 0 and tk _< t, o(A) depends on t only).

Hence, there is a positive constant C > 0 such that for every t <_ t we have

II II II u -1 I1(1 + CA)+ o(A).

This recursion and II II 0 imply
[t/A]

II Ut II < o(A)E (1 --C/k)j-1 tetCOk/k][
0 /k--O

3=1
Thus (2.24) holds.

3. The Infinite Horizon Case

3.1 Formulation of the Main Result

An essential role in establishing the asymptotic optimal property for the filtering
Aestimate rt(Y over the infinite time interval is played by the relation

lim limPtA -lim Pt- P (3.1)
A--0 t--cx

with positive definite matrix P which is the unique solution (in the class of nonnega-
tive definite matrices) of the algebraic Riccati equation

aP + Par + bbr- PArAP 0. (3.2)
To clarify a role of the matrix P, we mention here that the optimal filtering estimate

rt(YIx) obeys a lower bound (Lemma 3.2)
lim lim E(Xt- rct(YZX))(Xt- rct(YA))r >_ P (3.3)
A--,0 tc

Awhile the filtering estimate rt(Y given in (2.2) obeys the asymptotically optimal
property

lim tli_,rnE(Xt t(YZX))(Xt t(YZX))r P. (3.4)
A---O

It is known (see [13], Theorem 16.2) that at least the second part of (3.1) is provid-
ed by (FR) (see Lemma 2.1) and

A

Aa
is the matrix of full rank. (FR’)

Aa- 1

(t.)x
In this setting, for the verification of the first part of (3.1), and especially (3.4),

another (FR’) condition is required. Even if (FR’) holds, we assume that eigenvalues
of the matrix a have negative real parts (see (INF.3) in Theorem 3.1). It can be
proved that under (FR) and (INF.3) the second equality in (3.1) holds with the posi-
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tive definite matrix P.
It is natural when filtering over a long time interval to replace Pt in the equation

for 7rt(Y (see (2.2)), by its limit P, that is, to use the modified version of (2.2)

dt(YA) at(YA)dt + pATZfdtA. (3.5)
Moreover, the exact knowledge of the initial condition 0(YA) is not essential, since
it is forgotten by the filter dynamics. It is well known from Makowski [15],
Makowski and Sowers [16], Ocone and Pardoux [17] (see also Budhiraja and Kushner
[6]) that, under (FR) and (FR’), the Kalman filter is asymptotically optimal (among
nonlinear filters) over the infinite time interval even if the first and second moments
of an inappropriate distribution for X0 are used as the initial conditions for the filter.
We establish the same property for t(YA) defined in (3.5).

Theorem 3.1: Assume (FR) and
(INF.1) G is twice continuous differentiable; Gi, G,G"s are bounded.
(INF.2) Xo is an arbitrary distributed vector with E
(INF.3) Eigenvalues of the matrix a have negative real parts.
Then (3.3) is valid and (3.4) holds for t(YA) defined in (3.5) under any fixed ini-

tial condition.

3.2 Auxiliary Lemmaz

It can be shown that not only under (FR) and (FR’) but also under (FR) and

(INF.3),lrnP P exists. Let us denote" Pk PtA Then (2.8) may be rewritten as

A

e rk_ + eaSbbTea Sds
0

eaAPkA- 1AT(ff- 1 + ApkA_ 1ATe) 1 &
1caT"AP

Taking into account the eigenvalues of the matrix e have absolute values strictly

less than 1 and the matrix febbeds is positive definite, one can modify the
proof of Theorem 14.a from [la] to show that under (R) and (IN.a)

lim P P (.6)
with

p ePer + f ebberds
0

epA( +APA) APer. (a.7)

Lemma 3.1: Under (FR), (INF.3), limA_.OPA
Proof: By defining the following matrices,

r’(A) aPA + PAaT----(eaApAeaTA- pA)

A

r"(/)- / --(bbT-eaSbbTaTs)d8
0
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r’"(A) eaAp/xA(- 1 + APAATA) 1ATP/XeaTA pAAATpA

r(zx)

(3.7) can be rewritten as

aPA + pAaT + bbT- PAAzfATp/X r(A). (3.8)
Under assumptions made previously, the norm of the matrix pZX is bounded from
above by a positive constant independent of A. He I[ (/X II o(zx). Therefore,

lim (aP/x + P/XaT + bbT- PAAZJ’ATpA) O.
A---O

Since matrices pA, A > 0 are bounded, any infinite sequence (At) > 1 decreasing to

such that the limit lim., PAt’- P’ exists.zero contains subsequences (Ai,)i,> 1
Then P’ is a solution of (3 2) and-thus P’ P. (Recall that’ has the unique
solution in the class of nonnegative definite matrices.) This fact allows us to
conclude the existence of the limit limzx_oPzx P. VI
Lemma 3.2: Under (FR) and (INF.3), (3.3) holds.
Proof: By virtue of (2.21), we have

lim lim E(X 7rt(YA))(Xt- 71"t(YA))T
A--O

=a-,olim klimE(Xtk- 7rtk(YA))(Xtt
k

7rtk(YA))T
while by Lemma 2.1 E(Xtk rtk(YZX))(Xtt

k
7rtk(YZX))T > pZX

k"
Hence the desired result is implied by (3.6) and Lemma 3.1.
Lemma 3.3: Under (FR) and (INF.3), eigenvalues of the matrix a-pATj’A

have negative real parts.
Proof: Set K = a- pATA and rewrite (3.2) as

KP + PKT + bbT + pATZJ’AP O. (3.9)
Let (9T) be the right eigenvector of KT (the left eigenvector of K) with eigenvalue
A. (Re(A)is the real part of ,.) Multiplying (3.9) from the right by and from the
left by T, we obtain

2Re(,\)TP + T(bbT -+- pATAp) O.

Because P is positive definite and bbT+ pATAp is nonnegative definite, then

Re(A) <_ O. Assume Re(A)- O. Then TpATApT O, so TpATI/2 0 and, in
turn, TpAT 0 and TpATA 0 (or AAP 0). Then

A KT9 (aT- ATAp) aT99,

i.e., T is the right eigenvector of the matrix aT so the eigenvalue of aT has a zero real
part. The latter contradicts the assumption Re(A) 0. Consequently, Re(A) < O. D

3.3 Proof of Theorem 3.1

The proof is divided into two parts.
3.3.1: Xo is a Gaussian vector with known expectation and covariance.
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Set ut
zx X -"t(YA). It suffices to verify

lim lim Eutzx (utzx )T_ p.
A-O k-x k k

(3.10)

From (1.1) and (2.2) with Ps replaced by P, it follows

utzx- UOA+ J auas ds+ / bdWs-J pATdAs
0 0 0

and, in turn, for every k we find

k

).
k tk_ 1 tk_l

tk_l
Due to (2.1)

"A "A tk(Ytk Ytk_ 1
V/-zf- 1G -

(3.11)

J" -1a(k + AtttAk -1’
Gl((k)(1) + (Au_ 1

’ ae((k)() + (AtttAk- 1

)(1) V/-)

In addition, since G is twice continuously differentiable, we have

(i) AuGi((k)(i) + (AttA
k 1

)(i)V/) Gi((k)(i)) nt- Gi(( k) )"
1

For convenience, denote by

r’(A) x/pAT-1

(AutA
k 1)(1)-fo

(Aut
k 1)(1) V/’fo

f z(2,, 1) z’)dz’dz+

f )Gi’((k)() + z’)dz’dz

al((k)(1))
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G’(k) diag(G(k)(1) G(k)(2) G’((k)()) (3.12)

where diag(,) designates a scalar matrix with as the diagonal. Then (3.11) may be
rewritten as

uA- eaA G’ u
A

tk
pAT (k)A/k) tk- 1

k

+ / ea(tk -)bdW- pATG(k)V/ r(A) (3.13)
tk_l

where r(A)is the residual matrix with norm

II  Z( )II O(A3/2)" (3.14)

Set TA -Eu(u)T and note that (3.13)implies
k

TtAk E{ (eaA pATG’(I)A/X)TtAk I
(eaA pATG’(I)A/X)T}

A

+ / eaSbbTeaTSds + pATE{G(I)GT(I)}APA
0

E{utAk(rk(A))T} E{rkA)(u)T}. (3.15)

A few additional computations are now required. Write

E{ (eaa- pATG’(I)AA)TtAk 1
eaA -pATG’(I)AA)T}

eaATtAk- 1 eaTA--(eaATtAk 1
ATEG’(I)AP -4- pATEG’(I)ATtAk 1

eaTA)/k + r(A),

where r(A)--E{pATG’(I)ATtAk_I(PtkATG’(I)A)T}A2. Assumptions (INF.1)
and (INF.3) imply that Tt’s are bounded. Therefore,

II  Z( )II (3.16)

Note that EG(i)) f pi(x)jdx-- f pi(x zJ’ii. Therefore, EG’((1)- ff
and thus

E{ (eaA- pATG’(I)AA)Tt-1(eaA- pATG’(I)AA)T}
eaaTa eaT/x (eaATA ATzfAP + pATffATtAk eaTA)A + r(A).tk-1 tk-1 -1

Since EG()GT(I)- if, we have pATE{G(I)GT(I)}APA- PATAPA.
the residual matrix r’(A)- -E{u(rk(A))T} -E{rk(A)(u)T} with norm

II

With

(3.17)



108 P. CHIGANSKY, R. LIPTSER, and B.Z. BOBROVSKY

and, by virtue of (3.16) and by (INF.1) and (INF.3), we find

eaTA aAA A.ATT eaATtAk_l 1 -1
-(e l,k_ ATAP + P

A

A- eaSbbTea Sds + pATApA
0

+ ()+ ’(). (3.18)

To simplify notations define the matrix rk(A): r(A)+ r’(A) with norm

(3.19)

Then, (3.18) may be rewritten in the form

Tt aATA aTA aA,A pATo-J’ATtAk(e Irk_ ATAp +tk-1 1 -1

A

+ / eaSbbTeaTsds + pATApA + rk(A).
0

(3.2o)

Further, we use rk(A for designating a generic residual matrix with the norm of type
(3.19). Taking this into account, the right side of (3.20) can be transformed again so
that

TtAk e(a- pATCfA)ATA (a- pATaJ’A)TA
tk_ 1

A

-[- / e(a- pATA)S(bbT _[_ pATAp)e(a- pATA)TSds _[_ rk(A ).
0

(3.21)

Now, the equivalent presentation of (3.2) is used which yields

(a- pATzj’A)P + P(a- pAT’-fA)T + bbT + pATAp O.

The solution of the differential equation

"t (a- pATA)Tt + Tt(a- pAT6fA)T -- baT -3
t- pATafAP

subject to TO P is P. In particular, for every k, Ttk- P. On the other hand, for
every k

Ttk e(a pATaA)AT e(a- pATafA)TA
tk_ 1

A

+ / e(a- pATA)S(bbT + pATAp)e(a- pATA)TSds"
0

Hence, U/Xtk Ttak- Ttk is defined as" U0a P0- P and

Utk (a- pATJ’A)AUAtk_ I
(a- pAT6J’A)TA +().
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Let integer k’ be fixed and k > k’. Then

(3.22)

Taking Lemma 3.3 into account, let us denote -# (# > 0) the maximal real part
among all real parts of eigenvalues of the matrix a-PArA. Then (recall
a-pATzfA is an (n x n)-matrix) there is a positive constant c such that for every
integer q > 0

II e(a pATA)Aq II -- C(1 + (Aq)n- 1)e- pAq.

Therefore, due to UkA_ 1 being bounded, there is a positive constant C such that
k-k-I

[[ g "(- /x/2 e
j-O

’Ie .A(k k’) + A3/2
<

1 -e -"}"

Hence, limk__, 1[ UA
A3/2

t II < c o, zx-o
1 -e -pA

3.3.2: Xo has an unknown distribution, E II No II 2 < .
Consistent with

(yA)),E(x u,I S j ) t
let us introduce the filtering estimate

Ox E(x yj, 1 j k, Xo).
Note that V > E(xk- )(xk- )T k > 1. On the other hand since the condi-

k
tional distribution for x given X0 is Gaussian with nonsingular covariance, the
conditional (given X0) Fisher information matrix fill0 of x is well defined and non-

singular. Applying the same arguments used to prove Lemma 2.1, it can be shown
that

E(xk_ )(Xk_ : )T , 1,

-A -1where P is defined by the recursion given in (2.8) subject to gtl 1[0"
Therefore,kwe have V P. Now, applying the same arguments used in the proof
of (3.3), we obtain

lim tE(Xt- t(YA))(Xt- t(YA))T >
A0

where limt and t is a solution of the Riccati equation from (2.2) subject
to P0- ff]" Under the assumption made previously, P. Thus

lim t%E(X t(YA))(Xt- t(YA)) > P (3.23)
&O

Analogously, we find
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lim lim E(X --’t(YA))(Xt t(YA))T P.
A-O t--,o

4. Concluding Remarks

The proof of Theorem 3.1 uses extensively the bounded property of the limiter G and
the stability assumption that eigenvalues of the matrix a have negative real parts.
Neither can be weakened: with an unbounded limiter and an unstable model, the
computer simulation with a reasonable small A exhibits catastrophic failure of the
signal tracking (see Figure 2).

Typical signal loss: signal vs. estimate
300

25O

200

150

O0

5O

0 1=0 150 5 20 25 30
time in seconds

Figure 2. An unstable signal model and the observation signal noise with
the following simulation settings: scalar observation noise

n- (cOn + P(1-On) where na and n are independent i.i.d, zero mean
Gaussian sequences with var(n) -0.1 and var(2n)- 10, and On a binary
i.i.d, sequence with P{On 1} 0.95. The signal is an unstable scalar
diffusion with drift coefficient a 0.05. The estimate was generated for the
signal sampled at A 10 msec. The signal loss occurs at 15 sec.

Similar phenomena occur on long time intervals even for stable signals when the filter
uses an unbounded limiter. Tracking failures occasionally occur even if our assump-
tions are satisfied, i.e., the limiter is bounded and the signal is stable. However, these
failures are localized (see Figure 3) and the averaged performance is close to the opti-
mal.
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40

2O

300

Filtering of the stable signal

350 400 450 500 550 600
time in seconds

Figure 3. A stable signal model (with drift coefficient a -0.01) and ob-
servation noise with Cauchy distribution. In this case the limiter is
bounded. With the sampling step A as in Figure 2, local tracking failures
still occur (as can be seen at t ,, 350 sec), but they do not affect drastically
the overall performance: empirical mean square error is still close to the
theoretical lower bound.

The requirement of bounded limiter may turn out to be too rstrictive for certain
noise models (e.g., if Pi is a denmty of Gaussmn mxture, then N s unbounded). In
such cases, it makes sense to approximate G by some bounded functmn G, whmh
gives an asymptotically &optimal filtering estimate t(YZX’).
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