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1. Introduction

Consider the infinite horizon filtering problem for a continuous time signal (X,), s
observed only at time points ¢, k = 0,1,... where ¢, —t,, _; = A. Suppose the signal
is distorted by a linear transformation AX, ) and corrupted by white noise propor-

tional to —— , that is yf = Ath . +%€k' For convenience, we introduce a con-
A - A

tinuous time process

yA_ 0 t=0,
A
Yoo tp_1 St<tpk>1,

where Yﬁc = Y%C ) + y?A with similar signal information as (ykA)k >1

Both (X,) and (Y?) are assumed to be vector processes of sizes n and ¢ respective-
ly. The signal is a homogeneous diffusion process with respect to the vector Wiener
process (W,), > o with independent components. The initial condition X is the ran-
dom vector with E || X, || 2 < co. Then the filtering model

dX, = aX,dt + bdW, (1.1)
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Yfk—ygc_l :Axtk_lAJrgk\/K, (1.2)
where matrices A, a and b are known may be analyzed as follows. The noise ({;)x > ¢
forms an i.i.d. sequence of random vectors independent of (W,),~ o and X,. Com-
ponents of the vector &; are independent random variables and their distributions
obey densities so that the Fisher information of each component of &, is well defined
and positive. The assumptions made about the distribution of ¢; imply that the
Fisher information matrix 7" of £, is scalar and nonsingular.

If E|| & ])% < oo, the Kalman filter with continuous time signal and discrete time
observation, that is being adapted to the setting, might be used as an optimal linear
filter in the mean square sense. If E|| &, ||? is infinite or even if E|| & || % is finite
but too large, the Kalman filter becomes useless though the optimal filtering estimate

T (Y2) = E(X, | Y%, te<1)

would probably be reasonable from an applied view of filtering quality. Such situa-
tions, where E || £, || 2 is large because of “heavy tails” of the distributions of &, com-
ponents are typical in engineering practice.

An essential role in the verification of a nonlinear filter quality is to be the lower
bound for the mean square filtering errors matrix

VA= E(X, - m,(Y)(X, -, (YA)T

where T is the transpose operator.

The lower bound for VtA is found by a method borrowed from Bobrovsky and
Zakai [2,3], Bobrovsky, Zakai, and Zeitouni [4], Bobrovsky, Mayer-Wolf, and Zeitouni
[6]. Under the assumption that the Fisher information matrix 9°; of the random
vector X, exists, we show that

Ve PR 620 (1.3)

in the sense that VtA - PtA is a nonnegative definite matrix. Here, PtA is the filtering
mean square error matrix for Gaussian filtering model

dX, = aX,dt + bdW,

ch B Yﬁc—l =AXy AT RETAVIN
subject to Y@:O, X, is the Gaussian vector with E’XO:EXO, the covariance
matrix is equal to T3 (T4 is the Moore-Penrose pseudoinverse matrix [1]) and
(§k)k >1 1s an ii.d. sequence of zero mean Gaussian vectors with unit covariance
matrices.

In general, this lower bound might be unattainable. However, in this paper we
show that it can be closely approached if the parameter A is small enough. More-
over, we use this fact to construct a nearly optimal filtering estimate by applying a
Kalman type filter to a nonlinearly preprocessed observation. The use of a prelimin-
ary nonlinear transformation (limiter), to improve filtering accuracy is well known
from Kushner [8], Kushner and Runggaldier [9], Liptser and Lototsky [10], Liptser
and Runggaldier [12], Liptser and Zeitouni [14], and Liptser and Muzhikanov [11]. In
[11] and [14], the choice of an appropriate limiter depends on the diffusion
approximation of the observation process so that the drift and the diffusion
parameters in the associated diffusion limit determine the signal to noise ratio, and
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thus, the filtering quality. Moreover, the filter with the limiter which gives the
largest signal to noise ration (for the limit model) turns out to be optimal in the
mean square sense, as A—0 for any finite interval. This is readily verified by
applying Goggin’s approximation [7] for the conditional expectation.

In this paper, we consider the filtering problem on the infinite time interval
(infinite horizon) in the situations when Goggin’s approach can not be effectively
extended for the analysis of lim,_, lim,_,  asymptotic. Our approach exploits the
lower bound from (1.3) and conditions under which

lim llmP =P, (1.4)
A—0 t—oo
where P is a positive definite matrix. We show that the estimate ?r't(YA), generated
by the Kalman filter with limiter, satisfies the asymptotic optimal property

Jim lim E(X, —F(YAN(X, -7, (YA)T = P. (1.5)

This paper is organized as follows. In Section 2, we make a revision of the finite

horizon case and show that the filter, with the relevant limiter, guarantees the
asymptotic optimal property in the sense that

lim VtA = hm PtA, vVt > 0.

A—0

In Section 3, the main infinite horizon result is presented. Several practical aspects
are discussed and demonstrated with computer simulations in Section 4.

2. Preliminaries
2.1 A Diffusion Approximation and the Filter

As in [11], to keep the heredity of property of asymptotic optimality for a wider
range of sampling intervals A, the limiter is applied to the innovation difference.
The limiter is chosen to be a column vector-function G with components

G,(z)= b E ;, i =1,...,¢, where p,(z) is the distribution density of the ith compo-
nent of ;. To incorporate the limiter into the filtering algorithm, Yt is transformed
into
AN [t/ZA VAT -1 Yﬁc‘yﬁc L ATy 1(YA)A
Yi= TG = = . (2.1)
k=1 VA

Here, [z] stands for the integer part of z, ?r't(YA) is a random process defined by the
linear equation

A%, (Y2) = aR,(Y2)dt + P,ATTdY2, %, = EX,, (2.2)
and P, is a solution of the Riccati equation
P,=aP,+ P,a" +bb" - P,ATTAP,, (2.3)

subject to Py = cov(X, X;) in which the Fisher information I is a scalar matrix
with diagonal elements
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(pgh((i)ydz, =1,...,L

The process 7rt(Y ) is suggested as the nonlinear ﬁlterlng estimate for the s1gnal X

given {Y ,0<s<t}. It should be noted that Y YAk . ANtk (YA is

regarded as “innovation difference” and the proposed ﬁlter can be seen as a Kalman
filter with a limiter which is applied to the innovation process (see the block diagram
on Figure 1).

¥

Ya VB AT

V4

Figure 1. Block diagram of the proposed filter.

The choice of such a nonlinear filter is warranted by the diffusion approximation
arguments given below. We fix the following assumptions
G,(z) is continuously differentiable
BIGY(E] < o0
EG{(£;) < oo

|G(z)| <C(+ |2]), for some C > 0, (2.4)

and extend the proof of Theorem 2.1 from [11] to the vector case. As in [11], we have
la

(Xt’yt v”t(YA)) — (Xt,Yt’”t(Y ); (2:5)

where ?’0 =0, %, = EX, and

dX, = aX,dt + bdW,
N N (2.6)
d¥, = A(X,—-7,¥))dt + T~/ av,

with Wiener process (V,), s ¢ independent of (X,), 5 o and
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d% (Y), = a¥ (Y ),dt + P,ATTdY,. (2.7)
Despite the trajectories of the prelimit triple (xt,?f,%t(YA)) which belong to
1(:?0 oo)X[D[ZO oo)XDFO o)’ the trajectories of the limit (Xt,?t,?r’t(?)) belong to
C[O o) XC[O oo)xC[O o0)» SO that “;—VZE’” holds in the local supremum topology with
the metric

pu',u'’) = 2—212 m{1 /\sup h(D)}, v u” € Cffy oy [D[O 00) X DIt oo

where u' = (z},y},2}), v’ = (:ct,yt,zt) and
n n
b= 3 1) -l + 3 =) | + 32 1) — ) .
1=1 i=1 1i=1
Consider now the filtering problem for the limit pair (X,,Y,) (see (2.6)) in which
X, is treated as the signal and Y as the observation. Clearly, the optimal, in the
mean square sense, linear filtering estlmate is generated by the Kalman filter given by

equations (2.7) and (2.3). Note also that the nonllnear filter proposed in (2.2) is
nothing but this Kalman filter with Y replaced by Y

2.2 A Lower Bound Over a Finite Horizon
Let us introduce the essential notation. Set
z, =X, , and yk:Y —-ya
g b1

T = E(z|y; 1 <j<k)

Vﬁc = E(z) — & )(2), — T))"

tg
z), = e“Azzzk_ 1+ / <k _s)deS
tk—1
A
PA = e“AP%c leaTA + / e“sbbTe“Tsds
0
—e®0PE  ANT 14 APR  ATA)TUAPE Ak 1
k— k-1 k-1
PS =5, (2.8)
Lemma 2.1: Assume
- n—1 FR
Ppy=( b @ ... a b)nx(n ) (FR)

C[O o)’ ID[O o) are the spaces of continuous and right continuous (having limits

to the left) vector-functions of size r.
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where the block-matriz has the full rank.
Then, for every k>0
V@c > Pﬁc )

Proof: Under (FR), for every t > 0 the distribution of X, obeys a density (e.g., see
the proof of Lemma 16.3 in [13]). Hence, the joint distribution of ¢ = (zy,... z;)
has a density as well. For convenience, introduce the vector 8, = (y,...,y;). The
signal and noise independence guarantees the existence of a smooth and strictly
positive distribution density p(u,v) for ({x,0;). Set

flu)= / p(u,v)dv (density of (})
Rk

g(v) = / p(u,v)du (density of 6;)
Rkn

p(u,v) . . ,
q(ulv) = o) (conditional density of ¢, given 6;)

_ p(w)
r(v|u) = )

and denote by V  g(u|v) the row gradient vector with respect to u. Let us define a
nonnegative definite matrix

_ Vaa(uv) V yo(u ] v)
I = /R g / o(v)dudy. (2.10)
R n

(conditional density of 6, given (}) (2.9)

q(u|v)

We show that the mean square error for the estimate Zk = E(C; | 0;) of (4 given 8, is
bounded below (a version of the Rao-Crammer inequality):

E(C,— o)k —Co)" > I, (2.11)
where [ k+ is the Moore-Penrose pseudoinverse matrix for I;. The inequality (2.11)
becomes an equality if ((y,60;) is Gaussian pair.

Integrating by parts we find kanuTqu(ulv)du: —1I, where I is the unit
matrix of relevant size, so that

1= [ [ @-G0)TY g vgoduds

- { e { (0= GV ot 02, v)duc (2.12)
RER™
2(y u,v v
Since p‘g(i, l)p(u,v) = qg((u | 3) = qiqu( I)v)’ we have

Ik:/ /qu(u|v)vuq(u|v)
RkﬂRkn

(v
‘Z(i, 2))p(u, v)dudv.

p
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Now, the matrix Cauchy-Schwarz inequality, applied to the right side of (2.12), gives

( | [ -Gy Tate L) )q<u1v>g(v>dudv)

Rké Rkn

x I / / (u—(k(v o (l |) )q(u | v)g(v)dudv
RkéRkn

< [ [ -GG puv)dude,
RkﬂRkn

Thus, (2.11) is implied by (2.12).
We now use another representatlon for I} (comparable to (2.10)). To this end,

introduce the operator V , that is, for every smooth scalar function hA(u) with rector
argument u € RF™,

matrix

2 _ .
V oh(u) =| with elements |

*h(u)
3u,-3uj

The direct verification shows kangknP(“’U) V 2log p(u,v)dudv = — I, that,
taking into account p(u,v) =r(v|u)f(u) (see (2.9)), leads

_ / f(u)( / r(v|u)v§10gr(v|u)dv)du

{Rk" Rké

- / f(u) V 2log f(u)du
Rk"

[ pf [T, ),

Rkn Rké
+/ f(;zuv) oW, (2.13)
Rkn

Since r(v | u) is the conditional distribution density of 6, given (;( = u), the matrix

[rof [T

can be explicitly expressed in terms of matrices A and ¥, or more exactly, as a block
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diagonal matrix with blocks ATTA. The detailed computation is omitted here
whereas the rest of the proof does not relay on a specific structure of this matrix.

Consistent with (¢ x0p), consider an auxiliary Gaussian pair (( k’ak) where Bk =
(yk’ ,yl) and Ck - (mka )171) with

t.
J
t.—
=B, + / ™ haw
ti_q
V=A%, _ A+ TN, (2.14)

where (E i); >1 is a . sequence ii.d. zero mean Gaussian vectors with i.i.d. elements of
unit variance and %, is a Gaussian random vector with E%; = EX0 and covariance
matrix 9", Denoted by ¥ (v | u) the conditional density of 6 given (;( = u) and by
f (u) the distribution density of C k- Using the fact that under a Gaussian
distribution, the covariance matrix coincides with the pseudoinverse of the Fisher

information, we get
T
[ s [THCDT IO,

r(v]u)
Rkn Rke
~ v Iy v r
= [T [ [Tl L1, by
Rkn Rké

and hence, with {; = E(Zk |5k), we have E(C, —()(¢x — €)= I;F. Thus, the above
equality and (2.11) imply

E(Cp—Co)(Ce—Co)T > E(Cr = Co) (e — Co)™ (2.15)

It is clear that the matrix VA is the sub-block of E((; —¢ k)(C k=S k) located on the
left upper corner. Denote the same sub-block of E({; — ¢ (€ b~ C K’ by PA. Recall
that the Gaus51an pair (C K Gk) is generated by the recursion (2.14), so kthat the
matrix P glves the mean square filtering error and is defined by the recursion given
in (2.8) as ka part of the Kalman filter corresponding to model (2.14).

The property given in (2.15) is nothing but the statement of the lemma for k > 1
(for k£ = 0 the proof uses the same type arguments and is omitted). |

2.3 An Asymptotic Optimal Property Over a Finite Horizon
X, is Gaussian vector, so P = ﬂ”d" . By virtue of (2.5) we have
law
(X, = F (YA)(X, = F (V) T (X, - F (V)X —F,(V )" (2.16)

Moreover, under (2.4) and (FR), for every ¢t > 0 the trace of the matrix on the left
side of (2.16) is uniformly integrable for A > 0. Therefore

Jim E(X, = %,(Y)(X, = F,(Y*)" = BX, - %)X, -7,F )" (217
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We now show that with P, the solution of (2.3)

E(X, -7 V)X, -%(Y) =P, Vt>0. (2.18)
To this end, introduce )?t = E(X,| ’}V’s, s<t) and T,=E(X,—- X't)(Xt - }?t)T.
Taking into accounting (2.6) and applying the conditionally Gaussian filter (see Ch.
11 in [13]) we find X = EX and Ty = P, and

dX, =aX,dt +T,A"T(dY, - A(X, - F,(V))dt)
I, =al,+T,a" +bbT —T,ATTAT,.
Hence, for 6, = )?t —%t(f’), we have 6, =0 and dé, = (a—T,ATTA)dt. That is
6,=0. Since P, =T, (2.18) holds.
Let us show also that

Jim E(X, =7, (Y2) (X, =1 (Y2)T = Py (2.19)

Since 7rt(YA) is the optimal filtering estimate, we have the inequality
E(X,—m(Y)(X, - m(Y2)" < B(X, - F(Y2)(X, - F(Y)"

and thus, by virtue of (2.17) and (2.18), to verify (2.19), it remains to show only that
for every t > 0

g_E)E(Xt - 7rt(YA))(Xt - Wt(YA))T 2 Py (2.20)

For fixed ¢ > 0, let k be an integer such that ¢, <t <, , ;. Then for such ¢,

t
Xt _ ea(t —tk)th + / ea(s— s)des
ik

m(¥2) = "W, (v2)
and, therefore, k
¢

X, —m (Y8 =" ‘k)(th —m (Y2) + / ¢t~ paw . (2.21)
tk
E(X,- "t(YA))(Xt - 7"t(YA))T

Consequently,

t
:ea(t_tk)V%ceaT(t_tk)-l- / ea(t_s)bbTeaT(t_s)dS.
tk

By Lemma 2.1, we have kaZPéC and with PtA = Pﬁc for ¢ <t <ty 4, the in-
equality A A
E(X,—m,(Y2) (X, —m,(Y7)"

t
T
>t pas (ot / (= )ppTea (= 2) g (2.22)
t
k

holds. Now, the proof of (2.20) is reduced to verifying
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iingPf =P, (2.23)

Proof of (2.23): The matrix P@C , the filtering error of X £ is upper bounded by
the matrix Qt :cov(Xt v X, ) with PA <Qt That is, for every fixed ¢t >0,

Supys o, I P4 Y || 1s bounded by a constant 1ndependent of A; in partlcular,
sup, < I P o P% || inherits the same property.  Setting U2 = P P2, we show
that for every t> 0

. A
Z131_1_1’10 U =0. (2.24)
From (2.3), it follows .
k
T - Ty, —
Pt :eaAPt e A+/ ea(tk s)bbTea (tk s)ds
k k-1
tk—1
t
k
= -/ ea(tk—s)P A“ZI'ATPSeaT(tk_s)ds
S
te—1
A
= e"APth 1eaTA+ / e“sbbTe“Tsds
4]

_eaAP

T ata '
tk—lA GJ’APtk_le A+rtk_1(A), (2.25)

where r’tk l(A) is the residual matrix with ||r’tk 1(A) || < o(A). On the other
hand, taking into account

_ _aApA Tior —1 A TAV—14 pA ata
PSPy ANT T4 APY  ATA)TUAPL 0 8A
_ApA  4TqapA  dTA "
e Ptk—lA fl'APtk_le A+r‘k—1(A)

with residual matrix ry  (A) with |[ry (A)] xo(A), by virtue of (2.8), we
have k-1 k-1
A

T T
PA — eaAPtAk lea A+ / easbbTea sds
0

—e®BPA  ANT 14 APY  ATA)TUAPE A
k— k-1 k-1
A

T T

aAPil &% A+/ easbbTea 5ds
k-1

0

_ aApA T A e Ta "
e Ptk—lA GIAPtk £ A—i—r 1(A), (2.26)
where || r’” (A) || o< o(A) as well. Therefore (2.25) and (2.26) imply

T T
UA = WAUD A _aBUS  ATTAP, 0 AA
k-1 k-1 k-1
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al pA T A atA
— P T .
e tk~1A AUtk_le A+rtk_1(A) (2.27)

with || Tt 1(A) || o< o(A) (for fixed ¢ > 0 and t; < t, o(A) depends on t only).

Hence, there is a positive constant C' > 0 such that for every ¢, <t we have
IUE I < UG I1(1+CA)+o(A).

This recursion and || US || = 0 imply
(t/A] . o(A)
U Nl <o(A)Y (14 CAY ~! < te!O==20, A0,
i=1
Thus (2.24) holds. ]

3. The Infinite Horizon Case
3.1 Formulation of the Main Result

An essential role in establishing the asymptotic optimal property for the filtering
estimate 'ﬁt(YA) over the infinite time interval is played by the relation

lim  lim P2 =lim P, = P (3.1)
A—0 t—o0 t—oo

with positive definite matrix P which is the unique solution (in the class of nonnega-

tive definite matrices) of the algebraic Riccati equation

aP + PaT 4+ bbT — PATT AP = 0. (3.2)

To clarify a role of the matrix P, we mention here that the optimal filtering estimate
7,(Y2) obeys a lower bound (Lemma 3.2)
lim lim E(X, - ""t(YA))(Xt - ”t(YA))T 2P (33)
A—0 t—oo
while the filtering estimate ?r't(YA) given in (2.2) obeys the asymptotically optimal
property A A
Jim  Jim B(X, (Y )(X, - %Y ) = P. (3.4)

It is known (see [13], Theorem 16.2) that at least the second part of (3.1) is provid-
ed by (FR) (see Lemma 2.1) and

A

Aa
is the matrix of full rank. (FR')

Aan—l
(£-n)xn

In this setting, for the verification of the first part of (3.1), and especially (3.4),
another (FR') condition is required. Even if (FR') holds, we assume that eigenvalues
of the matrix a have negative real parts (see (INF.3) in Theorem 3.1). It can be
proved that under (FR) and (INF.3) the second equality in (3.1) holds with the posi-
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tive definite matrix P.

It is natural when filtering over a long time interval to replace P, in the equation

for 7rt(YA) (see (2.2)), by its limit P, that is, to use the modified version of (2.2)
d%,(Y2) = a¥ (Y2)dt + PATTdY 2. (3.5)

Moreover, the exact knowledge of the initial condition %O(YA) is not essential, since
it is forgotten by the filter dynamics. It is well known from Makowski [15],
Makowski and Sowers [16], Ocone and Pardoux [17] (see also Budhiraja and Kushner
[6]) that, under (FR) and (FR’), the Kalman filter is asymptotically optimal (among
nonlinear filters) over the infinite time interval even if the first and second moments
of an inappropriate distribution for X, are used as the initial conditions for the filter.
We establish the same property for %,(Y2) defined in (3.5).

Theorem 3.1: Assume (FR) and

(INF.1) G, is twice continuous differentiable; G, G, G ’s are bounded.

(INF.2) X, is an arbitrary distributed vector with E || X, || ? < co.

(INF.3) Eigenvalues of the matriz a have negative real parts.

Then (3.3) is valid and (3.4) holds for %’t(YA) defined in (3.5) under any fized ini-
tial condition.

3.2 Auxiliary Lemmas

It can be shown that not only under (FR) and (FR’) but also under (FR) and
(INF.3),tlirgoPt = P exists. Let us denote PkA = Pi. Then (2.8) may be rewritten as

A
T T
Pé:e“APﬁ_ e A+/ e*bbTe? *ds
0
T
—eBBPL_ATT T 4 APY_ATA)TTAPD &% AA.
Taking into account the eigenvalues of the matrix e*® have absolute values strictly

less than 1 and the matrix geasbbTeaTSds is positive definite, one can modify the
proof of Theorem 14.3 from [13] to show that under (FR) and (INF.3)

lim P4 = pA (3.6)
with ko0
A
pA _ adpaaTa / 35ppTea 5 s
0
_eaBPAAT(T =1 4 APAATA) - 1APA AA. (3.7)

Lemma 3.1: Under (FR), (INF.3), limy_,P® = P.
Proof: By defining the following matrices,

r'(A) = aP® 4+ PAqT - %(e“APAeaTA - PA)

A
(A = / L(b™ - cobTes"%)ds
0
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r(A) = P APAA(T 1 4 APAATA) TIATPA A pA AT ATPA
r(A) = r'(A) +r"(A) + r"(A),
(3.7) can be rewritten as
aP? + PAaT 4 56T — PAAT ATPA = r(A). (3.8)

Under assumptions made previously, the norm of the matrix P? is bounded from
above by a positive constant independent of A. Hence ||7(A || o« O(A). Therefore,

Aimo(aPA + P2aT 4+ 00T — PAATATPA) = 0.

Since matrices PA, A >0 are bounded, any infinite sequence (A,); >1 decreasing to

zero contains subsequences (A). ., such that the limit lim, PA’ = P’ exists.
Then P’ is a solution of (3.2) and thus P’ = P. (Recall that (3 2) has the unique
solution in the class of nonnegative definite matrices.) This fact allows us to
conclude the existence of the limit lim A_)OPA =P. 0
Lemma 3.2: Under (FR) and (INF.3), (3.3) holds.
Proof: By virtue of (2.21), we have

lim  Jim E(X, = m,(Y)(X, = (V)"

=lim lim E(X, - YANX, -, (YT,
Jfim - lim E( e, (YO , £, (Y™))

while by Lemma 2.1, E(X, - wtk(YA))(Xtt - wtk(YA))T > PtAk :
k
Hence the desired result is implied by (3.6) and Lemma 3.1. 0
Lemma 3.3: Under (FR) and (INF.3), eigenvalues of the matrizc a— PATT A

have negative real parts.
Proof: Set K = a— PATT A and rewrite (3.2) as

KP+ PKT +bb" + PATTAP = 0. (3.9)

Let (") be the right eigenvector of KT (the left eigenvector of K) with eigenvalue
A. (Re(X) is the real part of A.) Multiplying (3.9) from the right by ¢ and from the
left by ¢T, we obtain

2Re(N)p T Pp + o (b + PATTAP)p = 0.
Because P is positive definite and 5T + PATT AP is nonnegative definite, then
Re(A) <0. Assume Re(A)=0. Then 9" PATTAPyp =0, so <,0TPAT‘:'1’1/2 =0 and, in
turn, TPATT =0 and ¢TPATTA =0 (or ATTAPp =0). Then
Mo =K"= (a"— ATTAP)p = a’yp,

i.e., o is the right eigenvector of the matrix aT so the eigenvalue of a® has a zero real
part. The latter contradicts the assumption Re(A) = 0. Consequently, Re(A) < 0. 0O

3.3 Proof of Theorem 3.1

The proof is divided into two parts.
3.3.1: X, is a Gaussian vector with known expectation and covariance.



106 P. CHIGANSKY, R. LIPTSER, and B.Z. BOBROVSKY

Set u® = X, —F,(Y2). It suffices to verify

1111’10 1L1130Eu€c(uﬁc)T =P.
From (1.1) and (2.2) with P, replaced by P, it follows
t t t
ud = ub + / auds + / bdW , — / PATT4YA
0 0 0
and, in turn, for every t; we find
tk
uf =ebud 4 / Uk~ Dpaw PAT(YE -V8 ).
tk—1
Due to (2.1)
Sa _ A 1 Yﬁc_ ﬁc 1 A%tk 1(YA)A
(Ytk—Ytk_l)z\/KGf G \/K
= VAT ~1G(&, + Aufk _1\/Z)
G160 + (4ufy,_)DV/A)
= \/Z"T -1
[ [
Gy(&) O+ (4up_)OVA)
In addition, since G, is twice continuously differentiable, we have
Gl +(Auf IV = (6" +Gi(E)D) - (A, )IVA
(Auf) 1)(’)\/Z
* / / Gy (&)™ + #)dz'dz,
0 0
For convenience, denote by (Auf )(1)\/Z 1
Jo -t st"«sk)‘ )+ 2)dz'dz
] _ Ter — 1
[o - SG“«ek)( )+ 2)dz'dz
G1((6)™)
G(fk) = :

Gy((e®)

(3.10)

(3.11)
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G(&,) = diag(G1(60) V) Gy(e)® ... e ®) (3.12)

where diag(x) designates a scalar matrix with * as the diagonal. Then (3.11) may be
rewritten as
utAk = (e2” — PATG'(g,C)AA)ugc
'k
n / T pdw — PATG(E)V/A — i (A) (3.13)

te 1

-1

where 7} (A) is the residual matrix with norm
I7(A) || oc O(A2). (3.14)
Set Tﬁc = E'uﬁc(uﬁc T and note that (3.13) implies

5 = E{(eaA - PATG(E)ANTE (¢4 - PATG’(él)AA)T}
A
+ / ®bbTed Sds + PATE{G(&)G"(&)}APA
0

~ Eug, (ri(8))7} - E{riA)(up)"}- (3.15)
A few additional computations are now required. Write

E{(eaA— PATG'(§)AM)Y] (" - PATG’(fl)AA)T}

T
=oAYD @A (SATR  ATEGU(E)AP + PATEG/(E)ATS, _ ot M)A+ ri(A),

where r(A) = E{PATG’(Q)AT%C 1(PtkATG’(51)A)T}Az. Assumptions (INF.1)
and (INF.3) imply that Tfk ’s are bounded. Therefore,

| P (A) || o« A (3.16)

Note that EG;(ggi)) = - fR<p’:E:;)d = fIR p'(w))) =9,;. Therefore, EG'(§,) =T
and thus Pi

E{(e“A — PATG(E)ANTE (¢4 - PATG'(gl)AA)T}
=t BYE A (AR ATTAP 4 PATTATY e M)A+,

Since EG(&,)GT(&) =9, we have PATE{G(ﬁl)GT(El)}APA PATTAPA. With
the residual matrix r”’(A) —E{ut (ri(A)T} = E{r (A )(“t )T} with norm

| 7(A) || < O(A3/?), (3.17)



108 P. CHIGANSKY, R. LIPTSER, and B.Z. BOBROVSKY

and, by virtue of (3.16) and by (INF.1) and (INF.3), we find
A = (el e“TA—(e“Avr@c ATTAP 4+ PATTATE le“TA)A
A
T
+ / e®bbTe? *ds + PATTAPA
0
+rp(A) +ri'(A). (3.18)
To simplify notations define the matrix r;(A): = ri(A) 4+ r{’(A) with norm
Ir(A) | o O(a%2), (3.19)
Then, (3.18) may be rewritten in the form
TA = (AR aTA_(abYA TG AP L pATTATE o A)A
k k-1 k-1 k-1
A

n / €3%bbTe® *ds + PATT APA + 1, (A). (3.20)
0

Further, we use r;(A) for designating a generic residual matrix with the norm of type
(3.19). Taking this into account, the right side of (3.20) can be transformed again so
that

YA = fa—PATTA)ApA  (a—PATTA)TA
tk te—1
A T T T
+/ (la—PA ?fA)s(bbT+PAT€rAP)e(a-PA T A) Sds + 14(A). (3.21)
0

Now, the equivalent presentation of (3.2) is used which yields
(a— PATTA)P + P(a— PATTA)T 460" + PATT AP = 0.
The solution of the differential equation
T, = (a— PATTA)Y, + T, (a — PATTA)T + bbT + PATT AP

subject to Ty = P is P. In particular, for every k, Ttk = P. On the other hand, for
every k T T T
Ttk — (la—PA ?fA)ATtk . 1e(a - PATT A)A
A
+ / ola=PATT)s(yr | p 4T g p)ela—PATTA) sy

0
Hence, Uﬁc = TtAk - Ttk is defined as: U€ = Py,— P and

Uﬁc = ola- PAT‘IA)AUA

T T
tk-le(a—PA T A) A+rk(A).



A Simple Asymptotically Optimal Filter Over An Infinite Horizon 109

Let integer k' be fixed and k > k'. Then
T I T T I
Uﬁ — la—PA TA)A(k -k )Uixkle(a—PA TAY Ak - &)
k T - Tep 42T /
n Z Jla—PA T A)A(k — 5 _1)rk(A)e(a - PATT A Ak -k ).
i=k

(3.22)

Taking Lemma 3.3 into account, let us denote — p (u > 0) the maximal real part
among all real parts of eigenvalues of the matrix a— PATTA. Then (recall
a—PAT™T A is an (nxn)-matrix) there is a positive constant ¢ such that for every
integer ¢ > 0

el PATTN2 Y < (14 (ag)n 1) 1o

Therefore, due to UkA__ 1 being bounded, there is a positive constant C' such that
, k—-k'-1 )
U Il s Cle™ AR a32 0 37 o mnasy
3=0

- - 3/2
<C{e ua(k k) 1A_“A}

Hence, lim, _, || UA || < C—~A——/——~—->0 A—0.

3.3.2: X, has an unknown dzstmbutzon, E| X,|? < co.
Consistent with

o= Eegly; 1 <5 <k) (=, (YD),
let us introduce the filtering estimate
zy = E(zy | vl <j<k Xg)
Note that VtAk > E(z;, — 2 )z — 2 )T, k > 1. On the other hand, since the condi-
tional distribution for x; given X, is Gaussian with nonsingular covariance, the

conditional (given X)) Fisher information matrix T, , of z; is well defined and non-

singular. Applying the same arguments used to prove Lemma 2.1, it can be shown
that

E(z,— 70 )z, —20)" > PtA, k> 1,

where PA is defined by the recursion given in (2.8) subject to Pt _G.l'_ll

Therefore, we have VA PA. Now, applying the same arguments used in'the proof
of (3.3), we obtain

hm ]_inOE(Xt = (YA)(X, -7 (Y2)" > P,

A—0

where P = hmt P; and P, is a solution of the Riccati equation from (2.2) subject

to P0 = "Tl o Under the assumptlon made previously, P = P. Thus
A
Jim - Jim E(X, ~ T (YO))(X, -7 (Y)Y > P (3.23)

Analogously, we find
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lim  lim E(X, - %,(Y2)(X, - %,(Y2))T = P. u)

A—0 t—o0

4. Concluding Remarks

The proof of Theorem 3.1 uses extensively the bounded property of the limiter G and
the stability assumption that eigenvalues of the matrix a have negative real parts.
Neither can be weakened: with an unbounded limiter and an unstable model, the
computer simulation with a reasonable small A exhibits catastrophic failure of the
signal tracking (see Figure 2).

Typical signal loss: signal vs. estimate
300 T T T T T

250 .

200 - -

amplitude
@
S
T
1

100 B

50 B

0 1 1 1 1 |
0 5 10 15 20 25 30
time in seconds

Figure 2. An unstable signal model and the observation signal noise with
the followin; simulation  settings: scalar  observation noise
£, =620, +¢EP(1—9,), where €& and &) are independent i.i.d. zero mean
Gaussian sequences with var(¢;) = 0.1 and var({i) =10, and 6§, a binary
iid. sequence with P{f_ =1} =0.95. The signal is an unstable scalar
diffusion with drift coefficient a = 0.05. The estimate was generated for the
signal sampled at A = 10 msec. The signal loss occurs at = 15 sec.

Similar phenomena occur on long time intervals even for stable signals when the filter
uses an unbounded limiter. Tracking failures occasionally occur even if our assump-
tions are satisfied, i.e., the limiter is bounded and the signal is stable. However, these

failures are localized (see Figure 3) and the averaged performance is close to the opti-
mal.
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Filtering of the stable signal

T T T T T T T

amplitude

1 L 1 1 1 1 1
300 350 400 450 500 550 600
time in seconds

Figure 3. A stable signal model (with drift coefficient a = — 0.01) and ob-
servation noise with Cauchy distribution. In this case the limiter is
bounded. With the sampling step A as in Figure 2, local tracking failures
still occur (as can be seen at t &~ 350 sec), but they do not affect drastically
the overall performance: empirical mean square error is still close to the
theoretical lower bound.

The requirement of bounded limiter may turn out to be too restrictive for certaln
P,
noise models (e.g., if p; is a density of Gaussian mixture, then p— is unbounded)
such cases, it makes sense to approximate G; by some bounded ' function G whlch
gives an asymptotically é-optimal filtering estlmate ﬂ't(YA 6)
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