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1. Statement of the Problem

Let

with

k

p(k, n) / q(t)dt, k 1, 2,..., n,

k-1

1

q(t)dt- 1

o

(1)

(2)
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where
q(t) O/(t)t/-

_
O, /(0) 1, > O, 0 < 7 <_ 1

and the function ](t)is continuous on the interval [0, 1].
The problem on asymptotic of the value

(3)

r(rn, n) m!crm(P(1, n), p(2, n),..., p(n, n))

is considered, where rrn(Xl,X2,...,Xn) is the rnth elementary symmetric function of n

variables. This problem arises in particular in the analysis of the distribution of
transient time and other combinatorial characteristics in random nonequiprobable
graphs [7] whose distributions have proved essential to the analysis of discretizations
of dynamic systems with quasi-chaotic behavior. See [3, 6] and references therein.

Theorem 1: The following relations are valid for n-o

T(rrt, n)--e --( f q2(t)dt)x2
as m-----x, 1/2 ’ < 1; (4)

122

(m,)e- x m 1/2s , 7 (5)
n(logn)- 1

1(, n)-Z(,) a,, o < - <where (7, z) is the entire analytic function defined by the infinite product

(6)

k_ (k_ l) I _k"/- (k-1)"/ }7 ze
z

(7)

the following representationand for the values xl <ForO<7<

is also valid.
Note a specification of the theorem above in the spirit of random mappings theory

[1]. Denote (n)= {1, 2, n} for a positive integer n. Let also the set (n) be
endowed with a probability measure #n, given by equalities #n,q(k)- p(k,n), where
the function q and the numbers p(k,n)

q
are as in (1). Consider now the random

mapping Fq, n defined by
n

Fp(F- f)- H p(f(k),n).
k=l

Generally speaking, this means that the "appeal" of a point n is proportional to its
weight p(k,n). If q- 1, then Fq, n is a completely random mapping. We emphasize
here that the completely random mapping is essentially a purely combinatorial
object. The theory of completely random mappings is quite well developed, using
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specifically combinatorial methods. See [1] and the bibliography therein.
For a mapping f:E(n)+E(n) and for an element k E E(n) we denote by Q(k,f)

the first recurrence time, that is Q(k,f)-min{i:fi(k)f’(k), for some j < i}.
Designate further by ((x, f) the scaled distribution function:

C(x, f) #{k: @(k, f) < xn"r}

where #S denotes the cardinality of the finite set S. The function Q is a random
function if f is considered as realization of the random mapping F. Thus, we can

consider the mathematical expectation Q.r,n(X). The theorem above implies the
following corollary immediately.

Corollary 1: The following relations are valid for
1(.y,n(X)--+2.(7, ox) as 0 < 7 < . (8)

Random mapping with similar asymptotic of weights of elements arises naturally,
for instance, in the analysis of discretizations of random mappings where the box
counting dimension of the invariant measure differs from its correlation dimension

To conclude this section we note that the equality (5) can be obtained also as a

corollary of Theorem 1 [2].

2. Proof

The proof of the theorem is based on the following two lemmas:
Lemma 1: Let f(z) and fn(z), n 1,2,..., be entire analytic functions of z e C

such that

fn(z)---,f(z) as n---+oo

uniformly with respect to z from any bounded circle z <_ R.
integer-valued function and z(n) be a real-valued one such that

Then
,(n)---+oo, ,(n)--+x as

Let #(n) be an

1 [ eu(n)z

j ztt(n) + lfn(Z)dz
(zJ(n))p(n)F(n) #(n)! .f(x)(1 + o(1)) as

Lemma 2: Let f(n, z) be the polynomial
n

f(n,z)- 1-I (1 / p(k,n)z). (9)
k=l

Then, uniformly with respect to z from any bounded circle zl <_ R the following
relations are valid

z
< _< 1;

122-c z
f(n, n(log n)lz)e Cn(lgn)-lz--e as n--+oo, 7 1/2;
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1f(n,nz)e n’z--,.L(7, az as n-oo, 0 < 7 < -ff

where .L(7, z is the entire analytic function defined by (7).
1 andProof of Theorem 1: Since the proof is identical for the case 0 < 7 < 1/2, 7 -1, 7 < 1 it will be presented only for the last case.

Remark that the value of m.Yr(m, n) by the Vite theorem coincides with the coeffi-
cient at the term zm in the Taylor expansion of the function f(n,z) defined by (9).
Then, by the theorem on residue of an analytic function

"z(m, rt)--m!2/ f!-2.Z)dzzm+l
and, after substitution z- w,

m 1 e fn(w)dw(m, n) )m 2i ;m +1

where
]w

From this and from Lemmas 1 and 2 the statement of Theorem 1 for the case
1 < 7 < 1 immediately follows. I-!

Although Lemma 1 is in line with statements from the theory of integral’s
asymptotic proven with the help of the saddle point method (see, e.g., [4, 5]), we

failed to find the appropriate reference to the exact formulation. Because of this and
for the sake of completeness of presentation, the full proof of Lemma 1 is given
below.

Proof of Lemma 1: By the theory on residue of an analytic function

1 j e"(") ((n))
27ri zU(n +------dz #(n)!
I1 =,

_,()Hence, choosing p u---(’ the value of F(n) may be repre-for any value of p > 0.
seated as

where

it(n)! f(x) + {(n), (10)

I,I

Estimate the value of
above integral. Then

tt(n)ZP(n) + l(fn(Z) f(x))dz.

()

_,(’)_iLet us make the substitution z ---(c in the

t(n)
ei(p(n) + )
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Now, using the Stirling’s formula

#(n)!-
V/2#(n)

we may write that

15( )1 <_

with an appropriate constant co where

(11)

r(n) I#2()/a’eP(n)(cs" I)[ fn\ ,(n ) f(x) [d.
In view of (10) and (11), it remains to show that

(n)-0 as n-.

This proof introduces auxiliary constants
2(1 cos )

X min
2and -’-< -< "

C1 sup sup fn(z)- f(x) (n) max
-1/2 (n))-1/4n>l I1 _< I,1 _<x (,

(12)

Clearly, X > 0, C1 < X:) and (n)0 as nc in view of uniform convergence of the
sequence {fn(Z)} to f(z)on any bounded circle. Hence

and, by substitution V/#(n)x- , we obtain that

de /l(rt)-- 12(r)+ I3(n)

where
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(p(n))1/4

ii(n 2x/l/ e

(p(n))1/4

#(,)
f, ,,(,) f() d,

(p(n))1/4

I2(n)
v/,(,),

f. u(n)e f(x) dg2,

By definition of the value c(n), we have

fn v,(nic f(x) _< c(n) for Ibl <_ (#(n))1/4

and thus

(p(n))l/4
1 / 2d (n)<v/- (n)Ii(n) . e

((n))1/4

At the same time, by definition of the constant Cl, we have

1 / de c (n)0 s n.Z(), Z(n) .
(,(n))1/4

(13)

(14)

From (13), (14) it follows (12) which completes the proof of the lemma. I-1
In the proof of Lemma 2, properties of the numbers p(k, n) play an important role.

Therefore, we establish these properties prior to proceeding to the proof of Lemma 2.
From the theorem on mean value of an integral it follows that

k’r- (k- 1) "r
p(k n) c/3(rk, k-l< <- k-1 2, n. (15)n ,y"Y rt Tk, n

Therefore,

where

p(k,n) c((-kn) + (k,n))k’r- (k- 1)"r
k-12, n

,yrt3’

k-1 k, _<t_<

(16)



Asymptotic Behavior of Elementary Symmetric Functions 243

and thus, in view of continuity of the function (t),

3(n)- max / (k,n)--0 as noc. (17)
l<k<n

From the continuity of the function (t) it follows that the product of the first two
multipliers in (15) is uniformly (with respect to n and k E [1,n]) bounded. At the
same time, for a given 7 E (0,1] the numbers kl-’r(k’r-(k 1) "r) are also uniformly
bounded. Then, by (16) such a constant p, p(c, 7) can be chosen that

c(k (k 1)) _< 7p,k 1

and simultaneously
(18)

O <_ p(k,n) <_ p, n.r <_ p,n -’r. (19)

V/z, then1 (n, z) f(n, V/-z)eProof ofLemma2: Case<7_<l. Set g

yz
rt

(,z)- II (1 + (,)vz)- I-i {(1 + (,)vz)- (’)v/Xz}. (0)
k-1 k-1

(Here, the second equality follows from (1) and (2).) By (19), 0 _< p(k,n)v/- <_
1/- V/--+Op,n and so p(k, rt) as uniformly with respect to k. Hence, for any

R < oo such a value n(R) can be chosen that p(k,n)xz < 1/2 for n >_ n(),
zl _< R uniformly with respect to k. Then, for such n and z, the representation

1 + p(k, n)X/z e
ln(1 + P(k’n)v/-z)

=e (21)

is valid where

10(,,z) <_Oo<oo, n>_n(R),l<_k<_n, Izl ,e. (22)

By substituting (21)in (20) we obtain

n p2(] rt))z2(,)_ (E= +0(,z) (23)

where
0 (, z) 0(, , z)(,) za.

k=l
(24)

From (1)it is seen that p(k,n)-1 (t n)with an appropriate tk, G[-,-kn].q to, n

Thus, given arbitrary > 0, we can write

r/ E p2(]c rt) Sl(g )+S2(g,
k-1

where
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l<k<en
From (19) it follows that

E lq2(tk, n)"
cn<k<n

1 2 1--2"/ )<_ .coP,n 2-r(gn)2 )+S1 (, n) <_ -p,n E ]2( 1 1 2 1 ("/ 1 1

l<k<en
with an appropriate constant Co, and thus

1 c 2 2 -1SI(e n)

__
Op,e "/ "---0 as e---O. (25)

On the other hand, in view of the summability of the function q2(t) on the interval

1

Su(e, n)-1/2 / q2(t)dt as

From this and from (25) it follows that
1

n_ E p2(k’n)-1/2 q2(t)dt as n--+oo.2
k=l 0

(26)

At the same time from (19), (22) and (24) it follows that

I0 (n, z)

_
rt E O(k, rt, z) p3(k,

k=l

OoPn3(-) k3( 1) Z
3 OoClP,.n

k=l

with an appropriate constant c1. Thus,
1

](n,z)] _<OoClPa,n 2. (27)

From (23), (26), (27) and from the definition of the function g(n,z) the statement
of the lemma for the case 1/2 < 7

_
1 follows"

1 Set (n, z) f(n, /n(log n)- lz)e Jn(log 1 zCase 7- 5" g then by (1) and (2)

g(n,z)--k_I {(l+p(k,n)?n(logn)-lz)e-P(k’n)’y/n(lgn)-lz}.
-1

(28)

By (19), 0

_
p(k, n)V/n(logn --1 < (logn)- 1/2 V/

n---,oo uniformly with respect to kT-
p* and so p(k,n) n(logn)- 1---,0 as

Hence, for any R < cx such a value n(R) can be

/z)g/rt(1og rt)- < for rt > /z(/) [z < R uniformly withchosen that p(k, z -respect to k. Then, for such n and z the representation

1 + p(k, n)v/n(log n)- z eln(1 -t- p(k,n)V/n(log n)- lz)
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p(k,n)4n(log n)- lz-1/2(p(k,n)4n(log n)- lz)2 q- O(k,n,z)(p(k,n)4n(logn lz)3
(9)

is valid where

IO(],,z)l <Oo<, >(), 1 <k<n, Izl . (30)

By substituting (29)in (28) we obtain that

g(n,z) e
21ogn(E_ lp2(k,n))z2 "t-O (n,z)

where

-( y0 (n, z) 10 n
k 1

Estimation of 0 (n,z) is done analogously to the previous case.

(30) it follows that

Oop(lo a
k-1

1 3
a -(logn)-zaO as n.OocP,n

(31)

From (19) and

(32)

Before estimating the first summand in the power of the number e in (31), we

recall Euler’s formula:

nli_.,rn( _n_ - log n C,

from which it immediately follows

ml log <C,,_ l<k<n,_ (33)
m=k+l

with an appropriate constant C,.
Now, fix an s > 0 and choose such a real number 6 > 0 that

I1 Z() Z(0)- Z() < , 0 < < .
(This can be done by continuity of the function (t).) Then, we can write

rt E p2(lC’rt)- Sl((’ 71) --2log n
k 1

where
n (,),S1(5 n) 2log n

1 < k < 5n

From (19) and (33)it follows that

S(5, n) 2log n
5n < k < ,

1 2$2(6 n) <_ 2log np*
1 np2,(C,+logn )-< 2log

6n<k<n

(34)

(35)

-< 21ogl np,2 (C, + log 51)0 s n. (36)
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At the same time by (15)

$1(5 n) a2 E 4/32(rk, n)(x/- V/k- 1)2 with Tk, n <_ 5.
2log/2 < k < 5n

Thus

-a--Z+S11ct2 (5, rt)Sl(5, n)
where

Sl1(5’ rt)- 2logZ2 (Err1 <_ k _< ,n
]el lg 72)

(37)

S12(5, rt) ct2
21ogn

l <k<Sn

sa(5, n) 2log n

From (33) it follows that
(c, + Iogel)

S11(5, n) -- 2log n
From (34) it follows that

a2e E 4(V/ V/k 1)2 2e< 2log n(’) 5 2log1 < <

Finally, since

then

{4(V/- V/k 1)2 }
<k<6n

< 2ct2gC, q-- log 5 + log n.
log n

1 <k<6n
k

1 < 4(X/_ V/k 1)2__( 2 )2 1- v+v/_i -< -1,

ct
2

S13( 5, rZ) 2log n
l <k<6n

(38)

(39)

21ogn E k-1 k logn"

From (37), (38), (39) and (40)it follows that

ct
2

liup S (5, rt) --and thus in view of (35) and (36)
n

O
2

limsup n E P2(k’n)-- < 2a2g"
n 121og n k 1

Since e is arbitrary, then
n 2lim .,

nZlogn k

follows.From this and from (31), (32) the statement of the lemma in the case 7 -Set (n,z) f(n,nz)e -z, thenCase 0 < 7 < . g
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g(n,z)- e -n H (1+ p(k,n)nWz)
k=l

H {(1 / p(k,n)nz)e p(k,n)’z}.
k=l

(Here the latter equality follows from (1) and (2).) Set also
m

g(m,n,z)- H {(1 /
k=l

(41)

(42)

(m,3‘,z)-II 1+ 3‘
ze- - z

k-1
(43)

Now, using the evident inequality

I(1 / z)e-zl <_ c4]z]2

and inequalities (18), (19)we can estimate the values Ig(m,n,z) and (m, 7, cz)
as follows

2 k( 1) 2

< e4p2*( E x--
Since the power series o= 112(’),- 1) is summable for 0 < 3’ < 1/2, then

(m. n. z)[. z(.. , z) z (44)
with an appropriate constant w uniformly with respect to all possible combinations of
n and m. AnMogously, for the functions

(m,n,z) H (1 + p(k,n)nz)e p(k,)uz (45)
k=m+l

k -(k 1)v z
(m, 7, az) 1 + 7 z e (46)

k=m+l

we can get the following estimates

where
(m,n z) 11 "(m 3‘,z) < e"(m) z 12

w(m)--4p,
k=m+l

k2(’v- 1))--+0 &S m--oo.

Represent the difference g(n,z)- (3‘, cz)in the form

(. z) z(. z) (n. . z)(.. . z) z(.. . z)Z(.. . z)
(g(m, n, z) (m, 7, cz))

+ g(m, n, z)((m, n, z) 1) + (m, 7, az)((m, 7, az) 1)

(47)
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where the integer rn will be chosen later. Then, by (44) and (47)

g(n, z) (7, z) <_ g(m, n, z)- (rn, 7, z)] / 2e z 12 e(’)I 12
(48)

Now, fix a number R > 0, e > 0 and choose such a big integer m re(R, e) that

Then by (48)
(n, z) (, z) < g(’, , z) (., , z) +

(49)

But, in view of (16), (17)

for any fixed m uniformly with respect to z from any bounded circle.
from (49) we get that

From here and

limsuplg(n,z)-(7, cz) <_e, [zl <R

and thus, since e is arbitrary,

(, z)-Z(, z) s ,-

uniformly with respect to ]z < R.
The lemma is completely proved and so is the theorem.
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