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In this paper we study a k-out-of-n reliability system in which a single un-
reliable server maintains n identical components. The reliability system is
studied under the (N,T) policy. An idle server takes a vacation for a ran-
dom amount of time 7' and then attends to any failed component waiting
in line upon completion of the vacation. The vacationing server is recalled
instantaneously upon the failure of the ¥ th component. The failure times
of the components are assumed to follow an exponential distribution. The
server is subject to failure with failure times exponentially distributed. Re-
pair times of the component, fixing times of the server, and vacationing
times of the server are assumed to be of phase type. Using matrix-analytic
methods we perform steady state analysis of this model. Time spent by a
failed component in service, total time in the repair facility, vacation time
of the server, non-vacation time of the server, and time until failure of the
system are all shown to be of phase type. Several performance measures
are evaluated. Illustrative numerical examples are presented.
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1. Introduction

When dealing with critical systems such as aircrafts, space shuttles, nuclear plants,
satellites, electric generators, and computer systems, it is imperative that redundancy
be in the system. The redundancy is in the form of multiple (often identical) compon-
ents connected in such a way that when on component fails the others not only keep
the system functioning but share the increased load due to fewer operating compon-
ents. Also, redundancy is highly cost effective in achieving a certain reliability level
of the system. A common form of redundancy is a k-out-of-n system in which at
least k components of n must be functioning for the system to be operational. k-out-
of-n reliability systems have been studied extensively in the context of computing the
reliability, optimization of the system, common cause failures, and repair facility
availability for fixing failed components [1-4, 7-10, 13-18, 20, 21]. Though there are
many papers on such systems, very few papers address load-sharing k-out-of-n sys-
tems [12, 19]. Load-sharing systems are natural and very useful in dealing with sys-
tems such as nuclear plants, aircraft engines, electric generators, computer systems,
suspension bridge cables and other workload balancing systems.

When analyzing the reliability of systems with a repair facility to fix failed com-
ponents (or machines), a review of past work on machine repairman problems shows
two distinct areas of research:

(1)  systems with reliable servers and

(2)  systems with unreliable servers
Most of the research addressing machine repairman problems has focused on reliable
servers Research work dealing with unreliable servers is limited in the literature [6,
11, 22-29]. Recently a comparative analysis of steady state performance measures
under a variety of distributions for repair times and service times for a 1-out-of-n reli-
ability system with a single unreliable repairman was given in Chakravarthy and
Agarwal [6].

In this paper, we will extend the work of [6] for a k-out-of-n system in which

(a)  the server is unreliable,

(b)  the failed server is fixed by a repair facility,

(¢)  the server goes on vacation for a random amount of time whenever the

system is functioning with all n components,

(d)  upon completing a vacation, the server goes for another vacation of random

duration when there are no failed components waiting to be fixed, and

(e)  the vacationing server is recalled instantaneously when the number of failed

components reach a predetermined threshold N assumed to be less than or
equal to n — k.
We consider a k-out-of-n system that can be cold, warm, or hot.

This paper is organized as follows. In Section 2, we describe the model under
study and give a brief review of PH-distributions. The Markov chain description of
the three reliability systems is presented in Section 3. The steady state analysis of
the systems is presented in Section 4. The performance measures for studying the
qualitative behavior of the reliability systems are developed in Section 5, and a few re-
presentative numerical examples are discussed in Section 6.



A k-Out-of-n Reliability System 363

2. Model Description

We consider a k-out-of-n load-sharing reliability system with n identical components
which can fail independently of each other, and a single unreliable server that attends
to failed components. The system will be functional if and only if there are k or
more working components. Failure times of the components are assumed to be
exponential with a parameter that depends on the number of working components.
That is, if there are i working components, then the failure times are exponential
with parameter A,.

Upon failure, a component enters into repair facility and the repair times follow a
PH-distribution with representation (3,,5;) of of order m;. When the server is busy
or when the server is unavailable, the failed component joins the queue. Once
repaired, the component is returned back to the system as new.

It is assumed that the server is subject to failure and the failure times of the server
are assumed to follow an exponential distribution with parameter pgp. The fixing
times of the server follow a PH-distribution with representation (8,,S5,) of order m,,.
Once fixed, the server resumes the work of failed component at the stage where it left
servicing the failed component.

Whenever there is no component waiting for repair, the server takes a vacation for
a random time 7' having a Ph-distribution with representation (35,S53) of order mg.

We consider a k-out-of-n reliability system that is cold, warm, or hot. By a cold
system, we mean a reliability system in which the individual components cease to fail
upon system failure. Note that the system failure occurs as soon as the number of
functioning components drops below k. By a warm system, we mean a system in
which the individual components continue to fail, but with a smaller failure rate,
even after a system failure. In a hot system, individual components continue to fail
at the same rate after a system failure.

In the sequel, we will assume that the failure rate of components is inversely
proportional to the number of functioning components. That is, if there are ¢
functioning components, then A; = A/i. Note that for a cold system, A; = A/i, for
1<i<n—k X\=0, for n—k+1<i<n. For a warm system, A; = A/i, for 1 <
i<n-—k, \;=0/i, for n—k+1<i<n, where § <A. In the case of hot system,
A;=A/i, for 1 <i<n. For the sake of simplicity, we will make this assumption,
though the model is valid for the general case of the failure rate. In the following, e
and I will represent a column vector of 1’s, and the identity matrix of appropriate
dimensions, respectively. The notation ® will stand for the Kronecker product of
two matrices. Thus, if 4 is an m xn matrix and if B is a p x ¢ matrix, then A ® B
will denote a mp x nqg matrix whose (i,j)th block matrix is given by aijB. For more
details on Kronecker products, we refer the reader to [5].

Before we describe the Markov chain of the repairman model, we present a review
of PH-distributions.

Phase type distributions: Poisson arrival processes and exponential service time
distributions have mathematical properties that make queueing models very attrac-
tive and tractable. However, in applications these assumptions are highly restrictive.
To remove some of the restrictions, Neuts [13] developed the theory of PH-distribu-
tions and related point processes. In stochastic modeling, PH-distributions lend them-
selves naturally to algorithmic implementation and have nice closure properties with
a related matrix formalism that make them attractive for practical use. In this sec-
tion we review continuous-time PH-distributions.
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Continuous-time PH-distributions: Consider a finite Markov chain (MC) with m
transient states and one absorbing state with the infinitesimal generator @
partitioned as

s s°
0 0 |

where S is a matrix of order m and $° is a column vector such that Se+ S%=0.
The vector e is a column of 1’s. It is necessary and sufficient that S be nonsingular
for eventual absorption into the absorbing state, starting from any initial state.
Suppose that the initial state of the MC is chosen according to the probability vector
(8,8 +1) and let X denote the time until absorption. Then X is a continuous
random variable on nonnegative values with a probability distribution function F(z)
given by F(z) =1- BeS%e for = > 0.
Note that
(a)  the ith component of the vector e5%e is the probability that starting in state
i, absorption has not occurred by time z;
(b)  the (i,7)*" component of the matrix (—S)~ 1! is the conditional ezpected
total time spent in state j before absorption given that the initial state is i.
The function F(-) has a jump B, | at the origin, but in most cases, F((0) =0 =
By +1- Such a probability function constructed from a finite MC with a single
absorbing state is a continuous PH-distribution. The pair (8,S) of order m is said to
be a representation of the PH-distribution.
The transition matrix P(z) = €9 is of the form

S

suggesting that the density f(z) of F(z) is either identically 0 or strictly positive for
all >0 (see [5]). In the latter case, f(z) is given by f(z) = Be5%5°, for & > 0. The
k" noncentral moment of F (x) is given by

i = kla(—8) ™ ke, for k > 0.
When m =1, § = — A, the underlying PH-distribution becomes exponential. A

generalized Erlang distribution of order m is a PH-distribution with representation

(8,5) i

“A N 0 0]

0 =X A ... 0

B=(1,0,..,00and S=| : : ;
0 0 0 ..A,_,
00 0 -,

A hyperexponential distribution of order m is a PH-distribution with representation

(8,5)
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[y 0 0 .. 0 ]
0 —A 0 ... 0
B =(B1:Bq..,8,,) and S = : :
o 0 0 .. 0

00 0 -,

For any PH-distribution, there exist infinitely many different representations. For
example, if 8 = u where u is the left eigenvector of S (with u normalized to be a
probability vector) corresponding to the eigenvalue —7n of maximum real part, then
the representation (u,S) of order m is an exponential distribution with parameter 7.

3. The Markov Process

The model outlined in Section 1 can be described by a Markov process. The state
space of the Markov process depends on whether the system is cold, warm or hot. In
the case of a cold reliability system, the state space is Q_ = {{{(¢,j3):1 < j3 <mg},
0<i<N=1}U{(4,j1,5p):1 < jy <my, 1< <myh1<i<n—k+1}U {{H{G,4y):
1<j;<m}, 1<i<n—k+1}}. For the other two cases, the state space is Q,; =
{{{(5,73): 1 <73 <ma}, 0 < <N = 1}UA{(4, 47, J5): 1 <y Smy, 1< jp <mp}, 1<
<n}U{{{(4,41):1<j; <my}, 1<i<n}}. The sets of states * = {(i,j3): 1<
Jj3 < mg} corresponds to the case where i components are under repair and the server
is on vacation in phase j;. The set of states ¢ = {(¢,;,75): 1 <j; <my, 1 <j, <
my} corresponds to the case where i components and the server are under repair, the
server repair in phase j,, and the server failed while attending a failed component in
phase j;. The set of states # = {(4,7;):1 < j; < my} corresponds to the case where i
components are under repair and the current service is in phase j;.

The Markov process for a cold k-out-of-n reliability system has the infinitesimal
generator (), given by

11 12 0
Q.= 21 22 bsp(I®By) | (1)
0 1®S59 Ss
where
[—
e -
Sa+898,—A A 0 0 0
0 Sy—AI A 0 0
0 0 0 Sy— A Al
0 0 0 0 Y

(2)
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0 0 0 0 0
S8, 0 0 0 0
0 S35, 0 0 0
Biy = . . ' (3)
0 0 0 ... 0 0 ... 0 0
0 0 0 S381 XeBy ... 0 0
[ S%, 0 0 0 |
0 0 0 0
B3 = : )
0 0 0 0
(4)
0 0 0 0
4, M0 o 0 |
898, A, I 0 0
Bs,=| 0 898, A 0 0
0 0 0 898, Ay +AI
[ 4, M0 0 |
0 A, M 0
Bgy=| : P (5)
0 0 0 ... A
0 0 0 C A+ A
with - -
A=Ay~ A+ pgp) and A, =185, — . (6)

The Markov process for a warm k-out-of-n reliability system has the infinitesimal
generator @), given by

B B 0
Qu = B3 By, nsp(I® By) |, (7)
0 1®S9 BY

where the B;’s are such that B}j and Bj) are of the form B, and B, except that
the dimensions of these matrices are, respectively, Nm; x nm; and nm; x Nms. The
matrices By, and BY; are given by
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[ 4, A0 0o 0 0 0 0 0 |
0
s98, A, Al 0o 0 0 0 0 0
0 898, A4, 0 0 0 0 0 0
Y : :
2 0 0 0 S98, Ay 0 0 0 0
0 0 0 0 598, Ay 01 0 0
0 0 0 0 0 0 0 S8, A+ 01
(8)
r ]
A, A0 0 0 0 0 0
0 A, A 0 0 0 0 0
0 0 A, 0 0 0 0 0
BY. — . . . . . . . . (9
33 o 0 0 .. A, 6T 0 .. 0 0 )
0 0 0 0 A, oI 0 0
0 0 0 0o 0 0 0 A, +6I
with
A3 =8, -0+ pgp)l and A, =1®S,—-01. (10)

The Markov process for a hot k-out-of-n reliability system has the infinitesimal
generator @}, given by

h
B{, By, 0
Q= B’211 Bgz psr(I®By) | (11)
0 I®S9 Bh,

where B;‘z,Bgl,Bg2 and Bg3 are of the form BY}, By, By, and Bjj, except that 6 in
these matrices is replaced by A.

4. The Steady-State Analysis

In this section we will present the steady-state analysis of the reliability system
discussed above.
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4.1 The Steady-State Probability Vector for the Cold System

The steady-state equations are obtained by solving z(), =0, and ze=1. By
partitioning 2 = (up, Uy, U _ 1501 Vgse e o9 Uy _ k4 15W1r Was- - Wy _ g 4 1), Where the
vectors u; are of dimension mg, the vectors v, of dimension m; and w; of dimension
mym,, are further partitioned into w, = (w;(1),...,w,(m,)) of dimension m,. The
steady-state equations can be written in terms of matrices of lower dimension suitable
for numerical implementation as follows:

ugS3+ 5385 — M|+ v(1)S385 = 0, (12)
A +u[S3-AM]=0,1<i<N-1, (13)
uyS9B1 + v14; + 9,598, + wy [ ® 53] =0, (14)

u; S8 + M _q + v A+, 1SIB +w[I®SI =0, 2<i<N-1, (15)

My _yefy + vy g +on Aoy 538 + wnll © S5] =0, (16)
M; 1+ v A+, 1808 +w I ®85]=0, N+1<i<n—k, (17)
Mo _ g+ U g1l Ay + M+ w, o [T®S5] =0, (18)

ks vl ® By +wy Ay =0, (19)

pgpv I ® Byl +dw; _ | +wAy =0, 2<i<n—k, (20)
BsFVn — k +1 ® Bl +dw,, _p+w, 1[4, +A]=0. (21)

4.2 The Steady-State Probability Vectors for the Warm and Hot Systems

The steady-state equations for the warm and hot systems have more equations than
those of the cold system. Suppose that vector z is partitioned as z = (ug,uy,...,
UN _1V11 Ve vy Uy, Wy, Wo,..,w,,) to account for the extra states resulting from
components failing when the system is down. But first, note that equations (12)
through (17), (19) and (20) are common to all three systems. Equations (18) and
(21) are replaced with the following set of equations for warm and hot systems found

by letting 7 = for the warm system equations and letting 7 =X and 6 = X in A4
and A, for the hot system:

’\vn—k+vn-k+1A3+vn—k+2S(1)ﬂl+wn—-k+2[1®5(2)]:07 (18a)
Tvi_1+viA3+vi+15(1)ﬁ1+wi[1®5’g]:O, n—k+2<i<n-1, (180)
v, _ 1+ vl + 7]+ w, [T ®S9] =0, (18c¢)

BsFVn — k41 ® Byl +Aw, _p+w, ;. 14,=0, (21a)
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psEvill ® Byl + 7w, g +w Ay =0, n—k+2<i<n-1, (210)
pspv, I ® Byl + 71w, _+w, [A;+7I]=0. (21¢)

Before we state the main results, we need the following lemmas.
Lemma 1:

n—k+1 n—k+1
1=1 =1
where py 1= - BaSy Le,
Proof:  Adding equations (19), (20) and (21), the stated result follows
immediately.
Lemma 2:
N-1
My _qe+ Y ;S =v,S9. (23)
i=1

Proof: This result follows immediately by adding the equations (12) and (13).
Lemma 3:

ve = v,59, (24)
where py” 1= 8BS Le,

Proof: The stated result follows by adding equations (14) through (18), and using
Lemma 2 with the fact that

n—k+1 n—k+1
0
>, wI®S)=pnsp Y, v
i1=1 i=1

Let X denote the time to repair a failed component from the point when the
component enters into service. We then have the following result.

Theorem 1: The random variable X is of phase type with representation ({,U) of
order (mg + 1)m, where

S1—wspl  pspl ® B,y

¢=(61,0) and U =
’ 1®59 1®89,
Proof: This result follows immediately by noting that
(a) the initial phase of the repair is chosen according to the probability vector
o;
(b) an absorption from this set of m, states corresponds to the completion of
the repair without any failure on the part of the repairman;
(¢)  if the repairman fails during the repair time, the Markov chain enters into
the set of m;m, states that represent the service time to fix the repairman.
Corollary: The mean time spent in the repair facility by a failed component 1s
given by

Wy = w1 + pgpusl, (25)

where p) is the mean repair time of a failed component and p; is the mean time to
fiz the failed server.

Proof: The proof is obtained by using the fact that p'y = (7U°) !, where U0 is
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such that Ue+U° =0, and 7 is the solution to 7(U 4+ U°¢) =0, and me=1. By
partitioning m = (7, 7,) and using the special structure of U, it can easily be verified
that

my = pgpm (I ® By(—Sy) ™) and my =By (- Sy) 71, (26)

where ¢ is the normalizing constant such that 7 e+ m,e=1. The stated result
follows immediately.

Remark: Note that the mean time spent in the repair facility depends only on the
failure rate of the server, the mean service time of the unit, and the mean repair time
of the server.

Let Y denote the time it takes a failed component to return to working condition
for a cold system. Note that Y includes the time, if any, a failed component spends
in the queue of the repair facility. We then have the following theorem.

Theorem 2: The random variable Y is of phase type with representation (&, R) of
order Nmg+ (n—k+1)[m; +m,], where the wector &= (ay,...,apn _q,by,...,
b, r4+10,¢9..6, 1) 15 such that a;=du; _,, 1<i<N-—1, b =duy _e,
b,=dv;,, 2<i<n—k+1, and ¢;=dw;_;, for 2<i<n—k+1, with d=[1-
Yy k416~ W, _ 1€l ~1. The matriz R is of the form

Rll R12 0
R= 0 Ry nspI ® By) |,
0 19S5, Ry3
where the entries of R are
[ S,—A1 I 0 0 0
0 Ss—Al AL 0 0
Ro=| : . E ’
0 0 0 Se—M A
0 0 0 0 §y—AI
[0 0 0 0 ]
0 0 0 0
R12_ )
0 0 0 0
MO0 0 0
L .
A, A 0 0 0 ]
598, A, Al 0 0

0 0 0 S8, A 4+
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4, a0 .0 ]
0 4, A ... 0
R33_ . . .
0 0 0 .. A

0 0 0 ... Ay+Al

Proof: The theorem follows by noting that a failed component will see the server
either

(a) on vacation with ¢ (1 <7< N) components (including the current one)

waiting for repair (note that when i = N the server will be recalled from
vacation instantaneously), or

(b)  busy with ¢ (1<i<n—k+1) components (including the current one) in

repair facility,

(¢)  is under repair with 7 (1 <i<n—k+1) components (including the current

one) in the repair facility.
Since failure times of the components are exponential, the probability vector £ is just
a scalar multiple of the relevant probabilities at an arbitrary time.

Let Z denote the time it takes the system to fail starting with all functioning
components. First note that the probability density function of Z is identical for all
three systems (cold, warm, hot). The following theorem shows that Z is of phase
type.

Theorem 3: The random variable Z is of phase type with representation (n,L) of
order Nmg + (n — k)[m; + m,], where n = (B3,0) and the matriz L is of the form

Ly Ly, 0
L= Ly Lyy nsp(I® By) |
0 159 Lys

where Ly; = B, and Ly, is of the form B{, with dimension Nmgsx (n—k)m; and
Lo, is of the form B, with dimension (n — k)my x Nmg, and

[ 4 A 0 0 0o |
598, A, Y 0 0
Lyy = 0 S98, A, 0 0 |
0 0 0 598, A,
[ 4, A0 0 ]
0 A, X 0
L3z = ‘
0 0 0 A
0 0 0 Ay |
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Proof: The results follow immediately by noting that the set of states (n—k+1)
and (n— k+ 1) correspond to the system failing, and then, combining these into one
absorbing state.

Suppose V' denotes the vacation duration of the server. Then we have

Theorem 4: The random variable V| is of phase type with representation (¢, Bf;)
of order Nmg, where the vector ¢ = (f3,0).

Proof: This follows by noting the vacation period of the server starts when all
components are in functioning state and returns according to (N, T')-policy.

Remark: Note that, as is expected, the random variable V; depends only on the
components’ failure rate A and the server’s vacation time 7.

Corollary: The mean vacation pertod of the server is given by

N-1
_E u;e
py =2 A58, (27)

where the steady-state probabilities, u;, 0 <i < N —1, are as given in (12)-(14).

Proof: The result is obtained by using the fact that i}, = (7B%) !, where B® is
such that Bfje+ B°=0, and 7 is the solution to m(B$,+ B%) =0, and me = 1.
Partitioning = = (7, 7y,..., 7 _;), and noting that 7, = du;, 0 <i < N —1 with d is
such that me = 1, the stated result follows immediately.

Suppose that V, denotes the non-vacation duration of the server. Note that this
duration includes the time the server is busy fixing failed components as well as the
time the server is being repaired. Then we have:

Theorem 5: The random wvariable V, is of phase type with representation
(v ® By, M) of order (n—k+1) [my +m,], where the vector 1 = (¢y,...,%,0,
0) is given by

.oy

¥; =du;85, 1<i< N -1, and ¢ = dup _ e,

where d s the normalizing constant and the matriz M is

B3, nsp(1 ® By)
0
&S89 BS,

M =

where Bj, and BS; are as given in (4) and (5).

Proof: This result follows by noting that the non-vacation period of the server
starts with at least one failed component waiting for repair and with the return of the
server under (N, T)-policy.

The following interesting result gives an expression for the fraction of time the
server is under repair.

Theorem 6: The fraction of time the server is under repair is given by

PNVHESF
Hsp + p1o'

where iy 1s the repair rate of the failed server, and ppry is the probability that the
server 1s not on vacation where

P(server is under repair ) =

(28)
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N-1
pyy =1-— Z ue.
1=0

Proof: This follows immediately from Lemma 1.

Remark: The result (28) can be intuitively explained as follows. First note that
the failure of the server may occur only during a non-vacation period. Since a failed
server is immediately started on a phase type service, the fraction of time the server
is under repair is equal to the product of the probability that the server is not on
vacation and the probability of the server being busy in an M/PH/1 queue with no
waiting room. The arrival rate is given by pgy and the service time is of phase type
with representation (f8,,5;).

Theorem 7: The probability mass function {a,;} of the number of failed compon-
ents waiting for repair at the time when the vacationing server returns to the system,
and the conditional probability mass function {b;} of the number of failed components
waiting for repair given that the server returning from wvacation finds at least one
component in the repair facility are given by

a; = gG'8%, 0 <i < N—1,a) = AgGN "1,
(29)
b;=da;, 1<i<N,
where

9=083(M[ =537, G=XM~-S;)7 1, and d = (B3Ge) ™ L. (30)

Proof: First note that uisgdt, 1 < i< N gives the steady-state probability that in
a small time interval of width dt, the server finishes the vacation to find i
components waiting in the repair facility. The stated result follows from equations
(12) through (14) and Lemma 2.

Remark: Note that the probabilities in (29), as is to be expected, depend only on
the components’ failure rate and the distribution of the server’s vacation period.

5. System Performance Measures

In this section we give a number of system performance measures useful in qualitative
interpretation of the model under study. These measures are for a cold system and
similar measures are obtained for the other two systems. The details are omitted.
However, in the numerical example section we will compare these measures for all
three systems. N1

(a)  The fraction of time the server is on vacation is given by ‘EO u,e.
1=
n—-k+1
(b)  The fraction of the time the server is under repair is ), w,e. Note that
=1

1=
this measure is given in terms of and p, from equation (28).
g HsF 1)
(¢) The probability mass function of the number of components under repair is
given by

uge, 1 =0,
fr(i) = ue + ve + we, 1<i<N-1
ve + w;e, N<i<n—-k+1.
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The mean and the standard deviation of this probability function can also
be computed.

(d)  The fraction of time the system is down is given by u,, _; . je+w, _; e

(e) The mean time spent in the repair facility by a failed component is given
by (25).

(f)  The mean vacation duration of the server is given by (27).

(9) The mean non-vacation period of the server is calculated as (¥ ® 3)
(= M) e

(k)  The mean number of components waiting for repair when the server returns
from a vacation and the conditional mean number of components waiting
for repair given that the server returning from vacation sees at least one
component in the repair facility can be computed from the probability
functions given in (29).

6. Numerical Examples

In this section we discuss some interesting numerical examples and present an
optimization problem. A Fortran code was developed and tested on a large number
of examples using a Pentium II PC. Particular cases, which reduce to simple models
and internal accuracy checks, such as the one outlined in Section 2 and Lemma 1, are
used to confirm the correctness of the code. Recall that u; = 3,(-5,)~ le, 1 <i1<3,
is the mean of the PH-distribution with representation (8;,5,;).

For illustrative purpose, we consider the following three PH-distributions for repair
times of the components, for vacation duration of the server, and for the fixing times
of the failed server:

Exponential (10) (EX),

Erlang with 10 phases and with parameter 10 (ER), and

Hyperexponential: 0.90 EXP(100) + 0.09EXP(1) + 0.01EXP(0.1) (HE).

The above distributions are normalized so that pj=0.5, u5j=0.125, and
p3 = 0.25. The other parameters are taken to be n =10, k=4, A=1, 6§ = 0.3, and
pusg =1. We consider 27 possible combinations for the reliability model under study
by choosing one of these three distributions for the repair times of the components,
one for the fixing times of the failed server and one for the server’s vacation period.
The five performance measures

(a)  the mean time to system failure,

(b)  the mean vacation period of the server,

(¢)  the mean non-vacation period of the server,

(d)  the probability the server is on vacation and

(¢)  the mean number of components under repair
are plotted in Figures 1 through 16 as functions of N varying from 1 through
n—k = 6. The two performance measures

(f)  the probability mass function of the number of failed components seen by

the server returning from vacation, and

(g)  the conditional probability mass function of the number of failed

components seen by the returning server given that at least one failed
component in the repair facility,
are plotted in Figures 17 through 18. On examination of these figures, we notice the
following observations.
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The Mean Time to System Failure (Figures 1 through 3):

As expected the mean time to system failure decreases as N increases for
all cases.

By fixing the two distributions as ER and varying the other with one of the
three distributions (ER, EX, or HE), we notice that this measure tends to
decrease with increasing variability. In Figure 1, we plot this performance
measure by varying the server’s vacation period.

The Mean Vacation Period of the Server (Figure 4):

Recall that the mean vacation period of the server depends only on A and
the distribution of the vacation period. As expected, this measure is
identical for all three distributions when N = 1. However, for other values
of N this measure increases with increasing variance of the vacation period
and also with N.

For hyperexponential case, this measure varies significantly as N is varied.
However, for the other two cases, when N > 2, the change in this measure
appears to be insignificant.

The Mean Non-Vacation Period of the Server (Figures 5-10):

By varying the repair times of the components with one of the three
distributions (ER, EX, or HE) and fixing the other two with ER, we notice
that the mean non-vacation period of the server appears to decrease with
increasing variability (see Figure 5). Furthermore, the hyperexponential
distribution appears to yield smaller means for all values of N compared to
the other two cases.

By varying the fixing times of the failed server with one of the three
distributions (ER, EX, or HE), and fixing the other two with ER, w notice
that this measure decreases with increasing variability (see Figure 6).
Going from N =1 to N = 2, there is a significant jump in the mean for all
three distributions. For other values of N, there appears to be insignificant
change.

By varying the vacation period with one of the three distributions (ER, EX,
or HE) and fixing the other two as ER, we notice that this measure
increases with increasing variability (see Figure 7). This observation is in
direct contrast with the previous two observations.

Suppose we use HE instead of ER to fix the other two distributions and
vary the other with one of ER, EX, or HE. While the behavior (see Figures
8 and 10) of this measure is very similar to the earlier ones in the cases
when the repair times of the components and when the vacation period the
server is varied, an interesting observation (see Figure 9) is seen in the case
when the fixing times of the failed server is varied. Here, we note that this
measure appears to be independent of the distribution.

The Probability that the Server is on Vacation (Figures 11-13):

By varying the repair times of the components with one of the three
distributions (ER, EX, or HE), and fixing the other two as ER, we notice
that the probability that the server is on vacation appears to increase with
increasing variability (see Figure 11). Furthermore, this measure appears to
be independent of the values of N. The same observation holds when the
fixing time of the failed server is varied and the other two fixed to be ER
(see Figure 12).
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In the case when the vacation period of the server is varied with one of the
the three distributions (ER, EX, or HE) and fixing the other two as ER, we
notice that this measure increases with increasing variance. In the HE case,
we notice that the probability increases as N increases.

The Mean Number of Components Under Repair (Figures 14-16):

here, we look at the three systems: cold, warm, and hot by fixing two of the
three distributions as ER and the other with HE. When the vacation period
is HE, the mean number of components under repair appears to be almost
the same for all three systems (see Figure 16); however, we see a significant
difference in this measure for the other two cases (see Figures 14 and 15).
As expected, this measure is largest for hot system and smallest for the cold
system.

The Probability Functions of the Number of Failed Components (Figures 17-18):

In Figure 17, the probability mass function of the number of failed
components seen by the server returning from vacation, is plotted for the
three distributions for the case when N = 6. We notice that the probability
that the server sees no component waiting for repair is highest for the HE
case. This can be intuitively explained as follows. When the vacation
period is HE, the server will have a large number of small vacation periods
followed by a long vacation period. During the shorter vacation periods,
the server is more likely to see no components waiting for repair.

In Figure 18, the conditional probability mass function of the number of
failed components seen by the returning server, conditional on the fact that
at least one failed component is waiting for repair, is plotted for the case
when N =6. The figure indicates, as expected, that an HE vacation is
more likely to see larger components waiting for repair than the other two
distributions.
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