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We deal with the MX/G/1 queue where service times depend on the queue
length at the service initiation. By using Markov renewal theory, we de-
rive the queue length distribution at departure epochs. We also obtain the
transient queue length distribution at time t and its limiting distribution
and the virtual waiting time distribution. The numerical results for tran-
sient mean queue length and queue length distributions are given.
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1. Introduction

Our analysis of the MX/G/1 queue with queue length dependent service times is moti-
vated by overload control on a multiplexer for a voice packet where less significant
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bits in the voice packet are dropped during congestion [4, 14]. One of the overload
control schemes can be incorporated into the model by making the service times
state-dependent; when the queue lengths exceed certain thresholds, the service time of
the voice packets is decreased by dropping bits (see [3, 9, 11, 14]).

In this paper, we deal with the stable MX/G/1 queue with a number of types of ser-

vice times which depend on the queue length at the service initiation. Following the
general approach based on structured Markov renewal processes of M/G/1 type dis-
cussed in [12], we derive the queue length distribution at departure epochs, the tran-
sient queue length distribution at time t, its limiting distribution and the virtual wait-
ing time distribution.

Sriram and Lucantoni [14] examined the performance of a multiplexer for a voice
packet in which the less significant bits in voice packet are dropped during states of
congestion in the multiplexer so as to reduce the queueing delay at the expense of a

slight reduction in voice (:Luality. They modeled the multiplexer as a M/D/1/K
queueing system in which D denotes the deterministic but state-dependent nature of
service. Choi [4] considered MMPP/G1,G2/1/K with queue length dependent service
times and obtained the queue length distribution both at departure epochs and at
arbitrary time. There are an abundance of studies of queues with length dependent
arrival rates and/or service times. For comprehensive surveys of them, see Dshalalow
[6]. We describe the model and results in Harris [8] and Ivnitskiy [10], since they are

closely related with our model. Harris [8] investigated the MX/G/1 queue with queue
length dependent service times. To be more specific, when there are customers in
the system, the service time distribution of a customer entering into service is Si(x).
Harris [8] derived the stationary condition and the probability generating function for
the stationary queue length distribution at the departure epochs by using the embedd-
ed Markov chain technique. By employing the supplementary variable technique,
Ivnitskiy [10] derived the transient and stationary queue length distributions for the
MX/G/1 queue in which the interarrival rates, group size probabilities and service
rates all depend on the queue length in the system. The generating function obtained
in [8] in general contains infinitely many unknown constants so that closed forms
were presented only for some special cases, such as-(!)Sl(X)- 1-e-l", PlX’,px Si(x)-
1 e t,x, >_ 2, (ii) SI(X 1 (#1x -- 1)e Si(x 1 e >_ 2,
(iii) Si(x 1- e-it,x, i>_ 1. The queue length distribution obtained in [10] is so
complex that the results are not appropriate for numerical computation. While the
model we deal with here is a special case of the models of Harris [8] and Ivnitskiy
[10], the formulae we obtain lend themselves rather more to computation.

In a practical system, a finite number of thresholds are used for overload control
[11, 14] and hence it is useful to obtain computable form of queue length distribution
for the model with a finite number of types of service times. The merit of our
approach is to present explicit formulae for the transient queue length distribution
and the first and second moments of the queue length in the steady state.

This paper is organized as follows. In Section 2, we present a Markov renewal pro-
cess formed by the queue length at the departure epochs and the inter-departure
times. Section 3 is devoted to obtaining the queue length distribution at departure
epochs. In Section 4, we investigate the first passage times of Markov renewal pro-
cess constructed in Section 2. Using the results of Section 4, the transient and station-
ary queue length distributions at an arbitrary time are derived in Section 5. Some
numerical results for mean queue length and the queue length distribution in tran-
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sient state and stationary state are given in Section 6.
virtual waiting time.

In Section 7, we deal with the

2. The Embedded Markov Renewal Process at Departures

We consider a queueing system in which customers arrive in bulk according to a

time-homogeneous Poisson process with rate A > 0. The bulk size X is a random vari-
able with probability mass function P(X k) xk (k 1, 2,...) and with probability
generating function X(x)- c__lxkzk, zl _<1. We assume that -E(X)<oc
and E(X2) < oc. In fact, the arrivals form a compound Poisson process so that the
probability ci(t that customers arrive in (0, t] is

e- t(,Xt)kx(k if/- O,
ci(t) -At if 1,2,e k= 1 k

where xk) is the k-fold convolution of {xi} with itself. We note that for 1

r
]

k=l 0
and the probability generating function of ci( is

E oci(t)zi exp( At(1 X(z))).
The service time of a customer is determined by the queue length at his service initia-
tion epoch. When the queue length is n at service initiation epochs, the service time
is Sn(x and service times of customers beginning service with the same number n in
the system are independent and identically distributed rnndom variables with distribu-
tion function Sn(x), n- 1,2 We assume that Sl(X), S(x), SN + l(X) may be
different but for k N + 1, Sk(x takes a common form S(x). Let k and denote
the means of Sk(X and S(x), respectively. Let rn (n 0) represent the succession of
departure instants (with T0 0) and In the number of customers in the system imme-
diately fter the nth departure. It is readily seen that the sequence {(In, vn rn-1),
n 1} is Markov renewal sequence on the state space {0, 1,2,...} x [0, ). The tran-
sition probability matrix Q(x)of {(In, vn--vn-),n 1} has the special form

Al,o(X),Al,l(X) A1,2(x)A1,3(x)
A2,0(x) A2,1(x) A2,2(x)

0 0 A3, 0(x) A3, l(X)

0 0 AN,o(X)AN,I(X)AN,2(x)
0 0 0 Bo(X B (x)
0 0 0 0 BO(X
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where
x

Ai, j(x J cj(t)dSi(t), 1 <_ <_ N, j >_ O,
0

x

Bj(x)- / cj(t)dS(t), j >_ O,
0

Ao, j(x

We introduce some useful transforms and notations:

7,, f -,(t), () f -(t),
0 0

Ai(z,s)- E z Aij(s), B(z,s)- E zaBJ(s)’
=0 j=0

Ai(z) Ai(z 0), B (z) B (z, 0),

Ai, j Ai, j(oc), Bj Bj(oc),

k=l k=l

By a simple calculation we have

Ai(z,s Si(s + (1- X(z))), l,2,...,N,

B (z,s) S (s + (1 X(z))),

)-(z,))" X(z)B (z, s) + xiz (Ai(zA(z’s) , + s
=

where Tdi(O f eoe ’dSi(t and (0) fe tdS(t).
By differentiating equations (2.1) with respect to z and letting z-+l- and s-+0 +,

we obtain

a )(2 si, 1,2,..., N, (2.2a)
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N

% 1 +/3 + xi(a -/3). (2.2c)
i--1

3. The Queue Length Distribution at Departures

Let p- (P0, Pl,’" ") be the invariant probability vector of Q(oc), that is,

pQ(oc) p and E Pi- 1. (3.1)
i--O

Then (3.1) can be written as

PoAok + E + piAi,k + ifk<N-1

PoAoh + N lPiAi, h i+1 + N + lPiBh- + 1 ifk>N.
(3.2)

Set P(z)- E -_ oPkZk. On multiplying both sides of (3.2) by zk and summing over

k, we have

P(z) 1 po(Z4o(Z (z)) + E Pi(4i(z) (z))zi
z-B(z) ,=1

z-B(z)
Po(X(z) 1) (z) + (PoXi + pi)(i(z) (z))z

,=1

(3.3)

Thus the probability generating function P(z) is completely determined by finding
the unknowns P0, Pl," PN"

Consider the following stochastic matrix Q*

( Aoo Aoa AO2 Ao, N "0, N ’
AlO All A12 A1,N_ A1,N
0 A20 A21 A2, N 2 A2, N 1

0 0 A30 A3, N-3 A3, N-2

0 0 AN, o AN,

whereAij- c= jAik O <_ <_ N.
Let q-(qo, ql,’",qN) be the invariant probability vector of Q*, that is, qQ*-q

and /N oqi- 1. Then since the vector p* (P0, Pl,’", PN) is an eigenvector of Q*
corresponding to the eigenvalue 1, p* is given by

p*--cq (3.4)

where c is a constant Substituting (3.4) into (3.3) and using the normalizing
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condition P(1)- 1 and the relation (2.2c), the constant c is given by

(3.5)
qo-2 + E N l(qOXi + qi)(ai )"

Now we derive the first two factorial moments P’(1) and P"(1) of the queue length
at departures. Referring to formula (3.3), we set

N

Y(z) Po(X(z) 1) (z) + (poxi + pi)zi(4i(z) (z))
i=1

and for later use we introduce the notations

ai, j O.4i(z,s and flj 0. (z,s)
0z3 z 1-,s =0+ 0Z3 z 1 -,s =0+

for moments.
Then (3.3) can be written as

P(z)(z B (z)) Y(z). (3.6)

Differentiating (3.6) and setting z- 1-, we obtain the first two factorial moments
of the queue length at departures as follows.

1 )(/2 + Y"(1))P’(1) 2(1- (3.7)

where

1P"(1) 3(1 ’(3P’(1)2 +/3 + Y’"(1)),

N
Y’(1)- po2 + E (PoXi + Pi)(ai- )’

i=1

N
Y"(1) P0(25 + X"(1)) + E (PoXi + pi)[2i(ai-/) + (ci, 2

i=1

(3.8)

Y’"(1) Po(X’"(1) + 3X"(1)/ + 3/?2)
N

+ E (PoXi + Pi)( 3i(i 1)(ci-/3) + 3i(ci, 2 -/32) + (ci, a Z3)).

4. Hitting Times

4.1 First Passage Times from State i + 1 to State i

Define Gi(x), for x >_ 0, i- 0, 1,2,..., to be the probability that the first passage from
state i+ 1 to state takes no more than time x. It follows that the spatial
homogeneity of the transition matrix Q(. except for the first N / 1 rows and the
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skip-free-to-the-left property of Q(.) that for all i> N, the values Gi(x are the
same. Thus we denote Gi(x by G(x) for all > N. By conditioning on the time and
destination of the first transition and applying for the law of total probability, we

have the following equation for G(x):

G(x) Bo(X) + Bi,G(i)(x), (4.1)
--1

where denotes convolution and G(i)(x) is the/-fold convolution of G(x) with respect
to x.

Routine calculation of the LST (s)- fe-SZdG(x), Res > 0 from (4.1) yields
the equation

G(s)-B(G(s),s). (4.2)

Similarly, we obtain LST i(s)- f e-S*dGi(z for i-0,...,N- 1 as follows:

oo i+j-1

5i(S) ti +1,0(s)-- Ei+l,J(s) H k(s)’
3=1 k=i

and consequently,

Gi(s A + l,o(s) 1- E Ai + l,J(s) Gi + k(s)
j=l k=l

(4.3)

(4.4)

+
k--1

N+ Ai+1(G(8),8)- E Ai + l,J(8)C(8)j

3=0

Pmarks: (1) Following the procedure in Theorem 1.2.2 or [12], we have that a

necessary and sufficient condition for G- G(oo) to be unity is/ < 1.
(2) Letting s- 0 + in (4.4), we have

-IG (4.5)GN- 1 AN,O + AN,1GN- 1 q- E AN, jG N- 1,

3=2

where GN_ 1 GN- 1(0 + )" Thus if G 1, then (4.5) becomes GN_
AN,o(1-GN_I)+GN_ 1. Since AN,o--SN(.k)>O, we have that G-1 implies
GN_ 1 1. By induction, it is easily shown that if G- 1, then GN_ 1 (i-
1, 2,..., N).

By differentiating (4.2) and (4.3) with respect to s, we derive the following
recursive formulae for mean times:

g G’(0 +) 1

a .(o +)
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1 j+l+g aj+l-N+J+Aj+I, 0 k=o
(N-J-k)Aj+,k)

+ E g 1- Aj+, j-N-1,N-2,...,O.
k=j+l i=O

We note from (4.6) that if/ < 1 and aj + k < c (k 1,2,..., i), then gj

4.2 Kecurrence Time for State i

Denote by Tij (i < j) the first passage time from state to state j in the Markov
renewal process with transition probability matrix Q(. ). Let Hij(x P(Tij <_ x) be
the distribution function of Tij. Following arguments similar to those leading to

(4.1) and (4.2), we can show that the transforms Uij(s -E(e ,3), Res >_ O,
satisfy the following equations: for each j _> 1,

+ E Aik(s) Gn(s l<_i<_j-1.
k=j-i+2 n=j

(4.7a)

Rewritingthe formulae (4.7), we have the following linear system of equations for

Hi(s) (Hoj(S), Ij 1, j(8)) t’

Cj(s)Hj(s) bj(s), j >_ 1 (4.8)

where Cj(s) is the j x j-matrix given by

( Ao, o(S)- 1 Ao1(8 Ao2(8) Ao, j-2(s) Ao, j-l(S)

Alo(s All(S) 1 A12(s A1, j 2(s) A1, j 1(s)

0 A20(s A21(s) 1 A2, j 2(s) A2, j l(S)

0 0 A30(s A3, j 2(s) A3, j l(S)

0 0 Aj_ 1,o(8) Aj_ 1,1(s)- 1

and bj(s) (boj(S), bj 1, j(S)) with
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}2
i=3+1

4oj(S) H k(s) j >- 1
k-j

bij(s) 4i, j- + l(8 + 4ik(s) n(8) 1

_
j-- 1.

k=j-i+2 n-j

Now we consider the recurrence times. Let R be the recurrence time of the state
i. Let Ki(x P(R <_ x) be the distribution function of Ri. By applying the law of
total probability with conditioning on the time and the destination of the first transi-

tion, we see that the LSTs t’i(s E(e-sRi), Res >_ 0 satisfy the equations

oc j-1

’0(s) 0,0(s) + to, j(s)H k(s)’ (4.9a)
j=l k=O

oo iTj-2

Ki(s) Ai, o(s)Hi- 1,i(8) + zAi, i(s) + 4i, j(s) H k(s)’l -< < N,
3:2

’N(S) 4N,o(S)IN 1, N(S)-t- AN, j(s)J- l(s)
g-1

(4.9b)

(4.9c)

-"i(8) 0(8)--Ii_ 1,i(8) -[- Bj(8)G3- 1(8)

l + Bo(s H l i(s)
G (s

(4.9d)

The mean no E(Ro) is easily obtained as

( )-1 +NI (1_ )n0
,, + xi + xii gk A0, j

i=1 i=1 k=0 j=0

+ g ao-N+ (N- j)Aoj
3=0

(4.10)

Pmark: Under the conditions g < ec, i < (x (i 1, 2, N), the following are

equivalent.
(i) The Markov renewal process with transition probability matrix Q(.)is

positive recurrent.
(ii) no <
(iii) ao < oc, g < oc, gk < oc (k 0, 1,2,...,N- 1).
(iv) /3 < 1, a < oc (i 0, 1, 2, N).
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5. The Queue Length Distribution at Time t

In this section, we present the transient queue length distribution at time t and a rela-
tionship between the stationary queue length distributions at an arbitrary time and
at departure epochs. This is accomplished by a classical argument based on the key
renewal theorem for Markov renewal processes. Let Mi, j(t denote the conditional ex-
pected number of visits to state j in the interval [0, t] given I0 i. We assume that
time t 0 corresponds to a departure epoch and that there are customers in the sys-
tem at that time. By rij(t we denote the conditional probability that there are j
customers in the system at time given I0 i. By considering the state of the Mar-
kov renewal process at the epoch of the last departure before time t and using the law
of total probability, we have that

ri(t)- i dMi’(u)e
0

( ,,)

j t-,

S ,.,.o(..E.,i ,v,,-,.,,_ic(t_u_v)(1 Sic(t-u-v))
0 k=l 0

(5.1)

+ dMi, k(u)cj k(t- u)(1 Sk(t- u)), j >_ 1,
k=l 0

where Sk(z S(z) if k > N + 1. We introduce the necessary transforms

z (), z _< ,R _> 0,
o j=O

mi, j(s e-StdM.,,j(t) mi(z,s E zJmi, j(s) z < 1 nes > O.
0 j=0

We have from (5.1) that

o() -X + ,,o(),

1 + ’,o() ,()
0

-Stcj_ic(t)(1- Sic(t))dt, j >_ 1,

where Sk(x)-S(x) for k>_N+l.
summing over j, we have

Multiplying both sides of (5.2) by zj and

1 o(S)IIi(z,s) ,X + smi,
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+ A+ smi, (s) X(z)(1 (0))- E xj(j(O)- (O))zj
j=l

+ (.(z, )- -,o())( (o))- ., ()(.(o)- (O))z)
1=1

(.3)

mi(z,s)(1 (z, s))-mi,o(S)(Z4o(Z,S (z,s))

N
1 E mi, j(s)(4j(z, s) (z s))zj

where 0 s / ,(1 X(z)).
To determine IIi(z,s completely, we have to find mi(z,s and mi, j(s),

j- 0,1,...,N. From the theory of Markov renewal processes (see, for example,
Chapter 10 of [51), we know that

M(t) D(t) + Q( ).M(t),

where M(t) {Mi,j(t), O, 1,..., j O, 1, 2,...} is the Markov renewal matrix of
Q(.), D(t)-{6i, jS(t), i=O,l,. j-O, 1,2, .}, 6i, j is Kronecker delta and 5(t)-
0fort<0andS(t)=lfor t>_0.
We have the transform equations

j+l

-,()- e,+ -,0()0, ;() + }2 ",()2, + 1_ (),0 _< J _< N- 1,
k=l

N

mi, j(s) 5i, j + mi,o(S)to, j(s) + E mi, k(S)4k, j + k(s) (5.4)
k=l

j+l

+ ",()? + 1 (), J -> N.
k=N+l

By routine calculation we have from (5.4) that

(Z (z,8))mi(z,8) Z 4" 1 / mi, o(8)(z40(z,8 (Z, 8))

N

2--1

z + 1 _mio(8)(8 / ) ,X(z)) (z, 8)

N

3=1
We derive readily from the theory of delayed renewal processes that
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i-lH k jtak(8) 1 if > j,
1-Kj(s)

1 if i--j,
1-Kj(s)

ifi<j,Hij(S)l (j(s)
where Gk(s -G(s) for k _> N. Thus we have determined mi(z,s (5.5) and mij(s
(5.6). Therefore, we have from (5.3) and (5.5) that

Hi(z s) 1 "+ 1 )rrti(z s)). (5.7)s + i_ )X(z)(Z* +(1-z

By differentiating (5.7) at z 1 we have, for the mean queue length,

where

mi(1,s

L (s i) (; + (i + l mi(1,s))s),

1- (s)S (s) +j 1
+, =E + (*)]

1-S(s)

Stationary probabilities j limt__,oori(t)

For the derivation of the relationship between the stationary queue length distribu-
tion and the stationary queue length at departures, we use the fundamental mean E.
The fundamental mean E of the Markov renewal process with transition matrix Q(.
is the inner product of the invariant probability vector p (P0., Pl, P2,"’) of Q()
and the vector fxdQ(x)e of Q(.), where e-(1,1,...,1). That is, E-
p fxdQ(x)e. Note that the quantity lIE may be interpreted as the rate at which
transitions occur in the stationary version of the Markov renewal process Q(.). We
have from the theory of Markov renewal processes (see, for example, Chapter 10 of
[5]) that

tmMi j(t)- limsm: j(s)- PilE.s---*O "’
We get from (5.2) and (5.9) that

1 Po
rr=A E’

Po Pk
k---1

"--xk -’---" cJ- k(t)(1- Sk(t))dt’ j >- 1.

0

(5.10)

We have from (5.5), (5.9) and (3.3) that

limsmi(z,s P(z)/E.
s--+O

(5.11)

Employing (5.7) and (5.11), the probability generating function II(z)= limsII(z,s)of
{rj} is obtained as
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1 1 z P(z).H(z) AE 1 X(z)

We have from the fact 1-II(1- )-P(1- and (5.12) that E- 1/(AS ).
have the well-known formula (e.g. see Dshalalow [6, pp. 68])

Thus we

1 z P(z) (5.13)II(z) -21_ X(z)
linking the probability generating function II(z) for the limiting distribution of the
number of customers present at an arbitrarily selected instant of time and the corres-
ponding probability generating function P(z) no the embedded chain. The mean
queue length is given by

L II’(1)
2 P’(1)- X"(1) (5 14)2

Remark: If N- 0, that is, in the ordinary MX/G/1 queue, then we have P0
(1 Z)/ and hence (5.13) becomes

I)BH(z) (1 -/3),(z (z)
z-B(z)

/3.(z-z 1)S (A- AX(z))(1

which coincides with the classical result (e.g., see Takagi [16]).

6. Numerical Results

In this section, we present some numerical results graphically for the transient mean

queue length and the queue length distributions to demonstrate the computability of
our results. The parameters for arrival process used here are as follows:

Arrival rate of batches is 0.4;
Batch size distribution is geometric with mean 2.5, that is,

xn 0.4(0.6)n 1 2n 1,

We use the threshold N 6 and the LSTs of service times are as follows:
SI(S) 2+s’

S2(s -S3(s y a
i=1 tti+s

where a- (0.05, 0.15, 0.2, 0.25, 0.35)and t- (0.25, 0.75, 1,0, 1.25, 1.75),

4-5(s)--6(s)-04() ( 1 )5 ( 10 )
10 5 k4+s

+0.1 l+s +0.1 iO+s

The mean service times are given as 1- 1.5, 2- 3- 1.0, 4- 5-6- 0.75 and
-0.5.
For finding the stationary distribution and mean queue length, the %llowing

procedure can be used:
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Calculate p*-(Po,’", PN) by solving qQ*-q and using (3.4) and (3.5).
The probabilities Pk, k >_ N + 1 can be obtained recursively from (3.2) as

Pk + 1 Bo Pk (PoAok + PiAi, k -t- 1 + PiBk -t- 1 (6.1)
i=1 i=N+I

However, this formula is usually found to be numerically unstable as noted
in Ramaswami [13] so instead of (6.1), the formula

PoTtOk + -,- PjTij, k j + 1 -t- 2 k 1
j N + lPjk- j + 1 k>N+l, (6.2)Pk 1_1

where Aij-c= jAik and B: = c= jBk, seems to be more appro-
priate to have numerical results (113])

3. For the mean queue length L, use (3.7) and (5.14).
Since our transient results are complicated LSTs, we need to invert them

numerically. There are many algorithms for numerical inversion of Laplace
transforms (see [1]). Here we adopt Algorithm 368 in Commun. ACM [15], called the
Gaver-Stehfest method, which seems to be easily available for our formulae. Briefly

[15]), an approximatediscussing the Gaver-Stehfest method (for further details, see
numerical inversion f(t) of f*(s) at time t is given by

where the coefficients

Vi--(--1)M/2+i
min(i,M/2)

L--]

kM/2(2k)!
(M/2 k)!k!(k- 1)!(i- k)!(2k i)!

depends only on the constant M.
Inversion procedures for L (s i) and 7rij(s are as follows:
1. For k 1,2,...,M,

(2) Find C (sk) by solving (4.2) and then compute Gi(sk) i- N- 1,...,
0 recursively.

(3) For each j, solve the linear system Cj(sk)tj(sk)- -bj(sk)in (4.8).
(4) Compute Kj(sk) j- 0, 1,...,N.
(5) Compute () from (a.6).
(6) Calculate L (skli) from (5.8) and "ij(sk) from (5.2).
Then calculate L(tli)and riy(t using (6.3).

Figures 1 and 2 plot the transient queue length distributions for 7rio(t and ri6(t
and show how the transient results approach to the stationary ones. Figure 3 shows
the transient behavior of mean queue length as time varies with various initial condi-
tions. We observe that, as expected, as time t increases, the initial distribution grad-
ually spreads out to approach the stationary distribution.
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Figure 1: Queue length distribution rio(t with i- 0,3,5, 7, 10
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Figure 2: Queue length distribution 7r/6(t with i- 0,3,5, 7, 10
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Figure 3: Mean Queue Length L(tli with i- 0, 3, 5, 7, 10
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7. The Virtual Waiting Time

We assume the first-come first-served discipline. The virtual waiting time U(t) si the
length of time the first customer in the batch arriving at time t would have to wait
before entering service.

Let W(t,x)= P(U(t) <_ x). For the event {U(t) _< x}, there are three possibilities
to consider (see Figure 4).

arrival occurs
(group size=n)

last departure no customers arrival

(syste empty) 0]_first service completes

0 u u/v Z

arrival occurs
(group size=n)

last departure n customers arrival
(system size= n1) first service completes

0 u u/v ’ Z" Z Z3

last departure no arrivals
(systemempty)

0 u

Figure 4: Scenarios for the virtual waiting time at time t

Case (i): At time t, the server is busy and the last state visited by the embedded
Markov renewal process is 0. This means t falls during a first service of a busy
period.

Case (ii): The server is busy at time t and the last state visited by the embedded
Markov renewal process is some state k _> 1. In this case, t falls during the second or
later service of a busy period.

Case (iii): The server is idle at time t.
We first consider each case separately and then combine them.
Case (i): Suppose that embedded Markov renewal process visits the state 0 at

time u<t and a batch of size n arrives at u+v<t. Let n0 be the number of
customers who arrive during the time interval [u+v,t]. Since there are no
departures in [u + v, t], the remaining service time of the customer being serve at time
t, show service time is Z, is Z1-Z-(t-(u+v))-Z+u+v-t. Let Zj, (j-
2, 3,..., n + no) be the service time of the jth customer in the system at time t. Then

n + 0Z To specify the discussionthe virtual waiting time is the time period 3. j"
above, we introduce some notations:

T" interarrival time of groups

nj" number of customers arriving during Zj with Z0 t- (u + T)
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by

l(n, no)-n + no (In cases of no confusions, we write /instead of l(n, no) for the
notational simplicity.)

kj n -t- no + nI + -t- rtj 1 (J 1), j 1,2,...,/- 1.
By the law of total probability, the probability of {U(t)_< x} in Case (i) is given

E x
n=l no=O j--1u=O v--O

he- VCno(t- u- v)dvdMi, o(U),
(7.1)

where P(EIn, no, u,T- v) means the conditional probability of E given that the
Markov renewal process visits the state 0 at time u and a group of size n arrives at
u + v and no customers arrive during [u + v, t]. Given that n, no, nl,... nl, u, T v,
the random variables Z1, Z2,... Z are independent and have the conditional distribu-
tions

P(wI ( Z1

_
wI + dwI n, no, u, T v) dSn(t u- v + w1),

P(wj < Zj <_ wj + dwj n, no, nl, ., nj l, U, T v) dSk .(wj), j 2,3,...,/.

Repeatedly applying the law of total probability to (7.1) yields

t--u

n=l no=U u=O v--0

n, no(t- u- v,x)dvdMi,o(U), (7.3)

where
x x-w1

cx cx:) oo

/ )Cni / dSk2(W2)Cn2(w2)Vn, no(t’x) E E E dSn(t +wl (Wl)
nl=O n2--O n/_l--O Wl= 0 w2--O (7.4)

_E

""/ dSkl l
(Wl -1)cnl (Wl / dSkl(Wl)"

wl 1 0 w 0

Case (ii):
formula

By arguments similar to those of Case (i), Case (ii) contributes the

f )vCn0 n, no
n 1 nO 0

u 0

(t-u,x)dvdMi, n(u). (7.5)

Case (iii): In this case, the waiting time is clearly 0.
Combining the results obtained for each case, we have that the distribution

function W(t,x)of U(t) given I0 -/is

 0(t)
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n=l n0=0 u=0v=0

n--1 n0--0

he- VCno(t- u v)Vn, no(t u v,x)dvdMi,o(U

Cno(t- u)Yn, no(t- u, x)dMi, n(U). (7.6)
u’-O

In terms of the double Laplace transform V*(r,s)- f fe -rt- sXW(dt, dx), we

have

n--1 n0-----0
where

V,o(t,s e-V
0

xn, +.rmi, o(’) + mi, n(r) e rtCno(t)Vn, no(t,s)dt
0

(7.7)

o, + E E...E
n1=0 n2=O hi_ 1=0

e SXCnl (X)dSn(t x)
x---o- .(,)dS(.) ().n

3j--2 0

(7.8)

The Laplace transform W(s) of limiting distribution W(x)-limt__.oW(t,x is
given by

W(s) lim rW*(r,s)
r.--O

/ %( o(t= o + (po + p) t)v, )t.
n=l n0=0 0

(7.9)

Remark: Formula (7.9) seems to be quite complicated, so it is hard to have a
closed form for general N. Here we write down the special cases N 0 and N 1.

Case N- 0: When N- 0, (7.8) becomes

n, no(t s) j e- sxdS(t + x)[ (s)]
n + no 1

o
(7.10)

For notational simplicity, let

( S (s), r/- A(1- X(S (s))).

Routing calculation yields from (7.10) that

Xn t n, no
t, S

n----1 n0--0
-sxdS(t+x),

(7.11)
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From (7.9)and (7.11), we obtain

ro +,2P(X()- 1)+ P() 1 (7.12)

(1- fl)s- + x( ())’

where the third equality is obtained from P0 (1 fl)/2, r0 1 and

P(() + Po(X(()- 1) P(1 X())
s()-

which in turn is obtained from (3.3).
queue, then (7.12) becomes

If X(z)- z, the case of the ordinary M/G/1

(1- fl)s
s- + s (s)

which is the well-known Pollaczek-Khinchin formula.
Case N- 1" After a calculation similar to but more lengthy than that for N- 0,

we get

Vn, no(t, 8 (S1(8) S (8))

for N- 1. Hence after routine calculation we have

/r(8) 7to -- ’ [(POX1 + Pl)" I

q- P(S (A + s))- Po(1 X(S (A + s))) II

+(P( (s))- Po(l- X( (s)))). Ill],
(7.13)

where

S1(8 S (s)l Sl(W)- S (o)- SI() q- s)q- S () q- s)
S ( + ) + x(s ( + ))

Sl()-S(q-s
8
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Sl(r])- S (])- SI(S + S (s)
s-A(1-X(S(s)))

II-- SI(S)-S(s) S(w)-S(,-t-s)
( + ) +x( ( + ))’

S (rl)-S (s) 1lII=
s- A(1 X(S (s))) S (s)

Here w-(1-X(S(+s))) and r/-(1-X(S(s))) as for N-0. We note from
(3.3) and (2.1) that for N 1

P(z)-Po(1-X(z))- ff [(P0Xl +Pl)(I(Z,O)-(z,O))-Po(1-X(z))1z-B(z,O)
(7.14)

z [(poxl__pl)(l()_())_po(l_X(z))]
z-S()

where =/(1- X(z)). Thus we have from (7.13) and (7.14) that

W(s) r0 + ,k (POX1 + Pl)" IV + Po" V,

where

IV SI(S)-S(s) S(,-[-s)-SI(+s) SI(,,)- SI(,, + s)
8

S(s)-SI(S
s- (1 X( (s)))’

v SI(s S (s) 1- X(S~(, + s)) +
S ( + ) + X(S ( + ))

1-X(S(s))
s-,(1- X(S (s)))
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