APPROXIMATION OF SOLUTIONS TO RETARDED DIFFERENTIAL EQUATIONS WITH APPLICATIONS TO POPULATION DYNAMICS

D. BAHUGUNA AND M. MUSLIM

Received 12 October 2003 and in revised form 24 July 2004

We consider a retarded differential equation with applications to population dynamics. We establish the convergence of a finite-dimensional approximations of a unique solution, the existence and uniqueness of which are also proved in the process.

1. Introduction

Consider the following partial differential equation with delay:

$$\frac{\partial u}{\partial t}(t,x) = \frac{\partial^2 u}{\partial x^2}(t,x) + f(t,x,u(t,x),u(t-r,x)), \quad t > 0, x \in [0,1],$$

$$\frac{\partial u}{\partial x}(t,0) = 0 = \frac{\partial u}{\partial x}(t,1), \quad t \ge 0,$$

$$u(s,x) = h(s,x), \quad s \in [-r,0], x \in [0,1],$$
(1.1)

where $f:[0,\infty) \times [0,1] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and $h:[-r,0] \times [0,1] \to \mathbb{R}$ is a given function. The above problem for f(t,x,u,v) = -d(x)u + b(x)v models a linear growth of a population in [0,1], where $u(t, \cdot)$ is the population density at time *t*, and the term $\partial^2 u/\partial x^2$ represents the internal migration. The continuous functions $d, b: [0,1] \to [0,\infty)$ represent space-dependent death and birth rates, respectively, and *r* is the delay due to pregnancy (cf. Engel and Nagel [10, page 434]).

We formulate (1.1) as the following retarded differential equation:

$$u'(t) + Au(t) = f(t, u(t), u(a(t))), \quad 0 < t \le T < \infty,$$

$$u(t) = h(t), \quad t \in [-r, 0],$$
 (1.2)

in a Hilbert space *H*, where -A is the infinitesimal generator of a C_0 semigroup { $S(t) : t \ge 0$ } of bounded linear operators in *H*, $h \in \mathcal{C}_0 := C([-r, 0]; H)$ is a given function and the function *a* is defined from [0, T] into [-r, T] with the delay property $a(t) \le t$ for $t \in [0, T]$. For (1.1), we may take $X = L^2[0, 1]$ and $D(A) = \{u \in H^2[0, 1] : u'(0) = u'(1) = 0\}$ with $Au = -d^2u/dx^2$ for $u \in D(A)$. It is known that the semigroup S(t) generated by -A is analytic in *H* (cf. Engel and Nagel [10, page 454]).

Copyright © 2005 Hindawi Publishing Corporation

Journal of Applied Mathematics and Stochastic Analysis 2005:1 (2005) 1–11 DOI: 10.1155/JAMSA.2005.1

For $t \in [0, T]$, we will use the notation $\mathscr{C}_t := C([-r, t]; H)$ for the Banach space of all continuous functions from [-r, t] into H endowed with the supremum norm

$$\|\psi\|_t := \sup_{-r \le \eta \le t} ||\psi(\eta)||, \quad \psi \in \mathscr{C}_t.$$

$$(1.3)$$

The linear case of (1.2) in which $f(t, \psi) = L\psi$, with a bounded linear operator L: $\mathscr{C}_T \to X$ is recently considered by Bátkai et al. [7] using the theory of perturbed Hille-Yosida operators. A particular semilinear case of (1.2) is considered by Alaoui [1].

For the earlier works on existence, uniqueness, and stability of various types of solutions of differential and functional differential equations, we refer to Bahuguna [2, 3], Balachandran and Chandrasekaran [6], Lin and Liu [13], and the references therein. The related results for the approximation of solutions may be found in [4, 5].

Initial studies concerning existence, uniqueness, and finite-time blowup of solutions for the equation

$$u'(t) + Au(t) = g(u(t)), \quad t \ge 0,$$

 $u(0) = \phi,$ (1.4)

have been considered by Segal [17], Murakami [15], and Heinz and von Wahl [12]. Bazley [8, 9] has considered the semilinear wave equation

$$u''(t) + Au(t) = g(u(t)), \quad t \ge 0,$$

$$u(0) = \phi, \qquad u'(0) = \psi,$$
(1.5)

and has established the uniform convergence of approximations of solutions to (1.5) using the existence results of Heinz and von Wahl [12]. Göthel [11] has proved the convergence of approximations of solutions to (1.4), but assumed *g* to be defined on the whole of *H*. Based on the ideas of Bazley [8, 9], Miletta [14] has proved the convergence of approximations to solutions of (1.4). The existence, uniqueness, and continuation of classical solutions to (1.2) are considered by Bahuguna [3]. In the present work, we use the ideas of Miletta [14] and Bahuguna [2, 3] to establish the convergence of finite-dimensional approximations of the solutions to (1.2).

2. Preliminaries and assumptions

Existence of a solution to (1.2) is closely associated with the existence of a function $u \in \mathscr{C}_{\widetilde{T}}$, $0 < \widetilde{T} \leq T$ satisfying

$$u(t) = \begin{cases} h(t), & t \in [-r,0], \\ S(t)h(0) + \int_0^t S(t-s)f(s,\psi(s),\psi(a(s)))ds, & t \in [0,\widetilde{T}], \end{cases}$$
(2.1)

and such a function u is called a *mild solution* of (1.2) on $[-r, \tilde{T}]$. A function $u \in \mathscr{C}_{\tilde{T}}$ is called a *classical solution* of (1.2) on $[-r, \tilde{T}]$ if $u \in C^1((0, \tilde{T}]; H)$ and u satisfies (1.2) on $[-r, \tilde{T}]$.

We assume that in (1.2), the linear operator *A* satisfies the following hypothesis. (H1) *A* is a closed, positive definite, selfadjoint linear operator from the domain $D(A) \subset H$ into *H* such that D(A) is dense in *H*, *A* has the pure point spectrum

$$0 < \lambda_0 \le \lambda_1 \le \lambda_2 \le \cdots$$
 (2.2)

and a corresponding complete orthonormal system of eigenfunctions $\{u_i\}$, that is,

$$Au_i = \lambda_i u_i, \qquad (u_i, u_j) = \delta_{ij}, \tag{2.3}$$

where $\delta_{ij} = 1$ if i = j and zero otherwise.

If (H1) is satisfied, then the semigroup S(t) generated by -A is analytic in H. It follows that the fractional powers A^{α} of A for $0 \le \alpha \le 1$ are well defined from $D(A^{\alpha}) \subseteq H$ into H (cf. Pazy [16, pages 69–75]). $D(A^{\alpha})$ is a Banach space endowed with the norm

$$\|x\|_{\alpha} = \|A^{\alpha}x\|, \quad x \in D(A^{\alpha}).$$

$$(2.4)$$

For $t \in [0, T]$, we denote $\mathscr{C}_t^{\alpha} := C([-r, t]; D(A^{\alpha}))$ endowed with the norm

$$\|\psi\|_{t,\alpha} := \sup_{-r \le \eta \le t} \left| |\psi(\eta)| \right|_{\alpha}.$$
(2.5)

The nonlinear function f is assumed to satisfy the following hypotheses.

(H2) The function $h \in \mathscr{C}_0^{\alpha}$.

(H3) The map f is defined from $[0, \infty) \times D(A^{\alpha}) \times D(A^{\alpha})$ into $D(A^{\beta})$ for $0 < \beta \le \alpha < 1$ and there exists a nondecreasing function L_R from $[0, \infty)$ into $[0, \infty)$ depending on R > 0such that

$$\left\| f(t_1, u_1, v_1) - f(t_2, u_2, v_2) \right\| \le L_R(t) \left[|t - s|^{\gamma} + \left\| u_1 - u_2 \right\|_{\alpha} + \left\| v_1 - v_2 \right\|_{\alpha} \right],$$
(2.6)

for all $(t_i, u_i, v_i) \in [0, \infty) \times B_R(D(A^{\alpha}), h(0)) \times B_R(D(A^{\alpha}), h(a(0)))$, for i = 1, 2, where $0 < \gamma < 1$, $B_R(Z, z_0) = \{z \in Z : ||z - z_0||_Z \le R\}$ is the ball of radius *R* centered at z_0 in a Banach space *Z* with its norm $|| \cdot ||_Z$.

(H4) The function $a: [0,T] \rightarrow [-r,T]$ is continuous and satisfies the delay property $a(t) \le t$ for $t \in [0,T]$.

3. Approximate solutions and convergence

Let H_n denote the finite-dimensional subspace of H spanned by $\{u_0, u_1, \ldots, u_n\}$ and let $P^n : H \to H_n$ be the corresponding projection operator for $n = 0, 1, 2, \ldots$. Let $0 < t < \tilde{T} \le T$ be such that

$$||(S(t) - I)A^{\alpha}h(0)|| \le \frac{R}{3},$$

$$||A^{\alpha}(h_n(0) - h(0))|| \le \frac{R}{3}.$$
(3.1)

Let \bar{h} be the extension of h by the constant value h(0) on [0, T]. We set

$$T_{0} = \min\left\{\widetilde{T}, \left(\frac{(1-\alpha)R}{3M_{0}C_{\alpha}}\right)^{1/(1-\alpha)}, \left(\frac{3(1-\alpha)}{8L_{R}(T_{0})C_{\alpha}}\right)^{1/(1-\alpha)}\right\},$$
(3.2)

where $M_0 = [L_R(T_0)(2R + T^{\gamma} + 4\|\bar{h}\|_{T_0,\alpha}) + \|f(0,h(0),h(a(0)))\|]$ and C_{α} is a positive constant such that $\|A^{\alpha}S(t)\| \le C_{\alpha}t^{-\alpha}$ for t > 0.

We define

$$f_n: [0, T_0] \times H \times H \longrightarrow D(A),$$

$$f_n(t, u, v) = P^n f(t, P^n u, P^n v), \quad (t, u, v) \in [0, T_0] \times H \times H,$$

$$h_n: [-r, 0] \longrightarrow D(A), \quad h_n(t) = P^n h(t), \ t \in [-r, 0].$$
(3.3)

Let $A^{\alpha}: \mathscr{C}_{t}^{\alpha} \to \mathscr{C}_{t}$ be given by $(A^{\alpha}\psi)(s) = A^{\alpha}(\psi(s)), s \in [-r, t], t \in [0, T_{0}]$. We define a map $F_{n}: B_{R}(\mathscr{C}_{T_{0}}, A^{\alpha}\bar{h}) \to \mathscr{C}_{T_{0}}$ as follows:

$$(F_{n}\psi)(t) = \begin{cases} A^{\alpha}h_{n}(t), & t \in [-r,0], \\ S(t)A^{\alpha}h_{n}(0) & \\ +\int_{0}^{t}A^{\alpha}S(t-s)f_{n}(s,A^{-\alpha}\psi(s),A^{-\alpha}\psi(a(s)))ds, & t \in [0,T_{0}], \end{cases}$$
(3.4)

for $\psi \in B_R(\mathscr{C}_{T_0}, A^{\alpha}\bar{h})$.

PROPOSITION 3.1. For each $n \ge n_0$, where n_0 is large enough and $n, n_0 \in \mathbb{N}$, there exists a unique $w_n \in B_R(\mathscr{C}_{T_0}, A^{\alpha}\bar{h})$ such that $F_nw_n = w_n$ on $[-r, T_0]$.

Proof. First, we show that for any $\psi \in B_R(\mathscr{C}_{T_0}, A^{\alpha}\bar{h}), F_n\psi \in B_R(\mathscr{C}_{T_0}, A^{\alpha}\bar{h})$. For $t \in [-r, 0]$,

$$(F_n\psi)(t) - A^{\alpha}\bar{h}(t) = A^{\alpha}(P^n - I)h(t) = A^{\alpha}(P^n - I)h(t) \longrightarrow 0, \quad \text{as } n \longrightarrow \infty.$$
(3.5)

Thus, for $n \ge n_0$, n_0 large enough, for $t \in [-r, 0]$, we have

$$\left|\left|\left(F_{n}\psi\right)(t) - A^{\alpha}\bar{h}(t)\right|\right| \le R.$$
(3.6)

Now, for $t \in (0, T_0]$, we have

$$||(F_{n}\psi)(t) - A^{\alpha}\bar{h}(t)|| \leq ||(S(t) - I)A^{\alpha}h(0)|| + ||A^{\alpha}(h_{n}(0) - h(0))|| + \int_{0}^{t} ||A^{\alpha}S(t - s)|| ||f_{n}(s, A^{-\alpha}\psi(s), A^{-\alpha}\psi(a(s)))|| ds.$$
(3.7)

For $s \in [0, T_0]$,

$$\begin{aligned} ||f_{n}(s,A^{-\alpha}\psi(s),A^{-\alpha}\psi(a(s)))|| \\ &\leq ||f(s,P^{n}A^{-\alpha}\psi(s),P^{n}A^{-\alpha}\psi(a(s)))|| \\ &\leq ||f(s,P^{n}A^{-\alpha}\psi(s),P^{n}A^{-\alpha}\psi(a(s))) - f(s,P^{n}\bar{h}(s),P^{n}\bar{h}(a(s)))|| \\ &+ ||f(s,P^{n}\bar{h}(s),P^{n}\bar{h}(a(s))) - f(0,h(0),h(a(0)))|| \\ &+ ||f(0,h(0),h(a(0)))|| \\ &\leq L_{R}(T_{0})(2R + T^{\gamma} + 4\|\bar{h}\|_{T_{0},\alpha}) + ||f(0,h(0),h(a(0)))||. \end{aligned}$$
(3.8)

It follows from the choice of T_0 that $F_n : B_R(\mathscr{C}_{T_0}, A^{\alpha}\bar{h}) \to B_R(\mathscr{C}_{T_0}, A^{\alpha}\bar{h})$ for *n* large enough. Now, we show that F_n is a strict contraction. For $\psi_1, \psi_2 \in B_R(\mathscr{C}_{T_0}, A^{\alpha}\bar{h})$, $(F_n\psi_1)(t) - (F_n\psi_2)(t) = 0$ on [-r, 0] and for $t \in [0, T_0]$, we have

$$||(F_n\psi_1)(t) - (F_n\psi_2)(t)|| \le 2L_R(T_0)C_\alpha \frac{T_0^{1-\alpha}}{1-\alpha}||\psi_1 - \psi_2||_{T_0} \le \frac{3}{4}||\psi_1 - \psi_2||_{T_0}.$$
 (3.9)

Taking the supremum over $[-r, T_0]$, it follows that F_n is a strict contraction on $B_R(\mathscr{C}_{T_0}, A^{\alpha}\bar{h})$ and hence there exits a unique $w_n \in B_R(\mathscr{C}_{T_0}, A^{\alpha}\bar{h})$ with $w_n = F_n w_n$ on $[-r, T_0]$. This completes the proof of the proposition.

Let $u_n = A^{-\alpha} w_n$. Then, $u_n \in B_R(\mathscr{C}^{\alpha}_{T_0}, \bar{h})$ and satisfies

$$u_n(t) = \begin{cases} h_n(t), & t \in [-r, 0], \\ S(t)h_n(0) & \\ + \int_0^t S(t-s)f_n(s, u_n(s), u_n(a(s)))ds, & t \in [0, T_0]. \end{cases}$$
(3.10)

Remarks 3.2. The above solution $u_n(t)$ is known as the Faedo-Galerkin approximate solution of (1.2).

COLLORARY 3.3. If $h(t) \in D(A)$ for all $t \in [-\tau, 0]$, then $w_n(t) \in D(A^\beta)$ for all $t \in [-\tau, T_0]$, where $0 \le \beta < 1$, $0 \le \alpha + \beta < 1$, and $w_n(t)$ is the solution of the integral equation (3.4).

Proof. For any $g \in D(A^{\beta})$ and $t \in [-\tau, 0]$, we have

$$\left|\left(A^{\beta}g, w_{n}(t)\right)\right| \leq \|g\| \left\|A^{\beta+\alpha}h_{n}(t)\right\|.$$

$$(3.11)$$

Now, for any $t \in (0, T_0]$, we have

$$(A^{\beta}g, w_{n}(t)) = (g, A^{\beta+\alpha}S(t)h_{n}(0)) + \int_{0}^{t} (g, A^{\beta+\alpha}S(t-s), f_{n}(s, A^{-\alpha}w_{n}(s), A^{-\alpha}w_{n}(a(s)))) ds.$$
(3.12)

The first term is bounded for $t \in (0, T]$ as

$$|(A^{\beta}g, S(t)h_{n}(0))| \leq ||g||M||A^{\beta+\alpha}h(0)||.$$
(3.13)

The second term is treated as follows:

$$\left\| \int_{0}^{t} \left(g, A^{\beta+\alpha} S(t-s), f_{n}(s, u_{n}(s), u_{n}(a(s))) \right) ds \right\| \leq M_{0} \|g\| C_{\beta+\alpha} \frac{T_{0}^{1-(\beta+\alpha)}}{1-(\beta+\alpha)}.$$
(3.14)

Hence the corollary is proved.

COLLORARY 3.4. If $h(t) \in D(A)$ for all $t \in [-\tau, 0]$, then for any $t \in [-\tau, T_0]$, there exists a constant M_1 , independent of n, such that

$$\left\|\left|A^{\beta}w_{n}(t)\right\|\right| \le M_{0} \tag{3.15}$$

for all $-\tau \leq t \leq T_0$ and $0 \leq \beta < 1$.

Corollary 3.4 is a consequence of Corollary 3.3.

PROPOSITION 3.5. The sequence $\{u_n\} \subset \mathcal{C}_{T_0}$ is a Cauchy sequence and therefore converges to a function $u \in \mathcal{C}_{T_0}$ if the assumptions (H1)–(H4) hold.

Proof. From Proposition 3.1 we have (3.10). With $u_n = A^{-\alpha}w_n$, (3.10) becomes

$$w_{n}(t) = \begin{cases} A^{\alpha}h_{n}(t), & t \in [-r,0], \\ S(t)A^{\alpha}h_{n}(0) & \\ +\int_{0}^{t}A^{\alpha}S(t-s)f_{n}(s,A^{-\alpha}u_{n}(s),A^{-\alpha}u_{n}(a(s)))ds, & t \in [0,T_{0}]. \end{cases}$$
(3.16)

For $n \ge m \ge n_0$, where n_0 is large enough, $n, m, n_0 \in \mathbb{N}$, $t \in [-r, 0]$, we have

$$\begin{aligned} |w_n(t) - w_m(t)|| &\leq ||h_n(t) - h_m(t)||_{\alpha} \\ &\leq ||(P^n - P^m)h(t)||_{\alpha} \longrightarrow 0 \quad \text{as } m \longrightarrow \infty. \end{aligned}$$
(3.17)

For $t \in (0, T_0]$ and n, m, and n_0 as above, we have

$$\begin{aligned} ||w_{n}(t) - w_{m}(t)|| &\leq ||(P^{n} - P^{m})S(t)A^{\alpha}h(0)|| \\ &+ \int_{0}^{t} ||A^{\alpha}S(t-s)[f_{n}(s, A^{-\alpha}w_{n}(s), A^{-\alpha}w_{n}(a(s))) \\ &- f_{m}(s, A^{-\alpha}w_{m}(s), A^{-\alpha}w_{m}(a(s)))]||ds. \end{aligned}$$
(3.18)

Now, using Corollaries 3.3 and 3.4, we have

$$\begin{split} ||f_{n}(s, A^{-\alpha}w_{n}(s), A^{-\alpha}w_{n}(a(s)) - f_{m}(s, A^{-\alpha}w_{m}(s), A^{-\alpha}w_{m}(a(s))))|| \\ &\leq ||(P^{n} - P^{m})f(s, P^{m}A^{-\alpha}w_{m}(s), P^{m}A^{-\alpha}w_{m}(a(s)))|| \\ &+ L_{R}(T_{0})[||(P^{n} - P^{m})w_{m}(s)|| + ||(P^{m} - P^{m})w_{m}(a(s))||] \\ &+ 2L_{R}(T_{0})||w_{n} - w_{m}||_{s} \\ &\leq C_{1} + C_{2}\frac{1}{\lambda_{m}^{\beta}} + C_{2}||w_{n} - w_{m}||_{s} \end{split}$$
(3.19)

D. Bahuguna and M. Muslim 7

for some positive constants C_1 and C_2 , where $C_1 = ||(p^n - P^m)||[L_R(T_0)(2R + T^\gamma + 4\|\tilde{h}\|_{T_0,\alpha}) + ||f(0,h(0),h(a(0)))||]$ and $C_2 = 2L_R(T_0)$. Thus, we have the following estimate:

$$\begin{aligned} ||w_{n}(t) - w_{m}(t)|| &\leq C_{0} ||(P^{n} - P^{m})A^{\alpha}h(0)|| + \frac{C_{1}C_{\alpha}T_{0}^{1-\alpha}}{(1-\alpha)} + \frac{C_{2}C_{\alpha}T_{0}^{1-\alpha}}{(1-\alpha)\lambda_{m}^{\beta}} \\ &+ C_{2}C_{\alpha}\int_{0}^{t} (t-s)^{-\alpha} ||w_{n} - w_{m}||_{s}ds, \end{aligned}$$
(3.20)

where $C_0 = Me^{\omega T}$. Since $||w_n - w_m|| = ||h_n - h_m||_{\alpha}$ on [-r, 0], we have

$$\begin{aligned} ||w_{n} - w_{m}||_{t} &\leq ||h_{n} - h_{m}||_{\alpha} + C_{0}||(P^{n} - P^{m})A^{\alpha}h(0)|| + \frac{C_{1}C_{\alpha}T_{0}^{1-\alpha}}{(1-\alpha)} \\ &+ \frac{C_{2}C_{\alpha}T_{0}^{1-\alpha}}{(1-\alpha)\lambda_{m}^{\beta}} + C_{2}C_{\alpha}\int_{0}^{t} (t-s)^{-\alpha}||w_{n} - w_{m}||_{s}ds. \end{aligned}$$
(3.21)

Application of Gronwall's inequality gives the required result. This completes the proof of the proposition. $\hfill \Box$

With the help of Propositions 3.1 and 3.5, we may state the following existence, uniqueness, and convergence result.

THEOREM 3.6. Suppose that (H1)-(H4) hold. Then, there exist unique functions $u_n \in C([-r, T_0]; H_n)$ and $u \in C([-r, T_0]; H)$ satisfying (3.10) and

$$u(t) = \begin{cases} h(t), & t \in [-r,0], \\ S(t)h(0) & \\ + \int_0^t S(t-s)f(s,u(s),u(a(s)))ds, & t \in [0,T_0], \end{cases}$$
(3.22)

such that $u_n \to u$ in $C([-r, T_0]; H)$ as $n \to \infty$, where $h_n(t) = P^n h(t)$ and $f_n(t, u, v) = P^n f(t, P^n u, P^n v)$.

4. Regularity

The functions u_n and u in Theorem 3.6 satisfying (3.10) and (3.22) may be called approximate mild solution and mild solution of (1.2) on $[-\tau, T_0]$, respectively. In this section, we establish the regularity of the mild solution u of (1.2) under an additional assumption of Hölder continuity of the function a on [0, T]. We note that if a is Lipschitz continuous on [0, T], then it is also Hölder continuous on [0, T]. We establish the following regularity result.

THEOREM 4.1. Suppose that (H1)-(H4) hold and, in addition, suppose that $a : [0,T] \rightarrow [-r,T]$ is Hölder continuous, that is, there exist constants $0 < \delta < 1$ and $L_a \ge 0$ such that

$$\left| a(t) - a(s) \right| \le L_a |t - s|^{\delta}.$$

$$\tag{4.1}$$

Then, the mild solution u given by (3.10) of (1.2) is a unique classical solution of (1.2) on $[-r, T_0]$.

We prove that u is in fact a unique classical solution. For this, we first prove that the mild solution

$$u(t) = \begin{cases} h(t), & t \in [-r,0], \\ S(t)h(0) + \int_0^t S(t-s)f(s,u(s),u(a(s)))ds, & t \in [0,T_0], \end{cases}$$
(4.2)

is locally Hölder continuous on $(0, \tilde{T}]$. Let $v(t) = A^{\alpha}u(t)$. Then,

$$v(t) = \begin{cases} A^{\alpha}h(t), & t \in [-r,0], \\ S(t)A^{\alpha}h(0) + \int_0^t S(t-s)A^{\alpha}f(s,A^{-\alpha}v(s),A^{-\alpha}v(a(s)))ds, & t \in [0,T_0]. \end{cases}$$
(4.3)

Let

$$N = \sup_{t \in [0,\tilde{T}]} ||f(t, A^{-\alpha}v(t), A^{-\alpha}v(a(t)))||.$$
(4.4)

It is known that (cf. [16, page 197]) for every β with $0 < \beta < 1 - \alpha$ and every 0 < h < 1, we have

$$\left|\left|\left(S(h)-I\right)A^{\alpha}S(t-s)\right|\right| \le C_{\beta}h^{\beta}\left|\left|A^{\alpha+\beta}S(t-s)\right|\right| \le Ch^{\beta}(t-s)^{-\alpha+\beta}, \quad 0 < s < t.$$
(4.5)

For $0 < t < t + h \le T_0$, we have

$$\begin{aligned} ||v(t+h) - v(t)|| &\leq ||(S(h) - I)A^{\alpha}S(t)\chi(0)|| \\ &+ \int_{0}^{t} ||(S(h) - I)A^{\alpha}S(t-s)f(s, A^{-\alpha}v(s), A^{-\alpha}v(a(s)))|| ds \\ &+ \int_{t}^{t+h} ||A^{\alpha}S(t+h-s)f(s, A^{-\alpha}v(s), A^{-\alpha}v(a(s)))|| ds. \end{aligned}$$
(4.6)

Using (4.5), we get

$$\left|\left|\left(S(h)-I\right)A^{\alpha}S(t)\chi(0)\right|\right| \le Ct^{-(\alpha+\beta)}h^{\beta}\left|\left|\chi(0)\right|\right| \le M_{1}h^{\beta},\tag{4.7}$$

where M_1 depends on t and $M_1 \rightarrow \infty$ as $t \rightarrow 0$. Now,

$$\int_{0}^{t} \left| \left| \left(S(h) - I \right) A^{\alpha} S(t - s) f\left(s, A^{-\alpha} \nu(s), A^{-\alpha} \nu(a(s)) \right) \right| \right| ds$$

$$\leq CNh^{\beta} \int_{0}^{t} (t - s)^{-(\alpha + \beta)} ds$$

$$\leq M_{2}h^{\beta},$$
(4.8)

where M_2 is independent of t. For the last integral in (4.6), we have

$$\int_{t}^{t+h} \left| \left| A^{\alpha}S(t+h-s)f\left(s,A^{-\alpha}v(s),A^{-\alpha}v\left(a(s)\right)\right) \right| \right| ds$$

$$\leq NC_{\alpha} \int_{t}^{t+h} (t+h-s)^{-\alpha} ds$$

$$\leq \frac{NC_{\alpha}}{1-\alpha} h^{1-\alpha}$$

$$\leq M_{3}h^{\beta},$$
(4.9)

where M_3 is also independent of t. The above estimates imply that

$$\left| \left| v(t) - v(s) \right| \right| \le L_{\nu} |t - s|^{\beta}, \quad |t - s| < 1, \ 0 < s, \ t \le T_0.$$
(4.10)

For any $0 < s < t \le T_0$, with $t - s \ge 1$, we insert $t_1 < t_2 < \cdots < t_n$ between *s* and *t* such that $1/2 \le t_{i+1} - t_i < 1$ for $i = 1, 2, \dots, n - 1$ and $t - t_n < 1$. Clearly, $n \le 2T_0 \le 2T$. Then, for $0 < s < t \le T_0$, with $t - s \ge 1$, we have

$$\begin{aligned} ||v(t) - v(s)|| &\leq ||v(t) - v(t_n)|| + \sum_{i=1}^{n-1} ||v(t_{i+1}) - v(t_i)|| + ||v(t_1) - v(s)|| \\ &\leq L_v \bigg[(t - t_n)^{\beta} + \sum_{i=1}^{n-1} (t_{i+1} - t_i)^{\beta} + (t_1 - s)^{\beta} \bigg] \\ &\leq (2T + 1)L_v |t - s|^{\beta} = \widetilde{L}_v |t - s|^{\beta}, \end{aligned}$$

$$(4.11)$$

where $\widetilde{L}_{\nu} = (2T+1)L_{\nu}$. Now, for $0 < s, t \le T_0$, we have

$$\begin{split} ||f(t, A^{-\alpha}v(t), A^{-\alpha}v(a(t))) - f(s, A^{-\alpha}v(s), A^{-\alpha}v(a(s)))|| \\ &\leq L_f(R) [|t-s|^{\gamma} + ||v(t) - v(s)|| + ||v(a(t)) - v(a(s))||] \\ &\leq L_f(R) [|t-s|^{\gamma} + \widetilde{L}_{\nu}|t-s|^{\beta} + \widetilde{L}_{\nu}|a(t) - a(s)|^{\beta}] \\ &\leq L_f(R) [|t-s|^{\gamma} + \widetilde{L}_{\nu}|t-s|^{\beta} + \widetilde{L}_{\nu}L_a^{\beta}|t-s|^{\delta \cdot \beta}] \\ &\leq L_f(R) (1 + \widetilde{L}_{\nu} + \widetilde{L}_{\nu}L_a^{\beta})|t-s|^{\max\{\gamma,\beta,\delta \cdot \beta\}}, \end{split}$$
(4.12)

which shows that the function $t \mapsto f(t, A^{-\alpha}v(t), A^{-\alpha}v(a(t)))$ is locally Hölder continuous on $(0, T_0]$.

Now, consider the initial value problem

$$\frac{dw(t)}{dt} + Aw(t) = f(t, A^{-\alpha}v(t), A^{-\alpha}v(a(t))), \qquad w(0) = \chi(0).$$
(4.13)

By [16, Corollary 4.3.3], (4.13) has a unique solution $w \in C^1((0, T_0]; H)$ given by

$$w(t) = S(t)\chi(0) + \int_0^t S(t-s)f(s, A^{-\alpha}v(s), A^{-\alpha}v(a(s)))ds.$$
(4.14)

For t > 0, each term on the right of (4.14) is in $D(A) \subseteq D(A^{\alpha})$, we may apply A^{α} on w to get

$$A^{\alpha}w(t) = S(t)A^{\alpha}\chi(0) + \int_{0}^{t} A^{\alpha}S(t-s)f(s,A^{-\alpha}v(s),A^{-\alpha}v(a(s)))ds.$$
(4.15)

The right-hand side of (4.15) is equal to v(t) and therefore w(t) = u(t) on $[0, T_0]$. Thus, $u \in C^1((0, T_0]; H)$ and hence u is a classical solution of (1.2). This completes the proof of the theorem.

Acknowledgment

The authors would like to thank the National Board for Higher Mathematics for providing the financial support to carry out this work under its research project no. NBHM/ 2001/ R&D-II.

References

- L. Alaoui, Nonlinear homogeneous retarded differential equations and population dynamics via translation semigroups, Semigroup Forum 63 (2001), no. 3, 330–356.
- [2] D. Bahuguna, Existence, uniqueness and regularity of solutions to semilinear nonlocal functional differential problems, Nonlinear Anal. 57 (2004), no. 7-8, 1021–1028.
- [3] _____, *Existence, uniqueness, and regularity of solutions to semilinear retarded differential equations, J. Appl. Math. Stochastic Anal.* **2004** (2004), no. 3, 213–219.
- [4] D. Bahuguna and R. Shukla, Approximations of solutions to second order semilinear integrodifferential equations, Numer. Funct. Anal. Optim. 24 (2003), no. 3-4, 365–390.
- [5] D. Bahuguna, S. K. Srivastava, and S. Singh, Approximations of solutions to semilinear integrodifferential equations, Numer. Funct. Anal. Optim. 22 (2001), no. 5-6, 487–504.
- [6] K. Balachandran and M. Chandrasekaran, *Existence of solutions of a delay differential equation with nonlocal condition*, Indian J. Pure Appl. Math. 27 (1996), no. 5, 443–449.
- [7] A. Bátkai, L. Maniar, and A. Rhandi, Regularity properties of perturbed Hille-Yosida operators and retarded differential equations, Semigroup Forum 64 (2002), no. 1, 55–70.
- [8] N. W. Bazley, Approximation of wave equations with reproducing nonlinearities, Nonlinear Anal. 3 (1979), no. 4, 539–546.
- [9] _____, Global convergence of Faedo-Galerkin approximations to nonlinear wave equations, Nonlinear Anal. 4 (1980), no. 3, 503–507.
- [10] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000.
- [11] R. Göthel, *Faedo-Galerkin approximations in equations of evolution*, Math. Methods Appl. Sci. 6 (1984), no. 1, 41–54.
- [12] E. Heinz and W. von Wahl, Zu einem Satz von F. E. Browder über nichtlineare Wellengleichungen, Math. Z. 141 (1975), 33–45 (German).
- [13] Y. P. Lin and J. H. Liu, Semilinear integrodifferential equations with nonlocal Cauchy problem, Nonlinear Anal. 26 (1996), no. 5, 1023–1033.
- P. D. Miletta, Approximation of solutions to evolution equations, Math. Methods Appl. Sci. 17 (1994), no. 10, 753–763.

- [15] H. Murakami, On non-linear ordinary and evolution equations, Funkcial. Ekvac. 9 (1966), 151– 162.
- [16] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983.
- [17] I. Segal, Non-linear semi-groups, Ann. of Math. (2) 78 (1963), 339-364.

D. Bahuguna: Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur 208 016, India

E-mail address: dhiren@iitk.ac.in

M. Muslim: Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur 208 016, India

E-mail address: muslim@iitk.ac.in