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We give a probabilistic interpretation of the viscosity solutions of parabolic integrodif-
ferential partial equations with two obstacles via the solutions of forward-backward sto-
chastic differential equations with jumps.

1. Introduction

We consider the following obstacle problem for a parabolic integrodifferential partial
equation (

− ∂u

∂t
−Lu−F

)
(u− l)+ ≤ 0,

(
− ∂u

∂t
−Lu−F

)
(u−h)− ≥ 0,

l(t,x)≤ u(t,x)≤ h(t,x), ∀(t,x)∈ [0,T]×Rd,

u(T ,x)= g(x), ∀x ∈Rd,

(1.1)

where

F = f
(
t,x,u(t,x),(∇uσ)(t,x),Bu(t,x)

)
, L=A+K (1.2)

with

Bu(t,x)=
∫
Rl\{0}

[
u
(
t,x+β(x,e)

)−u(t,x)
]
γ(x,e)λ(de), (1.3)

and A, K respectively, second-order differential operator and integrodifferential partial
operator defined by

Au(t,x)= 1
2

d∑
i, j=1

(
σσ∗

)
i, j(t,x)

∂2u

∂xi∂xj
(t,x) +

d∑
i=1

bi(t,x)
∂u

∂xi
(t,x),

Ku(t,x)=
∫
Rl\{0}

[
u
(
t,x+β(x,e)

)−u(t,x)− 〈∇u(t,x),β(x,e)
〉]
λ(de).

(1.4)

Copyright © 2005 Hindawi Publishing Corporation
Journal of Applied Mathematics and Stochastic Analysis 2005:1 (2005) 37–53
DOI: 10.1155/JAMSA.2005.37

http://dx.doi.org/10.1155/S104895330440402X


38 Double reflected BSDEs with jumps and PDEs

In this paper, we obtain a probabilistic interpretation for the viscosity solution of this
parabolic integrodifferential variational inequality via the theory of two barriers reflected
backward stochastic differential equations (BSDEs) with jumps.

As is well known, BSDEs provide probabilistic formulae for the viscosity solution of
semilinear partial differential equations (PDE) (see, e.g., Pardoux and Peng [16]). These
results have been next extended to integrodifferential partial equations by Barles et al. [1].

At the same time, El Karoui et al. have introduced in [5] the notion of one-barrier
reflected BSDEs, which is a backward equation but the solution is forced to stay above a
given continuous obstacle. The authors have established the existence and uniqueness of
the solution via a penalization as well as a Picard’s iteration method. Next, Hamadène and
Ouknine [10] have generalized this result to one-barrier reflected BSDEs with jumps, that
is, when the noise is driven by a Brownian motion and an independent Poisson random
measure.

The notion of double barriers reflected BSDEs has been introduced by Cvitanić and
Karatzas [3], where the solution is forced to remain between two prescribed upper and
lower barriers L and H . Then Hamadène et al. [9] and Lepeltier and San Martin [12]
have successively improved the result on the existence of a solution when the drift is only
continuous and with linear growth.

The main aim of this work is to link the viscosity solution of the parabolic integrodif-
ferential variational inequality (1.1) with the solution (Y ,Z,U ,K+,K−) of the following
two barriers reflected BSDE with jumps: for all 0≤ t ≤ T ,

Yt = ξ +
∫ T
t
F
(
s,Ys,Zs,Us

)
ds

−
∫ T
t
ZsdWs +

(
K+
T −K+

t

)− (K−T −K−t )−
∫ T
t

∫
Rl\{0}

Us(e)µ̃(de,ds),

Lt ≤ Yt ≤Ht.

(1.5)

The key of the proofs is the existence and uniqueness of a solution for the above BSDE in
[15], which is put in a Markovian framework.

The paper is organized as follows. In Section 2, we define the solutions of double re-
flected BSDE with jumps and present a result of the existence and uniqueness of the
solution. The Markovian case is considered in Section 3 and we also give some properties
of the corresponding solution. Finally, we deal in the last section with the connection be-
tween the solutions of the forward BSDE with jumps (3.10) and the variational inequality
(1.1).

2. BSDEs with jumps: existence and uniqueness of a solution

2.1. Notations and assumptions. Let (Ω,�,P,�t,Wt, µ̃t, t ∈ [0,T]) be a complete
Wiener-Poisson space in Rd ×Rl\{0} with Lévy’s measure λ, that is:

(i) (Ω,�,P) is a complete probability space with a filtration (�t, t ∈ [0,T]) that is
a right continuous increasing family of complete sub σ-algebras of �, on which
are defined two mutually independent processes,
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(ii) a d-dimensional standard Wiener process (Wt, t ∈ [0,T]) with respect to the
filtration (�t, t ∈ [0,T]),

(iii) a Poisson random measure p on R+×E, where E�Rl \ {0} is equipped with its
Borel σ-field �, with compensator q(dt,de) = dt × λ(de), such that {µ̃([0, t]×
A)= (p− q)([0, t]×A)}t∈[0,T] is martingale for all A∈� satisfying λ(A) <∞. λ
is assumed to be a σ-finite measure on (E,�) satisfying∫

E

(
1∧|e|2)λ(de) < +∞. (2.1)

Readers are referred to Gı̄hman-Skorohod [8] or Jacod [11] for more precise def-
initions and properties of random measures.

We assume that

�t = σ
[∫

A×(0,s]
p(ds,dx); s≤ t, A∈�

]
⊗ σ[Ws; s≤ t

]⊗�, (2.2)

where � is the class of P-null sets and σ1⊗ σ2 denotes the σ-field generated by σ1∪ σ2.
We introduce the following spaces:

(i) L2 of �T-measurable random variables ξ : Ω→R such that E|ξ|2 < +∞,
(ii) S2 of �t-adapted right continuous with left limit (rcll in short) processes (Yt)t≤T

with values in R and such that E[sup0≤t≤T |Yt|2] < +∞,
(iii) H2,k of �t-progressively measurable processes with values in Rk such that

‖Z‖H2,k := E
[∫ T

0

∣∣Zs∣∣2
ds
]
< +∞, (2.3)

(iv) �2(µ̃) of mappings V : Ω× [0,T]×E→R which are �⊗�-measurable and sat-
isfy

‖V‖2
L2(µ̃) := E

[∫ T
0
ds
∫
E

(
Vs(e)

)2
λ(de)

]
< +∞; (2.4)

� is the σ-algebra of predictable sets in Ω× [0,T],
(v) �2 of continuous, increasing, �t-adapted processesK : [0,T]×Ω→ [0,+∞) with

K(0)= 0 and E[(KT)2] < +∞.

Finally, for a given rcll process (wt)t≤T , we define for any t ∈ [0,T],

wt− = lim
s↗t ws,

(
w0− :=w0

)
, w− =

(
wt−

)
0≤t≤T . (2.5)

Hereafter we have four objects.

(A1) A terminal value ξ ∈ L2.
(A2) A coefficient “F” which is a map F : Ω× [0,T]×R1+d × L2(E,�,λ;R)→ R, �⊗

�(R1+d)⊗�(L2(E,�,λ;R))-measurable and satisfy
(i) (F(t,0,0,0))t≤T ∈ L2(Ω× [0,T],dP⊗dt), that is,

E
[∫ T

0

(
F(t,0,0,0)

)2
dt
]
< +∞, (2.6)
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(ii) F is uniformly Lipschitz with respect to (y,z,v), that is, there exists a constant
k ≥ 0 such that for any y, y′ ∈R, z,z′ ∈Rd and v,v′ ∈ L2(E,�,λ;R),

∣∣F(ω, t, y,z,v)−F(ω, t, y′,z′,v′)
∣∣≤ k(|y− y′|+ |z− z′|+‖v− v′‖), P-a.s. (2.7)

(A3) Two reflecting barriers L, H which are real valued and �-measurable processes
satisfying
(i) E[sup0≤t≤T{(H−

t )2 + (L+
t )2}] < +∞, where L+

t :=max{Lt,0}, H−
t :=max{−Ht,

0},
(ii) Lt ≤Ht, for all 0≤ t ≤ T and LT ≤ ξ ≤HT , P-a.s.,

(iii) {Lt, 0 ≤ t ≤ T} is rcll and its jumping times are inaccessible stopping times
(see, e.g., [4]).

2.2. Existence and uniqueness for a BSDE with jumps. The process (Yt,Zt,K+
t ,K−t ,

Ut)t≤T with values in R(1+d)×R+×R+×L2(E,�,λ;R) is called a solution for the double
barriers reflected BSDE with jumps if

(i) Y ∈ S2, Z ∈H2,d, U ∈�2(µ̃) and K± ∈�2,
(ii) for all t ≤ T ,

Yt = ξ +
∫ T
t
F
(
s,Ys,Zs,Us

)
ds

−
∫ T
t
ZsdWs +

(
K+
T −K+

t

)− (K−T −K−t )−
∫ T
t

∫
E
Us(e)µ̃(de,ds),

(2.8)

(iii) for all t ≤ T , Lt ≤ Yt ≤Ht, and
∫ T

0 (Yt −Lt)dK+
t =

∫ T
0 (Ht −Yt)dK−t = 0, P-a.s.

The double barriers reflected BSDE (2.8) with jumps associated with ( f ,ξ,L,H) has a
unique solution if the upper barrier satisfies the supplementary following assumption.

(A4) There exists a sequence of processes (Hn)n≥0 such that
(i)

∀t ≤ T , Hn
t ≥Hn+1

t , lim
n→+∞H

n
t =Ht, P-a.s., (2.9)

(ii)

∀n≥ 0, ∀t ≤ T , Hn
t =Hn

0 +
∫ T

0
uns ds+

∫ T
0
vns dWs +

∫ T
0

∫
E
wn
s (e)µ̃(de,ds), (2.10)

where the processes un, vn, wn are �-adapted such that

sup
n≥0

sup
t∈[0,T]

∣∣unt∣∣≤M, E
[∫ T

0

∣∣vns∣∣2
ds
]1/2

<+∞,

E
[∫ T

0

∫
E

∣∣wn
s

∣∣λ(de)ds
]1/2

<+∞, ∀n≥1.

(2.11)

We can recall the following result which is proved in [6].
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Proposition 2.1. Assume that (A1)–(A4) hold, then the reflected BSDE with jumps (2.8)
associated with ( f ,ξ,L,H) admits one and only one solution.

From now, we consider the Markovian case in order to give a probabilistic representa-
tion of solution of (1.1) via the solution of (2.8).

3. A class of diffusion processes with jumps

We introduce a class of diffusion processes.

(A5) Let b : [0,T]×Rd → Rd and σ : [0,T]×Rd → Rd×d be functions such that for
some positive constant C, for all x,x′ ∈Rd and for all t ∈ [0,T],

∣∣b(t,x)− b(t,x′)∣∣−∣∣σ(t,x)− σ(t,x′)∣∣≤ C∣∣x− x′∣∣,∣∣b(t,x)
∣∣−∣∣σ(t,x)

∣∣≤ C(1 + |x|). (3.1)

(A6) Let β :Rd ×E→Rd be a measurable function such that for some constant K and
for all e ∈ E,

∣∣β(x,e)
∣∣≤ K(1∧|e|), ∀x ∈Rd,∣∣β(x,e)−β(x′,e)∣∣≤ K∣∣x− x′∣∣(1∧|e|), ∀x,x′ ∈Rd.

(3.2)

For each (t,x) ∈ [0,T]×Rd, we consider {(Xt,x
s ), s ∈ [0,T]} the unique solution of

the stochastic differential equation

Xtx
s = x+

∫ t∨s
t

b
(
r,Xtx

r

)
dr +

∫ t∨s
t

σ
(
r,Xtx

r

)
dBr +

∫ t∨s
t

∫
E
β
(
Xtx
r− ,e

)
µ̃(de,ds). (3.3)

We state some properties of the process {(Xtx
s ), s∈ [0,T]} which can be found in [7,

Theorems 2.2 and 2.3].

Proposition 3.1. For each t ≥ 0, there exists a version of {(Xtx
s ), s ∈ [t,T]} such that

s→ Xt
s is a C2 (Rd)-valued rcll process. Moreover,

(1) Xt
s and X0

s−t have the same distribution, 0≤ t ≤ s;
(2) Xt0

t1 ,Xt1
t2 , . . . ,Xtn−1

tn are independent for all n∈N, 0≤ t0 < t1 < ··· < tn;
(3) Xt

r = Xs
r ◦Xt

s , 0≤ t < s < r;
(4) for all p ≥ 2, there exists a real Cp such that for all 0≤ t < s, for any x,x′ ∈Rd,

E
(

sup
t≤r≤s

∣∣Xt,x
r − x∣∣p)≤ Cp(s− t)(1 + |x|p),

E
(

sup
t≤r≤s

∣∣Xt,x
r −Xt,x′

r − (x− x′)∣∣p)≤ Cp(s− t)∣∣x− x′∣∣p.
(3.4)
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In the rest of the section, we consider the RBSDE with data (ξ,F,L,H), where

ξ(ω)= g(Xt,x
T (ω)

)
,

F(ω,s, y,z,u)= f
(
s,Xt,x

s (ω), y,z,
∫
E
u(e)γ

(
Xt,x
s ,e

)
λ(de)

)
,

Ls(ω)= l(s,Xt,x
s (ω)

)
, Hs(ω)= h(s,Xt,x

s (ω)
)

(3.5)

with

(A7) g : Rd → R f : [0,T]×Rd ×R×Rd ×R→ R, l : [0,T]×Rd → R and h : [0,T]
×Rd →R some functions such that

(i) g ∈ C(Rd;R) and |g(x)| ≤ C(1 + |x|p); | f (t,x,0,0,0)|2 ≤ C(1 + |x|p) for some
C, p > 0,

(ii) f is globally Lipschitz in (y,z,u) uniformly in (t,x) and for each (t,x, y,z) ∈
[0,T]×Rd ×R×Rd the function u→ f (t,x, y,z,u) is nondecreasing,

(iii) l and h are Lipschitz in x uniformly with respect to t ∈ [0,T], and for any
(s,x)∈ [0,T]×Rd

l(s,x)≤ h(s,x), l(T ,x)≤ g(x)≤ h(T ,x),

l(s,x)≤ C(1 + |x|p), −C(1 + |x|p)≤ h(t,x).
(3.6)

(iv) there exists C > 0 such that for any x,x′ ∈Rd, e ∈ E,

0≤ γ(x,e)≤ C(1∧|e|),∣∣γ(x,e)− γ(x′,e)∣∣≤ C∣∣x− x′∣∣(1∧|e|). (3.7)

For each t ≥ 0, we denote by {�t,W
s : s∈ [t,T]} the natural filtration of the Brownian

motion {Ws−Wt : s∈ [t,T]} augmented with �.
We put

�t
s =�t,W

s ⊗�
t,µ̃
s , (3.8)

where

�
t,µ̃
s = σ(µ̃s(A)− µ̃t(A) : s∈ [t,T], A∈�

)⊗�. (3.9)

Under the assumptions (A1)–(A7), Proposition 2.1 implies that for each (t,x)∈ [0,T]
×Rd, there exists a unique �t

s-progressively measurable (Ytx,Ztx,Utx,Ktx+,Ktx−) such
that

Ytx
s = g

(
Xtx
T

)
+
∫ T
s
F
(
r,Ytx

r ,Ztxr ,Utx
r

)
ds+

(
Ktx+
T −Ktx+

s

)− (Ktx−
T −Ktx−

s

)

−
∫ T
s
Ztxr dWr −

∫ T
s

∫
E
Utx
s (e)µ̃(de,dr), ∀s∈ [0,T], P-a.s.

∫ T
0

(
Ytx
s − l

(
s,Xtx

s

))
dKtx+

s = 0=
∫ T

0

(
h
(
s,Xtx

s

)−Ytx
s

)
dKtx−

s , P-a.s.

(3.10)
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We have extended Ytx
s , Ztxs , Utx

s , Ktx+
s , Ktx−

s for s∈ [0, t] by putting

Ytx
s = Ytx

t , Ztx =Utx
s = Ktx+

s = Ktx−
s = 0, for s∈ [0, t]. (3.11)

It follows immediately that

Ytx
s = g

(
Xtx
T

)−
∫ T
s
Ztxr dWr −

∫ T
s

∫
E
Utx
s (e)µ̃(de,dr)

+
∫ T
s
f
(
r,Xtx

r ,Ytx
r ,Ztxr ,

∫
E
Utx
r (e)γ

(
Xtx
r ,e

)
λ(de)

)
ds+

(
Ktx+
T −Ktx+

s

)−(Ktx−
T −Ktx−

s

)
.

(3.12)

The following proposition is classical and follows from Proposition 3.1, Itô formula, and
Gronwall inequality.

Proposition 3.2. The following holds:

(i)

E
(

sup
0≤s≤T

∣∣Yt,x
r

∣∣2
)
≤ C(1 + |x|p), (3.13)

(ii)

E
(

sup
0≤s≤T

∣∣Ytx
s −Yt′x′

s

∣∣)≤ CE(∣∣g(Xtx
T

)− g(Xt′x′
T

)∣∣2
)

+E
(∫ T

0

∣∣1[t′,T](r)F
(
r,Ytx

r ,Ztxr ,Utx
r

)

− 1[t′,T](r)F
(
r,Yt′x′

r ,Zt
′x′
r ,Ut′x′

r

)∣∣2
dr
)

(3.14)

for all t, t′ ∈ [0,T], x,x′ ∈ Rd (C > 0 and p ≥ 2 are constants independent of t, t′,
x,x′).

Proof. By virtue of Itô formula, we have

∣∣Ytx
s

∣∣2
+
∫ T
s

∣∣Ztxr ∣∣2
dr +

∫ T
s

∫
E

∣∣Utx
r (e)

∣∣2
µ(dr,de) +

∑
s<r≤T

(
∆rY

tx
r

)2

= |ξ|2− 2
∫ T
s
Y tx
r Z

tx
r dWr + 2

∫ T
s
Y tx
r F

(
r,Ytx

r ,Ztxr ,Utx
r

)
dr

− 2
∫ T
s

∫
E
Ytx
r−U

tx
r (e)µ̃(dr,de) + 2

∫ T
s
Y tx
r dK

tx+
r − 2

∫ T
s
Y tx
r dK

tx−
r .

(3.15)
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It follows that

∣∣Ytx
s

∣∣2
+
∫ T
s

∣∣Ztxr ∣∣2
dr +

∫ T
s

∫
E

∣∣Utx
r (e)

∣∣2
µ(dr,de)

≤ |ξ|2 + 2
∫ T
s
Y tx
r F

(
r,Ytx

r ,Ztxr ,Utx
r

)
dr− 2

∫ T
s
Y tx
r Z

tx
r dWr

− 2
∫ T
s

∫
E
Ytx
r−U

tx
r (e)µ̃(dr,de) + 2

∫ T
s
Y tx
r dK

tx+
r − 2

∫ T
s
Y tx
r dK

tx−
r .

(3.16)

Using the facts

[
E sup

0≤t≤T

(
L+
t

)2
]1/2[

E
(
Ktx+
T

)2
]1/2

< +∞,

[
E sup

0≤t≤T

(
H−
t

)2
]1/2[

E
(
Ktx−
T

)2
]1/2

< +∞,

(3.17)

we deduce that

E

(∣∣Ytx
s

∣∣2
+
∫ T
s

∣∣Ztxr ∣∣2
dr +

∫ T
s

∫
E

∣∣Utx
r (e)

∣∣2
µ(dr,de)

)

≤ C+E
(∫ T

s

∣∣F(r,0,0,0)
∣∣∣∣Ytx

r

∣∣dr)+E
(|ξ|2)

+E
(

2k
∫ T
s

∣∣Ytx
r

∣∣(∣∣Ytx
r

∣∣+
∣∣Ztxr ∣∣+

∥∥Utx
r

∥∥)dr).
(3.18)

Therefore, from Gronwall lemma, we obtain

E
(∣∣Ytx

s

∣∣2
)
≤ CE

(
1 +

∣∣g(Xtx
T

)∣∣2
+
∫ T

0

∣∣F(r,0,0,0)
∣∣2
dr
)
. (3.19)

Since F(r,0,0,0) = f (r,Xtx
r ,0,0,0), by virtue of assumptions (A7) on f and g and

Proposition 3.1, we deduce (i),

E
(∣∣Ytx

s

∣∣2
)
≤ CE

(
1 +

∣∣g(Xtx
T

)∣∣2
+
∫ T

0

(
1 +

∣∣Xtx
r

∣∣p)dr)≤ C(1 + |x|p). (3.20)

Now, (ii) is a straightforward consequence of Proposition 3.1. �

Now, we deal with the connection between the RBSDE studied in the Markovian
framework and the parabolic integrodifferential partial equation.

4. Viscosity solutions of integrodifferential partial equation with two obstacles

We introduce the notion of viscosity solution for the following parabolic integral-
differential variational inequality (1.1), where F and L are defined in (1.2).

4.1. Preliminaries. We define

u(t,x) := Ytx
t , ∀(t,x)∈ [0,T]×Rd. (4.1)
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Since Ytx
t is �t

t-measurable and �t
t is a trivial σ-algebra, u is a deterministic function,

which verifies the following properties of regularity.

Lemma 4.1. For any (t,x)∈ [0,T]×Rd,

(1) l(t,x)≤ u(t,x)≤ h(t,x) and u(T ,x)= g(x),
(2) u grows at most polynomially at infinity, that is, for some real C and p ≥ 2,

∣∣u(t,x)
∣∣≤ C(1 + |x|p), ∀(t,x)∈ [0,T]×Rd, (4.2)

(3) u∈ C([0,T]×Rd).

Proof. (1) is a direct consequence of the relation u(t,x) = Ytx
t and we deduce (2) from

Proposition 3.2(i).
In order to prove (3), we defineYtx

s for all s∈ [0,T] by choosingYtx
s = Ytx

t for 0≤ s≤ t.
Let {(tn,xn) : n ∈ N} be a sequence of [0,T] × Rd converging to (t,x). Using

Proposition 3.2, we have

∣∣u(tn,xn
)−u(t,x)

∣∣2 = ∣∣Ytnxn
tn −Yt,x

t

∣∣2

≤ E
(

sup
s∈[0,T]

∣∣Ytnxn
s −Yt,x

s

∣∣2
)

≤ CE
(∣∣g(Xtnxn

T

)− g(Xt,x
T

)∣∣2
)

+E
∫ T

0

(∣∣1[t,T](r)
(
F
(
r,Ytnxn

r ,Ztnxnr ,Utnxn
r

)−F(r,Ytx
r ,Ztxr ,Utx

r

))∣∣2
)
dr.

(4.3)

Then, Proposition 3.1 induces that u(tn,xn)→ u(t,x) as (tn,xn)→ (t,x), which gives (3).
�

Now, we consider, for each (t,x)∈ [0,T]×Rd, (Ytx
n,s,Z

tx
n,s,U

tx
n,s) the solution of the fol-

lowing BSDE:

Ytx
n,s = g

(
Xtx
T

)−
∫ T
s
Ztxn,rdWr −

∫ T
s

∫
E
Utx
n,s(e)µ̃(de,dr)

+
∫ T
s
f
(
r,Xtx

r ,Ytx
n,r ,Z

tx
n,r ,
∫
E
Utx
n,r(e)γ

(
Xtx
r ,e

)
λ(de)

)
ds

−n
∫ T
s

(
Ytx
n,r −h

(
Xtx
r

))+
dr +n

∫ T
s

(
Ytx
n,r − l

(
Xtx
r

))−
dr.

(4.4)

If we define the deterministic function un(t,x)= Ytx
n,t, then we have the following lemma.

Lemma 4.2. (1) (See [1, Theorem 3.4]): un is a viscosity solution of the parabolic integral
PDE

−∂un
∂t
−Lun−F+n

(
un(t,x)−h(t,x)

)+−n(un(t,x)−l(t,x)
)− = 0, ∀(t,x)∈ [0,T]×Rd,

u(T ,x)= g(x), ∀x ∈Rd.
(4.5)
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(2) (See [15]):

∣∣un(t,x)−u(t,x)
∣∣2 ≤ E

(
sup
s∈[t,T]

∣∣Ytx
n,s−Yt,x

s

∣∣2
)
≤ 1
n

(
1 + |x|p). (4.6)

In particular, un converges to u uniformly on compact sets.

We now show that u is a viscosity solution of (1.1).

4.2. Definitions. As the function u defined in (4.1) is not smooth, (1.1) should be in-
terpreted in a weak sense. Let C([0,T]×Rd) denote the set of real-valued continuous
functions on [0,T]×Rd. Adapting the notion of viscosity solution introduced by Cran-
dall and Lions and then by Soner [18], Sayah [17], and Barles et al. [1], we define the
following.

Definition 4.3. Let u∈ C([0,T]×Rd) satisfying u(T)= g.

(a) u is a viscosity subsolution of (1.1) if the following holds:
(i) u(t,x)≤ h(t,x), for all (t,x)∈ [0,T]×Rd,

(ii) for any ϕ ∈ C2([0,T]×Rd), whenever (t,x) ∈ [0,T)×Rd is a global maxi-
mum point of u−ϕ,

[
− ∂ϕ

∂t
−Aϕ(t,x)−Kδ(u,ϕ)(t,x)

− f
(
t,x,u(t,x),(∇ϕσ)(t,x),Bδ(u,ϕ)(t,x)

)]
(u− l)+(t,x)≤ 0

(4.7)

for any 0 < δ < 1, where

Kδ(u,ϕ)(t,x)=
∫
Eδ

(
ϕ
(
t,x+β(x,e)

)−ϕ(t,x)− 〈∇ϕ(t,x),β(x,e)
〉)
λ(de)

+
∫
Ecδ

(
u
(
t,x+β(x,e)

)−u(t,x)− 〈∇ϕ(t,x),β(x,e)
〉)
λ(de)

:= Kδ
1 (t,x,ϕ) +Kδ

2 (t,x,u,∇ϕ),

Bδ(u,ϕ)(t,x)=
∫
Eδ

(
ϕ
(
t,x+β(x,e)

)−ϕ(t,x)
)
γ(x,e)λ(de)

+
∫
Ecδ

(
u
(
t,x+β(x,e)

)−u(t,x)
)
γ(x,e)λ(de)

:= Bδ1 (t,x,ϕ) +Bδ2 (t,x,u)

(4.8)

with Eδ = {e ∈ E; |e| < δ}.
(b) u is a viscosity supersolution of (1.1) if the following holds:

(i) l(t,x)≤ u(t,x), for all (t,x)∈ [0,T]×Rd,
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(ii) for any ϕ ∈ C2([0,T]×Rd), whenever (t,x) ∈ [0,T)×Rd is a global mini-
mum point of u−ϕ,

[
− ∂ϕ

∂t
−Aϕ(t,x)−Kδ(u,ϕ)(t,x)

− f
(
t,x,u(t,x),(∇ϕσ)(t,x),Bδ(u,ϕ)(t,x)

)]
(u−h)−(t,x)≥ 0

(4.9)

for any 0 < δ < 1.
(c) u is a viscosity solution of (1.1) if it is both a viscosity subsolution and super-

solution.

Remark 4.4. (1) We have introduced the operators Kδ
1 and Bδ1 because of the singularity

of λ(de) at 0 and since u is only continuous in x. The operators Kδ
2 and Bδ2 make sense

thanks to Lemma 4.1(2).
(2) We can clearly replace “global maximum point” or “global minimum point” by

“strict global maximum point” or “strict global minimum point.”

To prove the uniqueness result for viscosity solutions of second-order equations, it is
convenient to give an intrinsic characterization of viscosity solutions. So, we recall the
notion of parabolic semijets as introduced in [13, 14].

Let S(d) stand for the set of d×d symmetric nonnegative matrices.

Definition 4.5. Let u∈ C([0,T]×Rd) and (t,x)∈ [0,T]×Rd.
Denote by ℘2+u(t,x), (the parabolic superjet of u at (t,x)), the set of triple (p,q,X)

∈R×Rd × S(d), which are such that

u(s, y)≤ u(t,x) + p(s− t) +
〈
q, y− x〉+

1
2

〈
X(y− x), y− x〉+◦(|t− s|+ |y− x|2)

(4.10)

and its closure

P̄2+u(t,x)=
{

(p,q,X)= lim
n→+∞

(
pn,qn,Xn

)
with

(
pn,qn,Xn

)∈ ℘2+u
(
tn,xn

)
,

lim
n→+∞

(
tn,x,u

(
tn,xn

))= (t,x,u(t,x)
)}
.

(4.11)

Similarly, we consider the parabolic subjet of u at (t,x), ℘2−u(t,x)=−℘2+(−u)(t,x).

4.3. Main results

Theorem 4.6. u, defined in (4.1), is a viscosity solution of (1.1).

Proof. We already know from Lemma 4.1 that u(T)= g and

l(t,x)≤ u(t,x)≤ h(t,x), ∀(t,x)∈ [0,T]×Rd. (4.12)

(1) We show that u is a subsolution.
Let ϕ∈ C2([0,T]×Rd) and let (t0,x0)∈ (0,T)×Rd be a strict global maximum point

of u−ϕ.
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If u(t0,x0)= l(t0,x0), then (4.9) is trivially verified.
Assume that u(t0,x0) > l(t0,x0), we have to show that for any δ > 0,

−∂ϕ
∂t
−Aϕ(t,x)−Kδ(u,ϕ)(t,x)− f

(
t,x,u(t,x),(∇ϕσ)(t,x),Bδ(u,ϕ)(t,x)

)≤ 0. (4.13)

Since un → u uniformly on compact sets of [0,T]×Rd by Lemma 4.2, there exists n0

such that for all n ≥ n0, un(t0,x0) ≥ l(t0,x0), un(t0,x0) ≤ h(t0,x0) and (t0,x0) is a maxi-
mum point of un−ϕ in a compact [0,T]× B̄R.

Modifying if necessary the test function, we can suppose that (t0,x0) is a global maxi-
mum point of un−ϕ in [0,T]×Rd. Thus, we have

− ∂ϕ

∂t
−Aϕ(t0,x0

)−Kδ
(
un,ϕ

)(
t0,x0

)− f
(
t0,x0,un

(
t0,x0

)
, (∇ϕσ)

(
t0,x0

)
,Bδ(u,ϕ)

(
t0,x0

))
+n
(
un
(
t0,x0

)−h(t0,x0
))+−n(un(t0,x0

)− l(t0,x0
))−

≤ 0.
(4.14)

Passing to the limit when n→ 0 in the above inequality, we obtain (4.9).
(2) A similar argument leads to the supersolution counterpart. �

In order to establish a uniqueness result, we need an additional assumption on F and
γ.

(A8) For each R > 0, there exists a continuous function m : R+ → R+, m(0) = 0 such
that

∥∥F(t,x, y,z,u)−F(t,x′, y,z,u
)∥∥≤m(∣∣x− x′∣∣(1 + |z|)), (4.15)

∀(t,u)∈ [0,T]×Rd,∀x,x′ ∈Rd,∀y ∈R/|x| < R, |x′| < R, |y| < R.
(A9) There exists C > 0 such that for all x,x′ ∈Rd, for all e ∈ E,

∣∣γ(x,e)− γ(x′,e)∣∣≤ C∣∣x− x′∣∣(1∧|e|2). (4.16)

Theorem 4.7. Under the assumptions (A1)–(A9), there exists a unique viscosity solution of
(1.1) in the class of functions satisfying

lim
|x|→+∞

∣∣u(t,x)
∣∣e−Ã[log(|x|)]2 = 0 (4.17)

uniformly for t ∈ [0,T], for some Ã > 0.

Remark 4.8. (1) Barles et al. have shown that the assumption (4.17) is optimal to get such
a uniqueness result for (1.1).

(2) By Lemma 4.1(2), u(t,x)= Yt,x
t satisfies (4.17).

Proof. Let u and v be two viscosity solutions of (1.1). The proof consists in several steps.
It follows from adaptation to standard techniques and proof of [1, Theorem 3.5]. For
completeness we will give the first part and sketch the rest.
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We set w := u− v. Let ϕ ∈ C2([0,T]×Rd) and let (t0,x0) ∈ (0,T)×Rd be a strict
global maximum point of w−ϕ. We introduce the function

ψε,α(t,x,s, y)= u(t,x)− v(s, y)− |x− y|2
ε2

− (t− s)2

α2
−ϕ(t,x), (4.18)

where ε, α are positive parameters which are devoted to tend to zero.
Since (t0,x0) is a strict global maximum point of u− v−ϕ, by a classical argument in

the theory of viscosity, there exists a sequence (t̄, x̄, s̄, ȳ) such that the following holds:

(i) (t̄, x̄, s̄, ȳ) is a global maximum point of ψε,α in ([0,T]× B̄R)2, where BR is a ball
with a large radius R,

(ii) (t̄, x̄),(s̄, ȳ)→ (t0,x0) as (ε,α)→ 0,
(iii) |x̄− ȳ|2/ε2, (t̄− s̄)2/α2 are bounded and tend to zero when (ε,α)→ 0.

We omit the dependence of t̄, x̄, s̄, ȳ in ε and α to alleviate notations.
Furthermore, it follows from [2, Theorem 8.3] that there exist X ,Y ∈ Sd such that

(
p̄+

∂ϕ

∂t
(t̄, x̄), q̄+Dϕ(t̄, x̄),X

)
∈ P̄2+u(t̄, x̄), (4.19)

( p̄, q̄,Y)∈ P̄2−v(s̄, ȳ), (4.20)(
X 0
0 −Y

)
≤ 4
ε2

(
I −I
−I I

)
+

(
D2ϕ(t̄, x̄) 0

0 0

)
, (4.21)

where

p̄ = 2(t̄− s̄)
α2

, q̄ = 2(x̄− ȳ)
ε2

. (4.22)

Modifying if necessary ψε,α, we may assume that (t̄, x̄, s̄, ȳ) is a global maximum point
of ψε,α in ([0,T]×Rd)2.

First case. We assume that u(t̄, x̄)≤ l(t̄, x̄), but v being a supersolution of (1.1), we have
v(t̄, ȳ)≤ l(t̄, ȳ). Then, by (A7)(iii), we deduce that

limsup
ε↘0

(
u(t̄, x̄)− v(t̄, ȳ)

)= 0 (4.23)

and finally

u(t,x)≤ v(t,x), ∀(t,x)∈ [0,T]×Rd. (4.24)

As u and v play symmetric roles, we conclude that u= v.

Second case. We assume that v(s̄, ȳ)≥ h(s̄, ȳ), but we know that u(s̄, x̄)≤ h(s̄, x̄). A similar
argument as above shows that u= v.

Third case. We suppose that u(t̄, x̄) > l(t̄, x̄) and v(s̄, ȳ) < h(s̄, ȳ).
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First step. We are going to show that u− v and v − u are viscosity subsolution of an
integrodifferential partial equation

−∂w
∂t
−Lw− k̃[|w|+ |∇wσ|+ (Bw)+]= 0, in [0,T]×Rd. (4.25)

Since u and v are, respectively, subsolution and supersolution of (1.1), we have for δ small
enough

p̄− ∂ϕ

∂t
(t̄, x̄)− 1

2
Tr
(
a(t̄, x̄)X

)− 〈b(t̄, x̄), q̄+Dϕ(t̄, x̄)
〉

−
∫
Eδ

∣∣β(x̄,e)
∣∣2

ε2
λ(de)−Kδ

1 (t̄, x̄,ϕ)−Kδ
2

(
t̄, x̄,u, q̄+Dϕ(t̄, x̄)

)
− f

(
t̄, x̄,u(t̄, x̄),

(
q̄+Dϕ(t̄, x̄)

)
σ(t̄, x̄), B̂δ

)
≤ 0,

(4.26)

where

B̂δ =
∫
Eδ

(〈
q̄,β(x̄,e)

〉
+

∣∣β(x̄,e)
∣∣2

ε2

)
γ(x̄,e)λ(de) +Bδ2 (t̄, x̄,u), (4.27)

p̄− 1
2
Tr
(
a(s̄, ȳ)Y

)− 〈b(s̄, ȳ), q̄
〉

+
∫
Eδ

∣∣β( ȳ,e)
∣∣2

ε2
λ(de)−Kδ

2 (s̄, ȳ,v, q̄)− f
(
s̄, ȳ,v(s̄, ȳ), q̄σ(s̄, ȳ), ˆ̂Bδ

)
≥ 0,

(4.28)

where

ˆ̂Bδ =
∫
Eδ

(
− 〈q̄,β( ȳ,e)

〉−
∣∣β( ȳ,e)

∣∣2

ε2

)
γ( ȳ,e)λ(de) +Bδ2 (s̄, ȳ,v, q̄). (4.29)

Before subtracting these inequalities, we need to estimate differences between terms of
the same type.

First, there exists C > 0 such that

Tr
(
a(t̄, x̄)X

)−Tr(a(s̄, ȳ)Y
)≤ C |x− y|2

ε2
+Tr

(
a(t̄, x̄)D2ϕ(t̄, x̄)

)
(4.30)

because of (4.21) and the Lipschitz continuity of σ in x.
Then,

∣∣〈b(t̄, x̄)− b(s̄, ȳ), q̄
〉∣∣≤ C |x− y|2

ε2
. (4.31)

The fact that (t̄, x̄, s̄, ȳ) is a global maximum point of ψε,α in ([0,T]× B̄R)2 is the key to
estimate the differences of the integrodifferential term. From the inequality

ψε,α
(
t̄, x̄+β(x̄,e), s̄, ȳ +β( ȳ,e)

)≤ ψε,α(t̄, x̄, s̄, ȳ), (4.32)
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we deduce [
u
(
t̄, x̄+β(x̄,e)

)−u(t̄, x̄)
]− [v(s̄, ȳ +β( ȳ,e)

)− v(s̄, ȳ)
]

− 〈q̄,β(x̄,e)−β( ȳ,e)
〉− 1

ε2

∣∣β(x̄,e)−β( ȳ,e)
∣∣2

≤ ϕ(t̄, x̄+β(x̄,e)
)−ϕ(t̄, x̄).

(4.33)

Therefore, ∫
Ecδ

[
u
(
t̄, x̄+β(x̄,e)

)−u(t̄, x̄)− 〈q̄+Dϕ(t̄, x̄),β(x̄,e)
〉]
λ(de)

−
∫
Ecδ

[
v
(
s̄, ȳ +β( ȳ,e)

)− v(s̄, ȳ)− 〈q̄,β( ȳ,e)
〉]
λ(de)

≤ Kδ
2 (t̄, x̄,ϕ,Dϕ) +

∫
Ecδ

1
ε2

∣∣β(x̄,e)−β( ȳ,e)
∣∣2
λ(de),

(4.34)

and we note that the last term is estimated by C(|x− y|2/ε2) with C independent of δ.
In the same way, setting Mε(x,e)= 〈q̄,β(x,e)〉+ |β(x,e)|2/ε2, we get

B̂δ − ˆ̂Bδ ≤
∫
Eδ

(
Mε(x̄,e)γ(x̄,e) +Mε( ȳ,e)γ( ȳ,e)

)
λ(de) +Bϕ(t̄, x̄)

+
∫
Ecδ

[
v
(
s̄, ȳ +β( ȳ,e)

)− v(s̄, ȳ)
](
γ(x̄,e)− γ( ȳ,e)

)
λ(de)

+
∫
Ecδ

[〈
q̄,β(x̄,e)−β( ȳ,e)

〉− 1
ε2

∣∣β(x̄,e)−β( ȳ,e)
∣∣2
]
γ(x̄,e)λ(de)

≤
∫
Eδ

(
Mε(x̄,e)γ(x̄,e) +Mε( ȳ,e)γ( ȳ,e)

)
λ(de) +Bϕ(t̄, x̄) +C

|x− y|2
ε2

+C|x− y|,
(4.35)

the last inequality following from the assumption on β, γ, and the continuity of v with
(A9).

Finally, using the continuity of f in t, (A8), and (A7)(ii), we obtain for the nonlinear
terms:

f
(
t̄, x̄,u(t̄, x̄),

(
q̄+Dϕ(t̄, x̄)

)
σ(t̄, x̄), B̂δ

)− f
(
s̄, ȳ,v(s̄, ȳ), q̄σ(s̄, ȳ), ˆ̂Bδ

)
≤ ρε,δ

(|t̄− s̄|)+mR
(|x̄− ȳ|(1 +

∣∣q̄σ(s̄, ȳ)
∣∣))+ k̃

∣∣u(t̄, x̄)− v(s̄, ȳ)
∣∣

+ k̃
∣∣q̄(σ(t̄, x̄)− σ(s̄, ȳ)

)
+Dϕ(t̄, x̄)σ(t̄, x̄)

∣∣+ k̃
(
B̂δ − ˆ̂Bδ

)+

(4.36)

for R large enough and ρε,δ(s)→ 0 when s→ 0+ for fixed ε and δ.
Now subtracting (4.28) from (4.26), we can write

− ∂ϕ

∂t
(t̄, x̄)−Aϕ(t̄, x̄)−Kϕ(t̄, x̄)− k̃∣∣u(t̄, x̄)− v(s̄, ȳ)

∣∣
− k̃∣∣Dϕ(t̄, x̄)σ(t̄, x̄)

∣∣− k̃(Bϕ(t̄, x̄)
)+

≤ ρε,δ
(|t̄− s̄|)+ω1(ε,α) +ωε2(δ),

(4.37)
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where we have gathered in the ω1(ε,α) term all the terms of the form |x̄− ȳ|2/ε2 and
|x̄− ȳ|; ω1(ε,α)→ 0 when (α,δ) tends to 0. The term ωε2(δ) contains all the remaining
integrals on Eδ . At last, we first let α go to 0 (since (t̄− s̄)/α2 is bounded, |t̄− s̄| → 0), then
we let δ go to zero keeping ε fixed, and finally we let ε→ 0 to get

− ∂ϕ

∂t

(
t0,x0

)−Aϕ(t0,x0
)−Kϕ(t0,x0

)− k̃∣∣w(t0,x0
)∣∣

− k̃∣∣Dϕ(t0,x0
)
σ
(
t0,x0

)∣∣− k̃(Bϕ(t0,x0
))+

≤ 0,

(4.38)

that is, w = u− v is a subsolution of (4.25).

Second step. We build a suitable sequence of smooth supersolution of this equation to
show that |u− v| = 0 in [0,T]×Rd. We need the following lemma which is proved in [1,
Lemma 3.8].

Lemma 4.9. For any Ã > 0, there exists C1 > 0 such that the function

χ(t,x)= exp
[(
C1(T − t) + Ã

)
ψ(x)

]
, (4.39)

where

ψ(x)=
[

log
((|x|2 + 1

)1/2
)

+ 1
]2

(4.40)

satisfies

−∂χ
∂t
−Lχ− k̃χ− k̃|Dχσ|− k̃(Bχ)+ > 0 in [t1,T]×Rd (4.41)

with t1 = T − Ã/C1.

The end of the demonstration consists in showing that |w(t,x)| ≤ αχ(t,x) in [0,T]×
Rd, for any α > 0. The conclusion is then immediate. �
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