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We deal with the approximate controllability of control systems governed by delayed
semilinear differential equations ẏ(t)=Ay(t) +A1y(t−∆) +F(t, y(t), yt) + (Bu)(t). Vari-
ous sufficient conditions for approximate controllability have been obtained; these results
usually require some complicated and limited assumptions. Results in this paper provide
sufficient conditions for the approximate controllability of a class of delayed semilinear
control systems under natural assumptions.

1. Introduction

The main concern in this paper is the approximate controllability of the following delayed
semilinear control system:

ẏ(t)=Ay(t) +A1y(t−∆) +F
(
t, y(t), yt

)
+ (Bu)(t), t ≥ a,

ya = ξ,
(1.1)

in a real Hilbert space X with the norm ‖ · ‖. The meaning of all notations is listed as fol-
lows: ∆≥ 0 is a system delay; y(·) : [a−∆,b]→ X is the state function; ξ ∈ C([−∆,0];X),
the Banach space of all continuous functions ψ : [−∆,0]→ X endowed with the norm
|ψ| = sup{‖ψ(θ)‖ :−∆≤ θ ≤ 0}; A is the generator of a C0 semigroup T(t) in X; A1 is a
bounded linear operator from X to X ; F : [a,b]×X ×C([−∆,0];X)→ X is a nonlinear
operator; u(·)∈ L2(a,b;U) is a control function; U is a Hilbert space; B is a bounded lin-
ear operator from L2(a,b;U) to L2(a,b;X). In addition, for any y ∈ C([a−∆,b];X) and
t ∈ [a,b], define yt ∈ C([−∆,0];X) by yt(θ)= y(t+ θ) for θ ∈ [−∆,0].

Denote the state function of (1.1) corresponding to a control u(·) by y(·;u). Then
y(b;u) is the state value at terminal time b. Introduce the set

Rb(F)= {y(b;u) : u(·)∈ L2(a,b;U)
}

, (1.2)

which is called the reachable set of system (1.1) at terminal time b, its closure in X is
denoted Rb(F).

Copyright © 2005 Hindawi Publishing Corporation
Journal of Applied Mathematics and Stochastic Analysis 2005:1 (2005) 67–76
DOI: 10.1155/JAMSA.2005.67

http://dx.doi.org/10.1155/S1048953304401026


68 Approximate controllability of delayed systems

Definition 1.1. The system (1.1) is said to be approximately controllable on [a,b] if
Rb(F)= X .

The following system is called the corresponding linear system of (1.1):

ẏ(t)= Ay(t) +A1y(t−∆) + (Bu)(t), t ≥ a,

ya = ξ. (1.3)

This is a special case of (1.1) with F ≡ 0. The reachable set of system (1.3) at terminal
time b is denoted Rb(0). Similarly, system (1.3) is said to be approximately controllable
on [a,b] if Rb(0)= X .

For semilinear control systems without delays, approximate controllability has been
extensively studied in the literature. We list only a few of them. Zhou [10] studied the ap-
proximate controllability for a class of semilinear abstract equations. Naito [6] established
the approximate controllability for semilinear control systems under the assumption that
the nonlinear term is bounded. Approximate controllability for semilinear control sys-
tems also can be found in Choi et al. [1], Fernandez and Zuazua [2], Li and Yong [4],
Mahmudov [5], and many other papers. Most of them concentrate on finding conditions
of F, A, and B such that semilinear systems are approximately controllable on [a,b] if the
corresponding linear systems are approximately controllable on [a,b].

For semilinear delayed control systems, some papers are devoted to the approximate
controllability. For example, Klamka [3] provided some approximate controllability re-
sults. Naito and Park [7] dealt with approximate controllability for delayed Volterra sys-
tems. In [9] Ryu et al. studied approximate controllability for delayed Volterra control
systems. The purpose of this paper is to study the approximate controllability of control
system (1.1). We obtain the approximate controllability of system (1.1) if the correspond-
ing linear system is approximate controllable and other natural assumptions such as the
local Lipschitz continuity for F and the compactness of operator W are satisfied.

2. Basic assumptions

We start this section by introducing the fundamental solution S(t) of the following
system:

ẏ(t)= Ay(t) +A1y(t−∆), t ≥ a,

ya = ξ. (2.1)

We already know that (2.1) has a unique solution, denoted by yξ(t), for each ξ ∈ C([−∆,
0];X). Hence, we can define an operator S(t) in X by

S(t)ξ(0)=

y

ξ(t+ a), t ≥ 0,

0, t < 0.
(2.2)
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S(t) is called the fundamental solution of (2.1). It is easy to check that S(t) is the unique
solution of the following operator equation:

S(t)= T(t) +
∫ t

0
T(t− s)A1S(s−∆)ds. (2.3)

Let K :=max{‖T(t)‖ : 0≤ t ≤ b}. By (2.3) we have

∥∥S(t)
∥∥≤ K +

∫ t
0
K
∥∥A1

∥∥∥∥S(s−∆)
∥∥ds≤ K +K

∥∥A1
∥∥∫ t

∆

∥∥S(s)
∥∥ds. (2.4)

Gronwall’s inequality implies that
∥∥S(t)

∥∥≤ K exp
(
K‖A‖(b−∆)

)
:=M1, 0≤ t ≤ b. (2.5)

Throughout the paper we impose the following condition on F.
(H1) F : [a,b]× X × C([−∆,0];X) → X is locally Lipschitz continuous in y, η uni-

formly in t ∈ [a,b]; that is, for any r > 0, there is a constant L(r) such that
∥∥F(t, y1,η1

)−F(t, y2,η2
)∥∥≤ L(r)

(∥∥y1− y2
∥∥+

∣∣η1−η2
∣∣) (2.6)

for any t ∈ [a,b], ‖y1‖ ≤ r, ‖y2‖ ≤ r, |η1| ≤ r, and |η2| ≤ r.
With a minor modification of [8], we can prove that system (1.1) has a unique mild

solution y(·;u) ∈ C([a−∆,b];X) for any control u(·) ∈ L2(a,b;U) under assumption
(H1). This mild solution is defined as a solution of the integral equation:

y(t;u)= S(t− a)ξ(0) +
∫ t
a
S(t− s)[F(s, y(s;u), ys

)
+ (Bu)(s)

]
ds, t ≥ a,

ya = ξ.
(2.7)

Similarly, for any z(·)∈ L2(a,b;X), the following integral equation:

x(t;z)= S(t− a)ξ(0) +
∫ t
a
S(t− s)[F(s,x(s;z),xs

)
+ z(s)

]
ds, t ≥ a,

xa = ξ,
(2.8)

has a unique mild solution x(·;z). Therefore, we can define an operatorW from L2(a,b;X)
to C([a,b];X) by

(Wz)(·)= x(·;z). (2.9)

Regarding the operator W , we assume that
(H2) W is a compact operator.

Remark 2.1. (H2) is the case if, for instance, T(t), the semigroup generated by A, is a
compact semigroup.

The following assumption (H3) was introduced by Naito in [6]. Define a linear oper-
ator ϕ from L2(a,b;X) to X by

ϕp =
∫ b
a
S(b− s)p(s)ds for p(·)∈ L2(a,b;X). (2.10)
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Let the kernel of the operator ϕ be N ; that is, N = {p : ϕp = 0}. Then N is a closed sub-
space of L2(a,b;X). Denote its orthogonal space in L2(a,b;X) by N⊥. Let G be the projec-
tion operator from L2(a,b;X) into N⊥ and let R[B] be the range of B. We assume that

(H3) for any p(·)∈ L2(a,b;X), there is a function q(·)∈ R[B] such that ϕp = ϕq.

Remark 2.2. (H3) is valid for many control systems, see [6] for detailed discussion.
It follows from assumption (H3) that {x+N}∩R[B] 	= ∅ for any x ∈N⊥. Therefore,

the operator P from N⊥ to R[B] defined by

Px = x∗, (2.11)

where x∗ ∈ {x+N}∩R[B] and ‖x∗‖ =min{‖y‖ : y ∈ {x+N}∩R[B]}, is well defined.
It is proved in [6] that P is bounded.

3. Lemmas

This section provides two lemmas that will be used to prove the main theorem.

Lemma 3.1. Assume that a(t) is continuous on [a,b], b(t) is nonnegative and integrable on
[a,b], and x(t) is a nonnegative continuous function satisfying the following inequality:

x(t)≤ a(t) +
∫ t
a
b(s)xα(s)ds, 0≤ α < 1, t ∈ [a,b]. (3.1)

If the equation

y(t)= a(t) +
∫ t
a
b(s)yα(s)ds (3.2)

has a unique solution ȳ(t) on [a,b], then

x(t)≤ ȳ(t), t ∈ [a,b]. (3.3)

Proof. Let C[a,b] be the Banach space of all continuous functions on [a,b] endowed with
the maximum norm. Define an operator E from C[a,b] to C[a,b] by

(Ey)(t)= a(t) +
∫ t
a
b(s)yα(s)ds. (3.4)

Construct a sequence {yn} as follows:

y0(t)= x(t), yn+1(t)= (Eyn)(t), n= 0,1, . . . . (3.5)

We have

x(t)= y0(t)≤ y1(t)≤ ··· , ‖x‖ = ∥∥y0
∥∥≤ ∥∥y1

∥∥≤ ··· . (3.6)

Note that

‖Ey‖ ≤ ‖a‖+‖y‖α
∫ t

0
b(s)ds, (3.7)
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then we can find a number d > 0 such that

‖Ey‖ ≤ ‖y‖ for ‖y‖ ≥ d. (3.8)

If ‖yn‖ ≤ d holds for any integer n= 0,1, . . . , then ‖yn‖ is bounded. Otherwise, it follows
from (3.6) that a sufficiently large integer N exists such that

∥∥y0
∥∥≤ ··· ≤ ∥∥yN∥∥≤ d,

∥∥yn∥∥ > d for n > N. (3.9)

Thus

max
{∥∥yn∥∥ : n≥ 0

}≤max
{
d,
∥∥yN+1

∥∥} :=m. (3.10)

Consequently,

0≤ x(t)= y0(t)≤ y1(t)≤ ··· ≤ yn(t)≤··· ≤m. (3.11)

Therefore,

lim
n→∞ yn(y)= ȳ(t). (3.12)

Note that ȳ(t) is the unique solution of (3.2). The conclusion of Lemma 3.1 follows from
(3.11). �

Lemma 3.2. Assume that (H1) is fulfilled. Furthermore, for any y ∈ X and η∈C([−∆,0];X)

∥∥F(t, y,η)
∥∥≤M(1 +‖y‖α + |η|α), 0≤ α < 1, t ∈ [a,b]. (3.13)

Then the mild solution x(t;z) of (2.8) has the estimate

∣∣xt∣∣≤H(‖z‖), (3.14)

where H(r) is an increasing function and H(r)=O(r) as r →∞.

Proof. Recall that

M1 =max
{∥∥S(t)

∥∥ : 0≤ t ≤ b}. (3.15)

It follows from ‖x(s)‖ ≤ |xs| and (2.8) that

∥∥x(t)
∥∥≤M1|ξ|+M1M

∫ t
a

(
1 +

∥∥x(s)
∥∥α +

∣∣xs∣∣α)ds+M1

∫ t
a

∥∥z(s)
∥∥ds

≤M1|ξ|+M1M(b− a) +M1

√
b− a‖z‖+ 2M1M

∫ t
a

∣∣xs∣∣αds.
(3.16)

For any θ ∈ [−∆,0], we have

∥∥x(t+ θ)
∥∥≤M1|ξ|+M1M(b− a) +M1

√
b− a‖z‖+ 2M1M

∫ t+θ
a

∣∣xs∣∣αds. (3.17)
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Hence

∣∣xt∣∣≤M1|ξ|+M1M(b− a) +M1

√
b− a‖z‖+ 2M1M

∫ t
a

∣∣xs∣∣αds. (3.18)

Note that for any two constants V1 and V2, the following equation

y(t)=V1 +V2

∫ t
0
yα(s)ds (3.19)

has a unique solution

y(t)=
[

(1−α)V2t+V 1−α
1

]1/(1−α)
. (3.20)

Applying Lemma 3.1 to (3.18), we obtain

∣∣xt∣∣≤ [2(1−α)MM1(b− a) +
(
M1|ξ|+M1

√
b− a‖z‖+MM1(b− a)

)1−α]1/(1−α)

:=H(‖z‖).
(3.21)

Clearly, the function H(r) satisfies all requirements of Lemma 3.2 and the proof of the
lemma is complete. �

4. Approximate controllability

The following theorem is the main result of this paper.

Theorem 4.1. Assume that linear system (1.3) is approximately controllable on [a,b]. If
(H1), (H2), (H3), and (3.13) are fulfilled, then system (1.1) is approximately controllable
on [a,b].

Proof. Note that system (1.3) is approximately controllable on [a,b] by the assumption,
then Rb(0)= X. To prove the approximate controllability of (1.1); that is, Rb(F)= X , it is
sufficient to show that

Rb(0)⊂ Rb(F). (4.1)

That means for any ε > 0 and xb ∈ Rb(0), there exists a ν∈ Rb(F) such that ‖ν− xb‖ < ε.
By the definition of reachable set Rb(0) of system (1.3), there is a control u(·) ∈

L2(a,b;U) such that

xb = S(b− a)ξ(0) +
∫ b
a
S(b− s)(Bu)(s)ds. (4.2)

Let z̄0 = Bu, z0 =Gz̄0. Then z0 ∈N⊥. Define an operator J from N⊥ to N⊥ by

Jv = z0−GΓPv, v ∈N⊥, (4.3)
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where Γ is the operator from L2(a,b;X) to L2(a,b;X) defined by

(Γz)(t) := F(t, (Wz)(t),(Wz)t
)= F(t,x(t;z),xt

)
. (4.4)

For any v ∈N⊥, we have Pv ∈ L2(a,b;X), ΓPv ∈ L2(a,b;X), and GΓPv ∈N⊥. Therefore,
J is well defined.

SinceW is compact by assumption (H2), for any bounded sequence zn(·)∈ L2(a,b;X);
that is, ‖zn‖ ≤ r1 for some r1 > 0, there is a subsequence znk (·) of zn(·) such that (Wznk )(·)
converges to x̄(·) in C([a,b];X) as k →∞. So, Wznk is bounded in C([a,b];X); that is,
‖Wznk‖ ≤ r2 for some constant r2 > 0. (H1) implies that a constant L(r) > 0 exists such
that ∥∥F(t,(Wznk

)
(t),

(
Wznk

)
t

)−F(t, x̄(t), x̄t
)∥∥

≤ L(r)
(∥∥(Wznk

)
(t)− x̄(t)

∥∥+
∣∣(Wznk

)
t − x̄t

∣∣), (4.5)

where r =max(r1,r2). Hence, we have

∥∥Γznk−F(·, x̄(·), x̄·
)∥∥2

= ∥∥F(·,(Wznk
)
(·),

(
Wznk

)
·
)−F(·, x̄(·), x̄·

)∥∥2

≤ L2(r)(b− a)
(

sup
a≤t≤b

∥∥(Wznk
)
(t)− x̄(t)

∥∥

+ sup
a≤t≤b

∣∣(Wznk
)
t − x̄t

∣∣)2

−→ 0

(4.6)

as k→∞. Therefore, Γ is compact and J is compact as well.
From Lemma 3.2, for any z(·)∈ L2(a,b;X), we have

∥∥F(t,x(t;z),xt
)∥∥≤M(1 +

∥∥x(t;z)
∥∥α +

∣∣xt∣∣α)≤M(1 + 2Hα
(‖z‖)). (4.7)

Note that H(r) is increasing and P is a bounded operator, then
∥∥z0−GΓPv

∥∥≤ ∥∥z0
∥∥+‖GΓPv‖

≤ ∥∥z0
∥∥+M

√
b− a+ 2M

√
b− aHα

(‖P‖‖v‖). (4.8)

Taking into account

lim
‖v‖→∞

∥∥z0
∥∥+M

√
b− a+ 2M

√
b− aHα

(‖P‖‖v‖)
‖v‖ = 0, (4.9)

then

lim
‖v‖→∞

∥∥z0−GΓPv
∥∥

‖v‖ = 0. (4.10)

Therefore, we can find a sufficiently large number r̄ such that

∥∥z0−GΓPv
∥∥≤ r̄ for ‖v‖ ≤ r̄. (4.11)
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This means that J maps the bounded closed set D(r̄)= {v : ‖v‖ ≤ r̄,v ∈N⊥} of N⊥ into
itself. Consequently, a fixed point of operator J exists due to the Schauder fixed point
theorem; that is, there is a v∗ ∈D(r̄) such that

Jv∗ = z0−GΓPv∗ = v∗. (4.12)

On account of

Pv∗ ∈ (v∗ +N
)∩R[B], (4.13)

we have

∫ b
a
S(b− s)(Pv∗)(s)ds=

∫ b
a
S(b− s)v∗(s)ds. (4.14)

Note that G is the projection operator from L2(0,T ;X) into N⊥, then we have

∫ b
a
S(b− s)Gp(s)ds=

∫ b
a
S(b− s)p(s)ds for p(·)∈ L2(a,b;X),

∫ b
a
S(b− s)(Bu)(s)ds=

∫ b
a
S(b− s)[F(s,x(s;Pv∗),xs)+ v∗(s)

]
ds

=
∫ b
a
S(b− s)[F(s,x(s;Pv∗),xs) +

(
Pv∗

)
(s)
]
ds.

(4.15)

Finally,

xb = S(b− a)ξ(0) +
∫ b
a
S(b− s)[F(s,x(s;Pv∗),xs)+

(
Pv∗

)
(s)
]
ds= x(b;Pv∗

)
. (4.16)

Observe that Pv∗ ∈ R[B], then there is a sequence un(·) ∈ L2(a,b;U) such that Bun →
Pv∗ as n→∞. W is continuous due to its compactness, then

WBun −→WPv∗ in C
(
[a,b];X

)
. (4.17)

This implies

x
(
b;Bun

)−→ x
(
b;Pv∗

)= xb (4.18)

as n→∞. Since x(b;Bun) = y(b;un) ∈ RT(F), we obtain xb ∈ RT(F) and complete the
proof of the theorem. �

Remark 4.2. If A1 = 0, (H3) implies the approximate controllability of (1.3) on [a,b] (see
[6]). Therefore, Naito’s result in [6] is a special case of Theorem 4.1 when A1 = 0, ∆ =
0, and F(t,x(t),xt) = F(x(t)). In particular, we improve Naito’s result by weakening the
uniform Lipschitz continuity and the uniform boundedness imposed on the nonlinear
term.
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5. Example

LetX = L2(0,π) and en(x)= sin(nx) for n= 1, . . . . Then {en : n= 1,2, . . .} is an orthogonal
base for X . Define A : X → X by Ay = y′′ with domain

D(A)= {y ∈ X : y and y′ are absolutely continuous, y′′ ∈ X , y(0)= y(π)= 0
}
. (5.1)

Then

Ay =−
∞∑
n=1

n2〈y,en
〉
en, y ∈D(A). (5.2)

It is well known that A is the infinitesimal generator of an analytic group T(t), t ≥ 0, in
X and is given by

T(t)y =
∞∑
n=1

e−n
2t
〈
y,en

〉
en, y ∈ X. (5.3)

T(t) is compact because it is an analytic semigroup. Define an infinite dimensional space
U by

U =
{
u : u=

∞∑
n=2

unen,
∞∑
n=2

u2
n <∞

}
(5.4)

with the norm defined by

‖u‖U =
( ∞∑
n=2

u2
n

)1/2

. (5.5)

Define a mapping B from U to X as follows:

Bu= 2u2e1 +
∞∑
n=2

unen. (5.6)

Consider the following delayed semilinear heat equation:

∂y(t,x)
∂t

= ∂2y(t,x)
∂x2

+ y(t−∆,x) +F
(
y(t,x), y(t−∆,x)

)
+Bu(t,x), 0 < t < b, 0 < x < π,

y(t,0)= y(t,π)= 0, 0≤ t ≤ b,

y(t,x)= ξ(x), −∆≤ t ≤ 0, 0≤ x ≤ π.

(5.7)

Then system (5.7) can be written to the abstract form (1.1). (H2) holds because T(t) is
a compact semigroup. Following the same arguments as in [6] we can prove that (H3) is
valid and that the corresponding linear system is approximately controllable on [0,b]. By
Theorem 4.1, system (5.7) is approximately controllable on [0,b] if F is locally Lipschitz
continuous and condition (3.13) is satisfied.
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