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Given a standard Brownian motion (Bt)t≥0 and the equation of motion dXt = vtdt+√
2dBt, we set St =max0≤s≤t Xs and consider the optimal control problem supv E(Sτ − cτ),

where c > 0 and the supremum is taken over all admissible controls v satisfying vt ∈
[µ0,µ1] for all t up to τ = inf{t > 0 | Xt /∈ (�0,�1)} with µ0 < 0 < µ1 and �0 < 0 < �1 given
and fixed. The following control v∗ is proved to be optimal: “pull as hard as possible,”
that is, v∗t = µ0 if Xt < g∗(St), and “push as hard as possible,” that is, v∗t = µ1 if Xt > g∗(St),
where s �→ g∗(s) is a switching curve that is determined explicitly (as the unique solution
to a nonlinear differential equation). The solution found demonstrates that the problem
formulations based on a maximum functional can be successfully included in optimal
control theory (calculus of variations) in addition to the classic problem formulations
due to Lagrange, Mayer, and Bolza.

1. Introduction

Stochastic control theory deals with three basic problem formulations which were in-
herited from classical calculus of variations (cf. [4, pages 25-26]). Given the equation of
motion

dXt = µ
(
Xt,ut

)
dt+ σ

(
Xt,ut

)
dBt, (1.1)

where (Bt)t≥0 is standard Brownian motion, consider the optimal control problem

inf
u
Ex

(∫ τD

0
L
(
Xt,ut

)
dt+M

(
XτD

))
, (1.2)

where the infimum is taken over all admissible controls u = (ut)t≥0 applied before the
exit time τD = inf{t > 0 | Xt /∈ C} for some open set C =Dc and the process (Xt)t≥0 starts
at x under Px. If M ≡ 0 and L 	= 0, problem (1.2) is said to be Lagrange formulated. If
L≡ 0 and M 	= 0, problem (1.2) is said to be Mayer formulated. If both L 	= 0 and M 	= 0,
problem (1.2) is said to be Bolza formulated.
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The Lagrange formulation goes back to the 18th century, the Mayer formulation orig-
inated in the 19th century, and the Bolza formulation [2] was introduced in 1913. We
refer to [1, pages 187–189] and the references therein for a historical account of the La-
grange, Mayer, and Bolza problems. Although the three problem formulations are for-
mally known to be equivalent (see, e.g., [1, pages 189–193], [4, pages 25–26]), this fact is
rarely proved to be essential when solving a concrete problem.

Setting Zt = L(Xt,ut) or Zt =M(Xt), and focusing upon the sample path t �→ Zt for t ∈
[0,τD], we see that the three problem formulations measure the performance associated
with a control u by means of the following two functionals:

∫ τD

0
Ztdt, ZτD

, (1.3)

where the first one represents the surface area below (or above) the sample path, and the
second one represents the sample path terminal value. In addition to these two function-
als, it is suggested by elementary geometric considerations that the maximal value of the
sample path

max
0≤t≤τD

Zt (1.4)

provides yet another performance measure which, to a certain extent, is more sensitive
than the previous two. Clearly, a sample path can have a small integral but still a large
maximum, while a large maximum cannot be detected by the terminal value either.

The main purpose of the present paper is to show that the problem formulations based
on a maximum functional can be successfully added to optimal control theory (calculus
of variations). This is done by formulating a specific problem of this type (Section 2) and
solving it in a closed form (Section 3). The result suggests a number of new avenues for
further research upon extending the Bolza formulation (1.2) to optimize the following
expression:

Ex

(
max

0≤t≤τD
K
(
Xt,ut

)
+
∫ τD

0
L
(
Xt,ut

)
dt+M

(
XτD

))
, (1.5)

where some of the maps K , L, and M may also be identically zero.
Optimal stopping problems for the maximum process have been studied by a num-

ber of authors in the 1990’s (see, e.g., [6, 3, 10, 8, 5]) and the subject seems to be well-
understood now.

2. Formulation of the problem

Consider a process X = (Xt)t≥0 solving the stochastic differential equation (s.d.e.)

dXt = vtdt+
√

2dBt, (2.1)
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where B = (Bt)t≥0 is standard Brownian motion, and associate with X the maximum
process

St =
(

max
0≤r≤t

Xr

)
∨ s (2.2)

so that X0 = x and S0 = s under Px,s, where x ≤ s. Introduce the exit time

τ = inf
{
t > 0 | Xt /∈

(
�0,�1

)}
, (2.3)

where �0 < 0 < �1 are given and fixed, and so let c > 0 in the sequel.
The optimal control problem to be examined in this paper is formulated as follows:

J(x,s) := sup
v
Ex,s

(
Sτ − cτ

)
, (2.4)

where the supremum is taken over all “admissible” controls v satisfying vt ∈ [µ0,µ1] for
all 0 ≤ t ≤ τ with some µ0 < 0 < µ1 given and fixed. By “admissible” we mean that the
s.d.e. (2.1) can be solved in Itô’s sense (either strongly or weakly). Since vt is required
to be uniformly bounded, it is well known that a weak solution (unique in law) always
exists under a measurability condition (see, e.g., [9, page 155]), where vt may depend on
the entire sample path r �→ Xr up to time t. Moreover, if vt = v(Xt) for some (bounded)
measurable function v, then a strong solution (pathwise unique) also exists (see, e.g., [9,
pages 179–180]).

The optimal control problem (2.4) has some interesting interpretations. Equation
(2.1) may be viewed as describing the motion of a Brownian particle (subject to a fluc-
tuating force ∼ Ḃt) that is under the influence of a (slowly varying) external force ∼ vt
(see [7, pages 53–78]). The objective in (2.4) is therefore to determine an optimum of the
external force that one needs to exert upon the particle so as to make its maximal height
at the time of exit as large as possible in the course of time needed for the same exit to
happen as short as possible. Clearly, the interpretation and objective just described carry
over to many other problems where (2.1) plays a role.

It appears intuitively clear that the optimal control should be of the following bang-
bang type: at each time either “push” or “pull” as hard as possible so as to reach either
�1 or �0 as soon as possible. The solution of the problem presented in the next section
confirms this guess and makes the statement precise in analytic terms. It is also apparent
that at each time t we need to keep track of bothXt and St so that the problem is inherently
two dimensional.

3. Solution of the problem

(1) In the setting of the previous section, consider the optimal control problem (2.4).
Note that X̄t = (Xt,St) is a two-dimensional process with the state space S= {(x,s)∈R2 |
x ≤ s} that changes (increases) in the second coordinate only after hitting the diagonal x =
s in R2. Off the diagonal, the process X̄ = (X̄t)t≥0 changes only in the first coordinate and
thus may be identified with X . Moreover, if vt = v(Xt) for some (bounded) measurable
function v in (2.1), then X̄ is a Markov process. The later “feedback” controls are sufficient
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to be considered under fairly general hypotheses (see, e.g., [4, pages 162–163]), and this
fact will also be proved below. The infinitesimal generator of X̄ may be therefore formally
described as follows:

LX̄ = LX in x < s, (3.1)

∂

∂s
= 0 at x = s, (3.2)

where LX is the infinitesimal generator of X . This means that the infinitesimal generator
of X̄ is acting on a space of C2 functions f on S satisfying limx↑s(∂ f /∂s)(x,s) = 0. The
formal description (3.1)+(3.2) appears in [8, pages 1618–1619], where the latter fact is
also verified. The condition of normal reflection (3.2) was used for the first time in [3]
in the case of Bessel processes (it was also noted in [6, page 1810] in the case of a Bessel
process of dimension one).

(2) Assuming for a moment that the supremum in (2.4) is attained at some feed-
back control, and making use of the formal description of the infinitesimal generator
(3.1)+(3.2), we are naturally led to formulate the following HJB system:

sup
v

(
Lv
X(J)− c

)= 0 in C for x < s, (3.3)

∂J

∂s
(x,s)

∣∣
x=s− = 0 (normal reflection), (3.4)

J(x,s)
∣∣
x=�0+ = s (instantaneous stopping), (3.5)

J(x,s)
∣∣
x=�1− = s (instantaneous stopping), (3.6)

for �0 < s < �1, where the infinitesimal generator of X given v is expressed by

Lv
X = v

∂

∂x
+

∂2

∂x2
(3.7)

and we setC = {(x,s)∈R2 | �0 < x ≤ s < �1}. Our main effort in the sequel will be directed
to solving the system (3.3)–(3.6) in a closed form.

More explicitly, the HJB equation (3.3) with J = J(x,s) reads as follows:

sup
v

(
vJx + Jxx − c

)= 0 (3.8)

so that we may expect a bang-bang solution v∗ depending on the sign of Jx. If Jx < 0, then
v∗t = µ0, and if Jx > 0, then v∗t = µ1. The equation Jx = 0 defines an optimal “switching”
curve s �→ g∗(s), and the main task in the sequel will be to determine it explicitly.

Further heuristic considerations based on the bang-bang principle just stated (when
close to �0 apply µ0 so to exit at �0, and when close to �1 apply µ1 so to exit at �1) suggest
to partition C into the following three subsets (modulo two curves x = g∗(s) and s= s∗
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�1

�0 x∗ �1

�0

C1 C2

x

s

C3

s
�→

g ∗
(s

)

S∗

Figure 3.1. The case of “small” c in problem (2.4).

to be found):

C1 =
{

(x,s)∈R2 | �0 < x < g∗(s), s∗ < s < �1
}

, (3.9)

C2 =
{

(x,s)∈R2 | g∗(s) < x ≤ s, s∗ < s < �1
}

, (3.10)

C3 =
{

(x,s)∈R2 | �0 < x ≤ s < s∗
}

, (3.11)

where s∗ is a unique point in (�0,�1) satisfying

g∗
(
s∗
)= �0. (3.12)

In addition to (3.11), we also set

g∗
(
�1
)= x∗ (3.13)

to denote another point in (�0,�1) playing a role. We refer to Figure 3.1 to obtain a bet-
ter geometric understanding of (3.9)–(3.13). [In Figure 3.1 the state space (triangle) of
the process (Xt,St) from (2.1)+(2.2) splits into three regions. In the region C1, the op-
timal control v∗t equals µ0, and in the region C2 ∪C3 the optimal control v∗t equals µ1.
The switching curve s �→ g∗(s) is determined as the unique solution of the differential
equation (3.26) satisfying g∗(�1) = x∗, where x∗ ∈ (�0,�1) is the unique solution of the
transcendental equation (3.25). In this specific case, we took �0 = µ0 = −1, �1 = µ1 = 1,
and c = 2. It turns out that x∗ = 0, s∗ = −0.574108̄ and s∞ =−0.718666̄. (The point s∞ is
a singularity point at which dg∗/ds= +∞ and g∗ takes a finite value.)]
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(3) We construct a solution to the system (3.3)–(3.6) in three steps. In the first two
steps, we determine C1∪C2 together with a boundary curve s �→ g∗(s) separating C1 from
C2.

Step 1. Consider the HJB equation

µ0Jx + Jxx − c = 0 (3.14)

in C1 to be found. The general solution of (3.14) is given by

J(x,s)=− 1
µ0

a0(s)e−µ0x +
c

µ0
x+ b0(s), (3.15)

where a0(s) and b0(s) are some undetermined functions of s. Using (3.5), we can eliminate
b0(s) from (3.15) and this yields

J(x,s)=− 1
µ0

a0(s)
(
e−µ0x − e−µ0�0

)
+

c

µ0

(
x− �0

)
+ s. (3.16)

Solving Jx(x,s)= 0 for x gives x∗ = g∗(s) as a candidate for the switching curve, and also
that a0(s) can be expressed in terms of g∗(s) as follows:

a0(s)=− c

µ0
eµ0g∗(s). (3.17)

Inserting this back into (3.16) gives

J (1)(x,s)= c(
µ0
)2 e

µ0g∗(s)(e−µ0x − e−µ0�0
)

+
c

µ0

(
x− �0

)
+ s (3.18)

as a candidate for the value function (2.4) when (x,s)∈ C1.

Step 2. Consider the HJB equation

µ1Jx + Jxx − c = 0 (3.19)

in C2 to be found. The general solution of (3.19) is given by

J(x,s)=− 1
µ1

a1(s)e−µ1x +
c

µ1
x+ b1(s), (3.20)

where a1(s) and b1(s) are some undetermined functions of s. Solving Jx(x,s) = 0 for x
gives x∗ = g∗(s) as a candidate for the switching curve, and also that a1(s) can be ex-
pressed in terms of g∗(s) as follows:

a1(s)=− c

µ1
eµ1g∗(s). (3.21)

Inserting this back into (3.20) gives

J (2)(x,s)= c(
µ1
)2 e

µ1(g∗(s)−x) +
c

µ1
x+ b1(s). (3.22)
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The two functions (3.18) and (3.22) must coincide at the switching curve, that is,

J (1)(x,s)
∣∣
x=g∗(s)+ = J (2)(x,s)

∣∣
x=g∗(s)− (3.23)

giving a closed expression for b1(s), which after being inserted back into (3.22) yields

J (2)(x,s)= c(
µ1
)2 e

µ1(g∗(s)−x)− c(
µ0
)2 e

µ0(g∗(s)−�0)

− c

µ1

(
g∗(s)− x

)
+

c

µ0

(
g∗(s)− �0

)
+ s+

c(
µ0
)2 −

c(
µ1
)2

(3.24)

as a candidate for the value function (2.4) when (x,s)∈ C2.
The condition (3.6) with x = s = �1 can now be used to determine a unique x∗ ∈

(�0,�1) satisfying (3.13). It follows from the expression (3.24) above that x∗ solves (and is
uniquely determined by) the following transcendental equation:

1(
µ1
)2

(
1− eµ1(x∗−�1))− 1(

µ0
)2

(
1− eµ0(x∗−�0))+

(
1
µ1
− 1
µ0

)
x∗ −

(
�1

µ1
− �0

µ0

)
= 0. (3.25)

It may be noted that this equation, and therefore x∗ as well, does not depend on c.
Finally, applying the condition (3.4) to the expression (3.24), we obtain a differential

equation for the switching curve s �→ g∗(s) that takes the following form:

g′(s)= 1(
c/µ1

)(
1− eµ1(g(s)−s))− (c/µ0

)(
1− eµ0(g(s)−�0)

) (3.26)

for all s∈ (s∞,�1), where s∞ < �1 happens to be a singularity point at which dg/ds= +∞.
Equation (3.26) is solved backwards under the initial condition (3.13), where x∗ ∈ (�0,�1)
is found by solving (3.25). The switching curve s �→ g∗(s) is a unique solution of (3.26)
obtained in this way. It can also be verified that (3.12) holds for some s∗ ∈ (s∞,�1).

(4) It turns out that the solution of (3.26) satisfying (3.13) can hit the diagonal inR2 at
a point s′∗ ∈ (�0,�1) taken to be closest to x∗, if c ≥ c∗ for some large c∗ to be determined
below. When this happens, the construction of the solution becomes more complicated,
and the solution of (3.26) for s ∈ (s∞,s′∗) is of no use. We thus first treat the simpler
case when the solution of (3.26) stays below the diagonal (the case of “small” c), and this
case is then followed by the more complicated case when the solution of (3.26) hits the
diagonal (the case of “large” c).

Step 3 (the case of “small” c). Having characterized the curve s �→ g∗(s) for [s∗,�1], we have
obtained a candidate (3.18)+(3.24) for the value function (2.4) when (x,s)∈ C1∪C2. It
remains to determine J(x,s) for (x,s)∈ C3, and this is what we do in the final step.

As clearly the control µ1 should be applied, consider the HJB equation

µ1Jx + Jxx − c = 0 (3.27)

in C3 given and fixed. The general solution of (3.27) is given by

J(x,s)=− 1
µ1

a2(s)e−µ1x +
c

µ1
x+ b2(s), (3.28)
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where a2(s) and b2(s) are some undetermined functions of s. Using the condition (3.5),
we can eliminate b2(s) from (3.28) and this yields

J (3)(x,s)=− 1
µ1

a2(s)
(
e−µ1x − e−µ1�0

)
+

c

µ1

(
x− �0

)
+ s. (3.29)

Applying the condition (3.4) to the expression (3.29), we find that a2(s) should solve

a′2(s)= µ1

e−µ1s− e−µ1�0
(3.30)

for �0 < s < s∗. This equation can be solved explicitly and this gives

a2(s)=−eµ1�0
(
µ1s+ log

(
e−µ1s− e−µ1�0

))
+d, (3.31)

where d is an undetermined constant. To determine d, we may use the fact that the maps
(3.24) and (3.29) must coincide at (s∗,s∗), that is,

J (2)(x,s)
∣∣
x=s=s∗ = J (3)(x,s)

∣∣
x=s=s∗ , (3.32)

the latter being known explicitly due to (3.12). With this d we can then rewrite (3.31) as
follows:

a2(s)= eµ1�0

(
µ1
(
s∗ − s

)− log
(
e−µ1s− e−µ1�0

e−µ1s∗ − e−µ1�0

)
− c

µ1

)
. (3.33)

Inserting this expression back into (3.29), we obtain a candidate for the value function
(2.4) when (x,s)∈ C3, thus completing the construction of a solution to the system (3.3)–
(3.6).

Steps 3–5 (the case of “large” c). In this case, the solution s �→ g∗(s) of (3.26) satisfying
(3.13) hits the diagonal in R2 at some s′∗ ∈ (�0,�1). The set C1 from (3.9) naturally splits
into the following three subsets (modulo two curves):

C1,1 =
{

(x,s)∈R2 | �0 < x < g∗(s), s′∗ < s < �1
}

, (3.34)

C1,2 =
{

(x,s)∈R2 | �0 < x < s, s′′∗ < s < s′∗
}

, (3.35)

C1,3 =
{

(x,s)∈R2 | �0 < x < h∗(s), s∗ < s < s′′∗
}

, (3.36)

where s′′∗, the map s �→ h∗(s), and s∗ in this context will soon be defined. Similarly, the set
C2 from (3.10) naturally splits into the following two subsets (modulo one curve):

C2,1 =
{

(x,s)∈R2 | g∗(s) < x ≤ s, s′∗ < s < �1
}

, (3.37)

C2,2 =
{

(x,s)∈R2 | h∗(s) < x ≤ s, s∗ < s < s′′∗
}
. (3.38)

The set C3 from (3.11) remains the same, however, with a new value for s∗ to be in-
troduced. We refer to Figure 3.2 to obtain a better geometric understanding of (3.34)–
(3.38). [In Figure 3.2 the state space (triangle) of the process (Xt,St) from (2.1)+(2.2)
splits into six regions. In the region C1,1 ∪ C1,2 ∪ C1,3, the optimal control v∗t equals
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�1

�0 x∗ �1

�0

C1,1

C2,1

C1,3
s∗

s′′∗

s
�→

g ∗
(s

)

s′∗
s �→ h∗(s)

C1,2

C2,2

C3

s

x

Figure 3.2. The case of “large” c in problem (2.4).

µ0, and in the region C2,1 ∪C2,2 ∪C3, the optimal control v∗t equals µ1. The switching
curve s �→ g∗(s) is determined as the unique solution of the differential equation (3.26)
satisfying g∗(�1) = x∗, where x∗ ∈ (�0,�1) is the unique solution of the transcendental
equation (3.25). The switching curve s �→ h∗(s) differs from the solution s �→ g∗(s) of
(3.26) and is determined to meet the condition (3.4) as explained in the text. In this
specific case, we took �0 = µ0 = −1, �1 = µ1 = 1, and c = 3.8. It turns out that x∗ = 0,
s′∗ = −0.491212̄, s′′∗ = −0.822730̄, and s∗ = −0.908297̄. For comparison, we state that the
smaller (of two) s̃′∗ satisfying g∗(s̃′∗)= s̃′∗ equals−0.821474̄, that s̃∗ satisfying g∗(s̃∗)= �0

equals−0.906585̄, and that s∞ =−0.943324̄. (The point s∞ is a singularity point at which
dg∗/ds= +∞ and g∗ takes a finite value.)]

It is clear from the construction above that in C1,1 the value function (2.4) is given by
(3.18), and that in C2,1 the value function (2.4) is given by (3.24), where s �→ g∗(s) is the
solution of (3.26) satisfying (3.13). For the points s < s′∗ (close to s′∗) we can no longer
make use of the solution g∗(s), and the expression (3.18), as clearly the condition (3.4)
fails to hold. We need, moreover, to apply the control µ0 instead of µ1, and thus Step 3
presented above must be modified. The HJB equation (3.27) is considered with µ0 in
place of µ1, and this again using (3.5) leads to the expression (3.29) with µ0 in place of µ1:

J (1,2)(x,s)=− 1
µ0

a3(s)
(
e−µ0x − e−µ0�0

)
+

c

µ0

(
x− �0

)
+ s (3.39)
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as well as (3.30) and its solution (3.31). To determine d in (3.31), we may use that

J (1,2)(x,s)
∣∣
x=s=s′∗ = J (i,1)(x,s)

∣∣
x=s=s′∗ (3.40)

for i either 1 or 2, where we set J (1,1) = J (1) and J (2,1) = J (2) with J (1) from (3.18) and
J (2) from (3.24). The latter expression in (3.40) is known explicitly due to the fact that
g∗(s′∗)= s′∗. With this d, we can then rewrite an analogue of (3.33) as follows:

a3(s)= eµ0�0

(
µ0
(
s′∗ − s

)− log

(
e−µ0s− e−µ0�0

e−µ0s
′∗ − e−µ0�0

))
− c

µ0
eµ0s′∗ . (3.41)

Inserting this expression back into (3.39), we obtain a candidate for the value function

(2.4) when (x,s)∈ C1,2. Moreover, the equation J (1,2)
x = 0 determines an optimal “switch-

ing” curve

h∗(s)= 1
µ0

log
(
− µ0

c
a3(s)

)
(3.42)

and the points s′′∗ ∈ (�0,s′∗) and s∗ ∈ (�0,s′′∗) appearing in (3.35)+(3.36) and (3.38) are
determined by the following identities:

h∗
(
s′′∗
)= s′′∗, (3.43)

h∗
(
s∗
)= �0. (3.44)

Note that (3.44) is reminiscent of (3.12), and so is h∗(s) of g∗(s). However, the two func-
tions are different for s < s′∗.

It is clear that the value function (2.4) is also given by the formula (3.39) for (x,s) ∈
C1,3. To determine the value function (2.4) in C2,2, where clearly the control µ1 is to be
applied, we can use the result of Step 2 above which leads to the following analogue of
(3.24) above:

J (2,2)(x,s)= c(
µ1
)2 e

µ1(h∗(s)−x)− c(
µ0
)2 e

µ0(h∗(s)−�0)

− c

µ1

(
h∗(s)− x

)
+

c

µ0

(
h∗(s)− �0

)
+ s+

c(
µ0
)2 −

c(
µ1
)2

(3.45)

for (x,s)∈ C2,2.
Finally, in C3 we should also apply the control µ1, and thus the result of Step 3 (the case

of “small” c ) above can be used. Due to (3.44), the expressions (3.29)+(3.33) carry over
unchanged to the present case. It must be kept in mind, however, that s∗ satisfies (3.44)
and not (3.12). This completes the construction of a solution to the system (3.3)–(3.6).

(5) In this way, we have obtained a candidate for the value function (2.4) when (x,s)∈
C in both cases of “small” and “large” c. The preceding considerations can now be sum-
marized as follows.

Theorem 3.1. In the setting of (2.1)–(2.3), consider the optimal control problem (2.4),
where the supremum is taken over all “admissible” controls as explained.
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(1) In the case of “small” c in the sense that the solution of (3.26) stays below the diagonal
in R2, the value function J = J(x,s) solves the system (3.3)–(3.6) and is explicitly given by
(3.18) in C1 from (3.9), by (3.24) in C2 from (3.10), and by (3.29)+(3.33) in C3 from (3.11)
with s∗ from (3.12), where s �→ g∗(s) is the unique solution of the differential equation (3.26)
for s ∈ (s∗,�1) satisfying g∗(�1) = x∗, and x∗ ∈ (�0,�1) is the unique solution of the tran-
scendental equation (3.25). (The values of J at the two boundary curves in C not mentioned
are determined by continuity.)

(2) In the case of “large” c in the sense that the solution of (3.26) hits the diagonal in
R2, the value function J = J(x,s) solves the system (3.3)–(3.6) and is explicitly given by
(3.18) in C1,1 from (3.34), by (3.24) in C2,1 from (3.37), by (3.39)+(3.41) in C1,2 ∪C1,3

from (3.35)+(3.36), by (3.45) in C2,2 from (3.38), and by (3.29)+(3.33) in C3 from (3.11)
with s∗ from (3.44), where s �→ g∗(s) is the unique solution of the differential equation (3.26)
for s∈ (s′∗,�1) satisfying g∗(�1)= x∗ with x∗ ∈ (�0,�1) as above, and s �→ h∗(s) is given by
(3.42)+(3.41). (The values of J at the four boundary curves in C not mentioned are deter-
mined by continuity.)

(3) The optimal control v∗ in problem (2.4) is described as follows: “pull as hard as pos-
sible,” that is, v∗t = µ0 if Xt < g∗(St), and “push as hard as possible,” that is, v∗t = µ1 if
Xt > g∗(St), both as long as t ≤ τ, where τ is given in (2.3). This description holds in the case
of “large” c by modifying the solution g∗(s) of (3.26) for s < s′∗ as follows: g∗(s) := s+ 1 if
s ∈ (s′′∗,s′∗) and g∗(s) := h∗(s) for s ∈ (s∗,s′′∗). In both cases of “small” and “large” c, for-
mally set g∗(s) := �0 for s∈ (�0,s∗). (The control v∗t for Xt = g∗(St) is arbitrary and has no
effect on optimality of the result.)

To verify the statements, denote the candidate function by J(x,s) for (x,s)∈ C. Then,
by construction, it is clear that (x,s) �→ J(x,s) is C2 outside the set {(g∗(s),s) | s∗ < s < �1}
in C, and x �→ J(x,s) is C1 at g(s) when s is fixed. (Actually, the latter mapping is also C2

as is easily seen from (3.14) and (3.19).) Thus, Itô’s formula can be applied to the process
J(Xt,St) with any admissible v, and under Px,s in this way we get

J
(
Xt,St

)= J(x,s) +
∫ t

0
Jx
(
Xr ,Sr

)
dXr +

∫ t

0
Js
(
Xr ,Sr

)
dSr

+
1
2

∫ t

0
Jxx
(
Xr ,Sr

)
d
〈
X ,X

〉
r

= J(x,s) +
∫ t

0

√
2 Jx
(
Xr ,Sr

)
dBr +

∫ t

0

((
Lv
X

)
(J)
)(
Xr ,Sr

)
dr,

(3.46)

where the integral with respect to dSr is zero, since the increment ∆Sr equals zero off the
diagonal in R2, and at the diagonal we have (3.4).

Since Xτ equals either �0 or �1, we see by (3.5)+(3.6) that J(Xτ ,Sτ)= Sτ , and thus (3.46)
implies the following identity:

Sτ = J(x,s) +Mτ +
∫ τ

0

((
Lv
X

)
(J)
)(
Xr ,Sr

)
dr, (3.47)

where Mt =
∫ t

0

√
2 Jx(Xr ,Sr)dBr is a continuous (local) martingale. Since (x,s) �→ Jx(x,s) is

uniformly bounded in C, it follows by the optional sampling theorem that Ex,s(Mτ)= 0.
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(Note that there is no restriction to consider only those controls v for which Ex,s(τ) <∞
so that Ex,s(

√
τ) <∞ as well.)

On the other hand, by (3.3) we know that (Lv
X(J))(x,s) ≤ c for all (x,s) ∈ C, with

equality if v = v∗, and thus (3.47) yields

J(x,s)= Ex,s

(
Sτ −

∫ τ

0

((
Lv
X

)
(J)
)(
Xr ,Sr

)
dr

)
≥ Ex,s

(
Sτ − cτ

)
(3.48)

with equality if v = v∗. This establishes that the candidate function equals the value func-
tion, and that the optimal control equals v∗, thus completing the proof.
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[2] O. Bolza, Über den “Anormalen Fall” beim Lagrangeschen und Mayerschen Problem mit gemis-

chten Bedingungen und variablen Endpunkten, Math. Ann. 74 (1913), 430–446 (German).
[3] L. E. Dubins, L. A. Shepp, and A. N. Shiryaev, Optimal stopping rules and maximal inequalities

for Bessel processes, Theory Probab. Appl. 38 (1993), no. 2, 226–261.
[4] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verlag,

Berlin, 1975.
[5] S. E. Graversen, G. Peskir, and A. N. Shiryaev, Stopping Brownian motion without anticipation

as close as possible to its ultimate maximum, Theory Probab. Appl. 45 (2001), no. 1, 41–50.
[6] S. D. Jacka, Optimal stopping and best constants for Doob-like inequalities. I. The case p = 1, Ann.

Probab. 19 (1991), no. 4, 1798–1821.
[7] E. Nelson, Dynamical Theories of Brownian Motion, Princeton University Press, New Jersey,

1967.
[8] G. Peskir, Optimal stopping of the maximum process: the maximality principle, Ann. Probab. 26

(1998), no. 4, 1614–1640.
[9] L. C. G. Rogers and D. Williams, Diffusions, Markov Processes, and Martingales. Vol. 2. Itô Cal-
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