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We demonstrate how one can use the factorization property to derive the queue-length
distributions of the discrete-time BMAP/G/1 queues with complex operational behavior
during the idle period. The procedure demonstrated in this paper can be applied to the
analysis of many other discrete-time BMAP/G/1 queues with more behavioral complexi-
ties.

1. Introduction

The discrete-time batch Markovian arrival process (D-BMAP) was first defined in [2].
The D-BMAP can represent a variety of arrival processes which include, as special cases,
the Bernoulli arrival process, the Markov-modulated Bernoulli process (MMBP), the
discrete-time Markovian arrival process (D-MAP), and their superpositions. It is the
discrete-time version of the versatile Markovian point process introduced by Neuts [28],
the N-process of Ramaswami [31], and the batch Markovian arrival process of Lucantoni
[25, 26].

The objective of this paper is to demonstrate how one can apply the factorization prop-
erty to the derivation of the queue-length distributions of the D-BMAP/G/1 queues with
complex operational behavior during the idle period. To demonstrate how this new ap-
proach works, we are going to analyze the D-BMAP/G/1 queueing system under a double
threshold policy and a setup time, which becomes the basic model for many produc-
tion systems. The approach in this paper is simpler than the conventional matrix analytic
method (MAM) and the supplementary variable technique.

The MAM was pioneered by Neuts [29]. It starts with the analysis of the imbedded
Markov renewal process at departure epochs. This method is cumbersome, especially in
a system with a high degree of behavioral complexities during the idle period, in that it in-
volves manipulating the vast amount of matrices without knowing the practical meaning
of the resulting matrices. Works based on MAM are many. Blondia and Casals [2] mod-
eled a digital video communication system by D-BMAP. Hashida et al. [7] analyzed the
system with switched batch Bernoulli process (SBBP) with and without priorities. Ishizaki
et al. [10] analyzed the SBBP/G/1 system in which the staying time of the underlying
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Markov chain (UMC) follows a general distribution. Alfa and Neuts [1] analyzed the ve-
hicular traffic system by D-MAP. Other studies on queueing systems with D-BMAP or
D-MAP can be found in [5, 6, 11, 12, 16, 30, 32, 33, 34, 36], to name a few. For a detailed
study concerning applications to communication models, see Bruneel and Kim [3]. Com-
putational algorithms for BMAP queues can be found in [17, 25, 26]. For continuous time
analysis of BMAP queues, see Lucantoni [25, 26, 27] and Kasahara et al. [13].

The supplementary variable technique for D-BMAP/G/1 queues was used by Lee et al.
[23, 24]. It starts with setting up the system equations by using the forward recurrence
(or backward recurrence) times of involved random variables as supplementary variables.
But even with its obvious advantages in obtaining more diverse and meaningful results,
this approach requires time-consuming effort in handling the system equations. For the
analysis of continuous-time MAP/G/1 queues by supplementary variable technique, see
Lee et al. [19] and the references therein.

In this paper, we first introduce the factorization property for D-BMAP/G/1 queues
with generalized vacations. Then, we use this property to demonstrate how one can ef-
ficiently and effectively derive the queue-length distributions of some complicated D-
BMAP/G/1 queueing systems by avoiding all the classical standard procedures. For the
application of continuous-time factorization principle to complex BMAP/G/1 queues,
readers are referred to Lee et al. [21, 22].

2. The factorization property

Chang et al. [4] proved that for the D-BMAP/G/1 queues with generalized vacations
(based on late-arrival model (see Takagi [35])), the following factorization properties
hold:

Y(z)= pidle(z)χY (z),

X(z)= pidle(z)χX(z),
(2.1)

where

χY (z)= (1− ρ)(z− 1)A(z)
[
zI−A(z)

]−1
,

χX(z)= 1
λ

(1− ρ)
[

D(z)− I
]

A(z)
[
zI−A(z)

]−1
.

(2.2)

In (2.1), Y(z) is the vector generating function (GF) of the queue length at an arbitrary
slot boundary and X(z) is the vector GF of the queue length just after an arbitrary depar-
ture. pidle(z) is the vector GF of the queue length at an arbitrary slot boundary during an
idle period. In (2.2), D(z)=∑∞

n=0 Dnzn, where Dn is the matrix of the arrival probabilities
for a group of size n during a slot. λ= π

∑∞
n=1nDne is then the mean arrival rate per slot

where π is the stationary vector of the UMC that satisfies

π = πD, πe= 1, (2.3)
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Figure 3.1. The system.

in which D=D(z)|z=1 =
∑∞

n=0 Dn and e is the (m× 1) vector of 1’s. A(z)=∑∞
k=1 sk[D(z)]k

is the matrix GF of the number of customers that arrive during a service time in which sk
is the probability that a service time is of length k slots.

From (2.1), we note that the following relationship holds between X(z) and Y(z):

Y(z)
[

D(z)− I
]= λ(z− 1)X(z), (2.4)

which confirms Kim et al. [15].
Equation (2.1) implies that if one wants to derive the GFs Y(z) and X(z), all they need

to do is derive the vector GF pidle(z) of the queue length at an arbitrary slot boundary
during an idle period.

3. The system

In this paper, we deal with the queueing system with the following specifications (Figure
3.1).

(1) Customers arrive according to the D-BMAP in which the UMC is governed by
parameter matrices {D0,D1,D2, . . .}. We assume that the UMC has m phases.

(2) If there are no customers to serve (point 1© in Figure 3.1), the server waits until
the queue length reaches or exceeds the first threshold α (buildup period).

(3) At the end of the buildup period, the server starts a setup period which takes a
random time H with hk = Pr(H = K). At the end of the setup period,
(i) if the queue length is less than the second threshold N , the server waits until

queue length reaches or exceeds N (standby period); or
(ii) if the queue length is greater than or equal to N , the server begins to serve the

customers (busy period).
(4) The service time S is a random variable with sk = Pr(S= K).
(5) The service times and setup times are independent of the arrival process and the

phases of the UMC.
The objective of this study is to analyze the above queueing system by applying the

factorization property of the D-BMAP/G/1 queue with generalized vacations directly to
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the vector generating functions of the queue lengths. We also derive the mean queue
length.

This queueing system can be used to model the production system in which the setup
cost is extremely high. Lee and Park [20] showed that the double threshold (α,N)-policy
is better than the single threshold N-policy when the setup cost is extremely high com-
pared to the work-in-process (WIP) holding cost. We note that Lee et al. [19] applied the
factorization to the analysis of WIP of a production system.

If α = N , we have the usual N-policy queue with a setup. N-policy queue was first
studied by Yadin and Naor [37]. For other works on N-policy queues, see, for example,
[8, 9, 14, 18].

4. The analysis

From (2.1), we only need to derive the vector GF pidle(z) of the queue length at an arbi-
trary slot boundary during an idle period.

We define pbu, psu, and psb as the probabilities that the server is in the buildup period,
setup period, and standby period, respectively, under the condition that the server is idle.
If we define pbu(z), psu(z), and psb(z) as the conditional vector GF of the queue length at
an arbitrary point within the buildup, setup, and standby periods, respectively, we get

pidle(z)= pbupbu(z) + psupsu(z) + psbpsb(z). (4.1)

To obtain the probabilities pbu, psu, and psb, we need the mean lengths E(I) of an idle
period, E(Tbu) of a buildup period, and E(Tsb) of a standby period. In the sequel, we will
use (F)i j to denote the (i, j)-element of the matrix F.

We define the probabilities (Ψbu
k )i j and (Ψsb

k )i j as follows:
(a) (Ψbu

k )i j denotes Pr (the buildup process ever visits level k and the phase of UMC
is j just after the visit | UMC phase is i at 1© of Figure 3.1);

(b) (Ψsb
k )i j denotes Pr (the standby process ever visits level k and the phase of UMC

is j just after the visit | UMC phase is i at 1© of Figure 3.1).
Let κ= (κ1,κ2, . . . ,κm) be the probability vector of the UMC phase at 1©. Noting that the
(i, j)-element of the matrix (I−D0)−1 is the mean time the UMC stays in phase j until
the next arrival given the current phase is in i, we have

E
(
Tbu
)= κ

α−1∑
k=0

Ψbu
k

(
I−D0)−1e,

E
(
Tsb
)= κ

N−1∑
k=α

Ψsb
k

(
I−D0

)−1
e.

(4.2)

Then, we get

E(I)= κ

[α−1∑
k=0

Ψbu
k

(
I−D0

)−1
+E(H)I +

N−1∑
k=α

Ψsb
k

(
I−D0

)−1
]

e. (4.3)
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Thus, we have

pbu = E
(
Tbu
)

E(I)
= κ

∑α−1
k=0 Ψ

bu
k

(
I−D0

)−1
e

E(I)
, (4.4a)

psu = E(H)
E(I)

, (4.4b)

psb = E
(
Tsb
)

E(I)
= κ

∑N−1
k=α Ψ

sb
k

(
I−D0

)−1
e

E(I)
. (4.4c)

Noting that the jth element of the vector κ
∑α−1

k=0 Ψ
bu
k (I−D0)−1/E(Tbu) is the probability

that the queue length is k and the UMC phase is j under the condition that the server is
in the buildup period, we get

pbu(z)= κ
∑α−1

k=0 Ψ
bu
k

(
I−D0

)−1
zk

E
(
Tbu
) , (4.5)

which yields, from (4.4a),

pbupbu(z)= κ
∑α−1

k=0 Ψ
bu
k

(
I−D0

)−1
zk

E(I)
. (4.6a)

Analogously, we get

psbpsb(z)= κ
∑N−1

k=α Ψ
sb
k (I−D0)−1zk

E(I)
. (4.6b)

To obtain psu(z), let H−
α (z) be the matrix GF of the queue length at the start of the

setup period (point 2© of Figure 3.1). Then, we have

psu(z)= κH−
α (z)He(z), (4.7)

where He(z) is the matrix GF of the number of customers that arrive during the elapsed
time, which is given by

He(z)=
∞∑
k=1

k−1∑
i=0

[
D(z)

]i 1
k
· khk
E(H)

=
[

H(z)− I
][

D(z)− I
]−1

E(H)
, (4.8)
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Figure 4.1. The D-BMAP/G/1 queue with N-poilcy.

in which H(z)=∑∞
k=1hk[D(z)]k. Using (4.6a)–(4.8) in (4.1), we get

pidle(z)= κ
∑α−1

k=0 Ψ
bu
k

(
I−D0

)−1
zk

E(I)
+
E(H)
E(I)

κH−
α (z)He(z)

+
κ
∑N−1

k=α Ψ
sb
k (I−D0)−1zk

E(I)
.

(4.9)

Now, we need a scheme to compute the probabilities Ψbu
k (0≤ k ≤ α− 1), Ψsb

k (α≤ k ≤
N − 1), and κ. To this end, we observe that the behavior of the queueing process during
the buildup period is exactly the same as that of the usual D-BMAP/G/1 system with
simple N-policy (i.e., without setup time) where N is replaced by α. Figure 4.1 shows a
sample path for the D-BMAP/G/1 queue with the simple N-policy.

Lemma 4.1 (D-BMAP/G/1/N-policy queue). Let (D∗
n )i j be the probability that the idle

period process of the D-BMAP/G/1/N-policy queue ever visits level n and the UMC phase
just after the visit is j given that the UMC phase is i at a© of Figure 4.1. Then,

D∗
0 = I, D∗

n =
n−1∑
k=0

D∗
k

(
I−D0

)−1
Dn−k (1≤ n≤N − 1). (4.10)

Proof. D∗
0 = I is obvious. Noting that (I−D0)−1Dn is the phase transition probability by

the arrival of a group of size n, the proof is complete by conditioning on the level k visited
prior to level n. �

Now, returning to our system, we get the following theorem without proof.

Theorem 4.2.

Ψbu
k =D∗

k (0≤ k ≤ α− 1). (4.11)

Now, computation of Ψsb
k (α≤ k ≤N − 1) is in order. We first note that Ψsb

k depends
on both the queue length at the start of the setup period and the number of customers
that arrive during the setup time. Noting that the queue length at the start of the setup
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time is exactly equal to the queue length in the simple D-BMAP/G/1/N-policy queue
where N is replaced by α, we present the following lemma.

Lemma 4.3 (BMAP/G/1/N-policy queue). Let (QN
n )i j (n≥ N) be the probability that the

queue length is n and the UMC phase is j at b© of Figure 4.1 given that the UMC phase is in
i at a©. Then, there exists a recursion

QN
n =

(
I−D0

)−1
Dn +

N−1∑
j=1

(
I−D0

)−1
D jQ

N− j
n− j , (4.12a)

and the matrix GF QN (z) of QN
n becomes

QN (z)=
∞∑

n=N
znQN

n =
[N−1∑

n=0

D∗
n

(
I−D0

)−1
zn
][

D(z)−D0
]− N−1∑

n=1

D∗
n z

n. (4.12b)

Proof. Equation (4.12a) can be obtained by conditioning on the size of the first arrival
group; (4.12b) can be obtained by mathematical induction. �

We define the following notations:
(i) (H−

k(α))i j denotes the joint probability that the queue length is k and the UMC
phase is j at 2© of Figure 3.1 given that the UMC phase is i at 1©,

(ii) (H+
k(α))i j denotes the joint probability that the queue length is k and the UMC

phase is j at 3© of Figure 3.1 given that the UMC phase is i at 1©,
(iii) (Hk)i j denotes the probability that k customers arrive during the setup time and

the UMC phase is j at 3© under the condition that the UMC phase is i at 2©.
We define the matrix GFs of the above probability matrices as follows:

H−
α (z)=

∞∑
k=α

H−
k(α)z

k, H+
α(z)=

∞∑
k=α

H+
k(α)z

k. (4.13)

Then, we have the following theorem.

Theorem 4.4. There exist

H−
k(α) =Qα

k , (4.14a)

H−
α (z)=

[α−1∑
n=0

D∗
n

(
I−D0

)−1
zn
][

D(z)−D0
]− α−1∑

n=1

D∗
n z

n, (4.14b)

H+
k(α) =

k∑
i=α

H−
i(α)Hk−i, (4.14c)

H+
α(z)=H−

α (z)H(z), (4.14d)

Ψsb
k =

k∑
i=α

H+
i(α)D∗

k−i. (4.14e)
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Proof. Equations (4.14a) and (4.14b) can be obtained by using α in place of N in (4.12a)
and (4.12b). Equations (4.14c) and (4.14d) are obvious. Equation (4.14e) can be obtained
first by conditioning on the queue length at the end of the setup period and then by
applying (4.10). �

So far, we have obtained all the quantities that we need in (4.9) except κ, which is the
stationary phase probability vector at 1©. Let K be the phase transition probability matrix
between 1© and 5©. Then, κ can be computed from (see Lucantoni [25])

κK= κ, κe= 1, (4.15)

K=K(z)
∣∣
z=1, (4.16)

where K(z) is the matrix GF of the number of customers that are served between 1©
and 5©. To obtain K(z), we need the information concerning the queue length at 4©. Let

(Q(α,N)
k )i j be the probability that the queue length is k and the UMC is in phase j at 4©

under the condition that the UMC is in phase i at 1© (k ≥ N). We define the matrix GF
Q(α,N)(z)=∑∞

k=N Q(α,N)
k zk. Then, we have the following.

Theorem 4.5.

Q(α,N)
n =H+

n(α) +
N−1∑
j=α

H+
j(α)Q

N− j
n− j (n≥N), (4.17a)

Q(α,N)(z)=H+
α(z) +

N−1∑
j=α

Ψsb
j z

j
{(

I−D0
)−1[

D(z)−D0
]− I

}
. (4.17b)

Proof. Equation (4.17a) can be obtained by conditioning on the queue length at the end
of the setup period. Multiplying (4.17a) by zn and summing over n , we get

Q(α,N)(z)=
∞∑

n=N
H+

n(α)z
n +

∞∑
n=N

[N−1∑
j=α

H+
j(α)Q

N− j
n− j

]
zn

=H+
α(z)−

N−1∑
n=α

H+
n(α)z

n +
N−1∑
j=α

H+
j(α)z

j
∞∑

n=N
Q

N− j
n− j z

n− j

=H+
α(z) +

N−1∑
j=α

H+
j(α)z

j

[ ∞∑
n=N− j

Q
N− j
n zn− I

]
.

(4.18)

From the identity
∑∞

n=N− j Q
N− j
n zn =QN− j(z), and using (4.12b) and (4.14e), we get the

second term of the last equality as
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N−1∑
j=α

H+
j(α)z

j

[ ∞∑
n=N− j

Q
N− j
n zn− I

]

=
N−1∑
j=α

H+
j(α)z

j

[{N− j−1∑
n=0

D∗
n

(
I−D0

)−1
zn
}[

D(z)−D0
]−

N− j−1∑
n=1

D∗
n z

n− I

]

=
N−1∑
j=α

H+
j(α)z

j
N− j−1∑
n=0

D∗
n

(
I−D0

)−1
zn
[

D(z)−D0
]− N−1∑

j=α
H+

j(α)z
j
N− j−1∑
n=0

D∗
n z

n

=
N−1∑
k=α

k∑
i=0

H+
i(α)D∗

k−i
(

I−D0
)−1

zk
[

D(z)−D0
]− N−1∑

k=α

k∑
i=0

H+
i(α)D∗

k−iz
k

=
N−1∑
k=α

Ψsb
k z

k
[(

I−D0
)−1(

D(z)−D0
)− I

]
,

(4.19)

which proves (4.17b). �

Now, we have

K(z)=Q(α,N)(z)
∣∣
z=G(z)

=
[α−1∑

n=0

D∗
n

[
I−D0

]−1[
G(z)

]n][
D
(

G(z)
)−D0

]
H
(

G(z)
)

−
α−1∑
n=1

D∗
n

[
G(z)

]n
H
(

G(z)
)

+
N−1∑
n=α

Ψsb
n

[
G(z)

]n{(
I−D0

)−1[
D
(

G(z)
)−D0

]− I
}

,

(4.20a)

K=K(z)
∣∣
z=1 =

[α−1∑
n=0

D∗
n

(
I−D0

)−1
Gn

](
D(G)−D0

)
H(G)

−
α−1∑
n=1

D∗
n GnH(G) +

N−1∑
n=α

Ψsb
n Gn

[(
I−D0

)−1(
D(G)−D0

)− I
]
.

(4.20b)

In (4.20a), (4.20b), G(z) is the matrix GF of the number of customers that are served
during a fundamental period (see Neuts [29]) which is given by

G(z)= z
∞∑
k=1

sk
[

D
(

G(z)
)]k

, (4.21)
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and G is the phase transition matrix during the fundamental period, which can be ob-
tained as follows:

G=G(z)
∣∣
z=1 =

∞∑
k=1

sk
[

D(G)
]k
. (4.22)

Also, we have H(G(z))=∑∞
k=1hk[D(G(z))]k and H(G)=H(G(z))|z=1.

Now, by computing κ from (4.15) with K obtained in (4.20b), we can determine all
the quantities that we need for complete pidle(z) in (4.9).

5. Mean queue length

The mean queue length L can be obtained by following the standard procedure of Lu-
cantoni [25]. We will skip the detailed derivation and will list only the results here. For
notational conveniences, we will use E(n) to denote (dn/dzn)E(z)|z=1, and pidle to denote
pidle(z)|z=1:

L= Y(1)e= 1
λ

U(1)e− 1
2λ

πD(2)e− 1
λ

(
U−πD(1))(D− I + eπ

)−1
D(1)e, (5.1)

where

U= λπ(I−A + eπ)−1 + pidle · (1− ρ)(D− I)A(I−A + eπ)−1, (5.2a)

U−1e= 1
1− ρ

(
F1 +F2 +F3 +F4 +F5

)
. (5.2b)

In (5.2b), F1, F2, F3, F4, and F5 are given, with δ = κ(1− ρ)/E(I), by

F1 = δ

2

[
2
α−1∑
k=1

kD∗
k

(
I−D0

)−1
D(1) +

α−1∑
k=0

D∗
k

(
I−D0

)−1
D(2)

+ 2
α−1∑
k=1

kD∗
k

(
I−D0

)−1
D(1)H(1)− 2

α−1∑
k=1

kD∗
k H(1)

+ 2
α−1∑
k=1

kD∗
k

(
I−D0

)−1(
D−D0

)
H(1)

+
α−1∑
k=0

D∗
k

(
I−D0

)−1(
D−D0

)
H(2)−

α−1∑
k=1

D∗
k H(2)

+ 2
N−1∑
k=α

kΨsb
k

(
I−D0

)−1
D(1) +

N−1∑
k=α

Ψsb
k

(
I−D0

)−1
D(2)

]
e,
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F2 = δ

[α−1∑
k=1

kD∗
k

(
I−D0

)−1
(D− I) +

α−1∑
k=0

D∗
k

(
I−D0

)−1
D(1)

+
α−1∑
k=1

kD∗
k

(
I−D0

)−1(
D−D0

)
(H− I)

+
α−1∑
k=0

D∗
k

(
I−D0

)−1
D(1)(H− I)−

α−1∑
k=1

kD∗
k

(
H− I

)

+
α−1∑
k=0

D∗
k

(
I−D0

)−1(
D−D0

)
H(1)−

α−1∑
k=1

D∗
k H(1)

+
N−1∑
k=α

kΨsb
k

(
I−D0

)−1
(D− I) +

N−1∑
k=α

Ψsb
k

(
I−D0

)−1
D(1)

]
A(1)e,

F3 = δ

2

[α−1∑
k=0

D∗
k

(
I−D0

)−1
(D− I)−

α−1∑
k=1

D∗
k (H− I)

+
α−1∑
k=0

D∗
k

(
I−D0

)−1(
D−D0

)
(H− I

)

+
N−1∑
k=α

Ψsb
k

(
I−D0

)−1(
D− I

)]
A(2)e +

1
2

UA(2)e,

F4 =−δ
[α−1∑

k=1

kD∗
k

(
I−D0

)−1
(D− I) +

α−1∑
k=0

D∗
k

(
I−D0

)−1
D(1)

+
α−1∑
k=1

kD∗
k

(
I−D0

)−1(
D−D0

)
(H− I)

+
α−1∑
k=0

D∗
k

(
I−D0

)−1
D(1)(H− I)−

α−1∑
k=1

kD∗
k (H− I)

+
α−1∑
k=0

D∗
k

(
I−D0

)−1(
D−D0

)
H(1)−

α−1∑
k=1

D∗
k H(1)

+
N−1∑
k=α

kΨsb
k

(
I−D0

)−1
(D− I) +

N−1∑
k=α

Ψsb
k

(
I−D0

)−1
D(1)

]

×A
(

I−A + eπ
)−1(

I−A(1))e,

F5 =−δ
[α−1∑

k=0

D∗
k

(
I−D0

)−1
(D− I)−

α−1∑
k=1

D∗
k (H− I)

+
α−1∑
k=0

D∗
k

(
I−D0

)−1(
D−D0

)
(H− I)



130 Using factorization in analyzing D-BMAP/G/1 queues

+
N−1∑
k=α

Ψsb
k

(
I−D0

)−1
(D− I)

]
A(1)(I−A + eπ)−1(I−A(1))e

+ U
(

I−A(1))(I−A + eπ)−1(I−A(1))e.

(5.3)
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