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We analyse the transient behaviour of a fluid queue driven by a birth and death pro-
cess (BDP) whose birth and death rates are suggested by a chain sequence. For the BDP
suggested by a chain sequence, the stationary probabilities do not exist and hence the sta-
tionary buffer content distribution for fluid queues driven by such BDP does not exist.
However, their transient distribution is obtained in a simple closed form by two different
approaches: the first is the continued fraction approach and the second is an approach in
terms of recurrence relation by an analysis similar to that of Sericola (1998). The proba-
bility for the buffer content to be empty at an arbitrary time is also studied. The variations
in this performance measure are revealed in the form of graphs. Numerical illustrations
are included.

1. Introduction

Fluid buffer models are natural for problems involving continuous flow, for example,
control of dams, virtual waiting time in G/G/1 queue, and so forth. In addition, fluid
models are often useful as approximate models for certain queueing and inventory sys-
tems where the flow consists of discrete entities, but the behaviour of individuals is not
important to identify the performance analysis (Kulkarni [3]). A stochastic fluid flow
model describes the behaviour of a fluid level in a storage device. Such models are used
in ATM to evaluate the performance of fast packet switching and in the manufacturing
systems for the performance of producers and consumers coupled by a buffer.

Hence fluid queues modulated by a birth and death process provide a good approxima-
tion for modelling the traffic in telecommunication networks. However in most practical
situations, the state-dependent birth and death rates prove to be more realistic.

Steady-state behaviour of Markov-driven fluid queues have been extensively studied
in the literature (Virtamo and Norros [14], Adan and Resing [1], Parthasarathy et al. [7],
Parthasarathy and Vijayashree [5, 6], Barbot and Sericola [2], van Doorn and Scheinhardt
[13], Sericola [10]). Steady state analysis gives us important information on the conges-
tion of the statistical multiplexer, but it is not sufficient, for example, for controlling the
congestion. The transient analysis will be of critical value in understanding the dynamical
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behaviour of the statistical multiplexer in controlling the congestion and in studies relat-
ing to the rate of convergence to steady state. The problem is motivated by the need to
comprehend better the performance of fast packet switching in asynchronous transfer
mode (ATM), which will be adopted in broadband integrated service digital network (B-
ISDN).

The transient analysis of stochastic fluid models presents a host of new challenges and
opportunities to network designers and performance analyst. The solutions are either
obtained implicitly (Simonian and Virtamo [11]) or obtained in the Laplace domain and
inverted numerically (Tanaka et al. [12], Ren and Kobayashi [8], Sericola [9]).

In all the above-mentioned literature, the authors discussed the transient analysis of
the fluid models subject to satisfying the stability condition of the process. Here we con-
sider a fluid queue driven by an infinite-state BDP whose birth and death rates are sug-
gested by a chain sequence. The stationary solution for the background BDP suggested
by a chain sequence does not exist and hence the stationary distribution for fluid queue
driven by such BDPs also does not exist. However their transient probabilities yield a
simple closed form solution.

In this paper, we obtain the transient solution in closed form of a fluid queue driven by
a birth and death process on an infinite-state space whose birth and death rates are sug-
gested by a chain sequence. The probability with which the buffer content becomes empty
at an arbitrary time is also determined. Numerical illustrations are added to capture the
variations in the behaviour of this performance measure against time.

2. Model description

Consider a fluid queue driven by a birth and death process, {X(t), t ≥ 0} with rates sug-
gested by a chain sequence, viz, the birth and death parameters satisfy

λn +µn = 1, λn−1µn = β, i.e.,
(
1−µn−1

)
µn = β, n= 1,2,3, . . . , (2.1)

with λ0 = 1 and µ0 = 0 so that {µn} is the minimal parameter sequence for the constant
term chain sequence {β,β,β, . . .}, 0 < β ≤ 1/4, so that λn and µn are positive, given by

λn = αUn+1(1/α)
2Un(1/α)

, n= 1,2,3, . . . ,

µn = αUn−1(1/α)
2Un(1/α)

, n= 1,2,3, . . . ,

(2.2)

where Un(·) is the Chebyshev polynomial of second kind of order n and α = 2
√
β. Note

that

µ1µ2 ···µj =
(
α

2

) j 1
Uj(1/α)

=
(√

β
) j

Uj

(
1/2

√
β
) . (2.3)
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The transition probabilities for the process {X(t), t ≥ 0}, whose birth and death rates
are governed by (2.1), with X(0)= 0, are

Pn(t)= 2(n+ 1)Un

(
1
α

)
e−tIn+1(αt)

αt
(2.4)

(Lenin and Parthasarathy [4].)
It can easily be shown that the sequence {λn} is decreasing with n and tends towards

(1 +
√

1− 4β)/2, so that it could represent a queue with discouraged arrivals. The se-
quence {µn} is thus increasing with n towards (1−

√
1− 4β)/2, which means that the

service rate of the queue can be dynamically adapted in the function of the number of
customer in the queue, until a fixed limit. This kind of model is mathematically interest-
ing because it is indeed rare and has closed-form solution.

If C(t) denotes the content of the buffer at time t, the 2-dimensional process
{(X(t),C(t)), t ≥ 0} constitutes a Markov process. When the process X(t) is positive,
the fluid level in the buffer increases at a constant rate r > 0 and when X(t) = 0, the
fluid level in the buffer decreases at a constant rate r0 < 0. We suppose that X(0)= 0 and
C(0) = 0. Fluid models of this type find application in the field of telecommunication
for modelling the network traffic and in the approximation of discrete stochastic queue-
ing networks. For practical design and performance evaluation, it is essential to obtain
information about the buffer occupancy distribution.

If Fj(t,x)≡ P(X(t)= j, C(t)≤ x), j ∈�, t,x ≥ 0, the Kolmogorov forward equations
for the Markov process {X(t),C(t)} are given by

∂F0(t,x)
∂t

=−r0
∂F0(t,x)

∂x
−F0(t,x) +µ1F1(t,x),

∂Fj(t,x)

∂t
=−r ∂Fj(t,x)

∂x
+ λj−1Fj−1(t,x)−Fj(t,x) +µj+1Fj+1(t,x), j ∈� \ {0}, t,x ≥ 0,

(2.5)

subject to the initial condition

F0(0,x)= 1, Fj(0,x)= 0 for j = 1,2,3, . . . (2.6)

and boundary condition

Fj(t,0)= qj(t) for j = 0,1,2, . . . . (2.7)

Here qj(t) represents the probability that at time t the buffer is empty and the state of the
background Markov process is j. The content of the buffer decreases and thereby becomes
empty only when the net input rate of the fluid into the buffer is negative. Therefore,
when the buffer becomes empty at any time t, the background process should necessarily
be in state zero corresponding to which the effective input rate is r0 < 0. Hence we have
qj(t)= 0 for j = 1,2,3, . . . as r > 0 when X(t)= j for j = 1,2,3, . . . .
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The transient distribution of the buffer content is given by

Pr
(
C(t) > x

)= 1−
∞∑
j=0

Fj(t,x). (2.8)

In this sequel let F∗j (s,x) and F∗∗j (s,w) denote the single Laplace transform (with re-
spect to t) and double Laplace transform (with respect to t and x) of Fj(t,x), respectively.

3. Transient solution

The expression for the joint distribution of the buffer content of the fluid queue model
under consideration using an approach similar to Sericola [9] is given by

Fi(t,x)=
∞∑
n=0

e−t
tn

n!

n∑
k=0

(
n
k

)(
x

rt

)k(
1− x

rt

)n−k
bi(n,k), i= 0,1,2, . . . (3.1)

for every t ≥ 0 and x ∈ [0,rt) where the coefficients bi(n,k) are given by the following
recursive expressions.

(i) For i= 0,

b0(n,n)=




1
k+ 1

(
2k
k

)
βk if n= 2k,

0 if n= 2k+ 1,

b0(n,k)= −r0

r− r0
b0(n,k+ 1) +

rβ

r− r0
b1(n− 1,k) for n≥ 1, 0≤ k ≤ n− 1.

(3.2)

(ii) For i≥ 1,

bi(n,0)= 0 for n≥ 0,

bi(n,k)= λi−1bi−1(n− 1,k− 1) +µi+1bi+1(n− 1,k− 1) for n≥ 1, 1≤ k ≤ n.
(3.3)

From (3.1), the probability that the buffer is empty at time t is given by

F0(t,0)= q0(t)= e−t
∞∑
n=0

tn

n!
b0(n,0), (3.4)

where b0(n,0) for all n≥ 1 are obtained from the recurrence relations (3.2) and (3.3). The
following theorem presents an alternate formula for the evaluation of b0(n,0).

Theorem 3.1. For all n≥ 1,

b0(n,0)= rβ

r− r0

n−1∑
i=1

( −r0

r− r0

)i �(i−1)/2�∑
l=0

(
2l
l

)
βl

l+ 1
b0(n− 2l− 2, i− 2l− 1)

+
( −r0

r− r0

)n
b0(n,n).

(3.5)
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Proof. The following propositions and lemma present a simplified formula for evaluating
the various terms involved in the determination of b0(n,0) thereby reducing the compu-
tational complexity.

Proposition 3.2. For all n≥ 1, 0≤ k ≤ n− 1,

b0(n,k)−
( −r0

r− r0

)n−k
b0(n,n)=

(
rβ

r− r0

)n−1∑
i=k

( −r0

r− r0

)i−k
b1(n− 1, i). (3.6)

Proof. Recall (3.2),

b0(n,k)= −r0

r− r0
b0(n,k+ 1) +

rβ

r− r0
b1(n− 1,k). (3.7)

Multiplying the above equation by (−r0/(r− r0))i−k and summing over all i from k to
n− 1, we get

n−1∑
i=k

( −r0

r− r0

)i−k
b0(n, i)−

n−1∑
i=k

( −r0

r− r0

)i−k+1

b0(n, i+ 1)

=
(

rβ

r− r0

)n−1∑
i=k

( −r0

r− r0

)i−k
b1(n− 1, i).

(3.8)

Hence we have

b0(n,k)−
( −r0

r− r0

)n−k
b0(n,n)=

(
rβ

r− r0

)n−1∑
i=k

( −r0

r− r0

)i−k
b1(n− 1, i). (3.9)

�

Lemma 3.3. For i≥ 1, bi(n,k)= 0 for 0≤ n < i and

bi(n,k)=




0 if 0≤ k < i,
(√

β
)i
Ui

(
1

2
√
β

) �(k−i)/2�∑
l=0

s(i, l)βlb0(n− 2l− i,k− 2l− i) if i≤ k ≤ n,

0 if k > n,

(3.10)

where the numbers s(i, l) are referred to as the ballot numbers given by

s(i, l)= i
(2l+ i− 1)!
l!(l+ i)!

. (3.11)

Proof. Recall (3.3),

bi(n,k)= λi−1bi−1(n− 1,k− 1) +µi+1bi+1(n− 1,k− 1) for n≥ 1, 1≤ k ≤ n. (3.12)

For all n≥ 1, 1≤ k ≤ n, define

B0(n,k)= b0(n,k),

Bi(n,k)= (µ1µ2 ···µi
)
bi(n,k), i≥ 1.

(3.13)
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Then (3.3) becomes

Bi(n,k)= λi−1µiBi−1(n− 1,k− 1) +Bi+1(n− 1,k− 1). (3.14)

From (2.1), λi−1µi = β, hence we have

Bi(n,k)= βBi−1(n− 1,k− 1) +Bi+1(n− 1,k− 1). (3.15)

Now, define

Hi(n,v)=
n∑

k=0

vkBi(n,k), (3.16)

then (3.15) reduces to

Hi(n,v)= vβHi−1(n− 1,v) + vHi+1(n− 1,v) i≥ 1, n≥ 1. (3.17)

Again define

φi(u,v)=
∞∑
n=0

unHi(n,v)
n!

, (3.18)

then (3.17) reduces to

φ′i (u,v)= vβφi−1(u,v) + vφi+1(u,v) for i≥ 1. (3.19)

Laplace transform of the above equation with respect to u yields

zφ∗i (z,v)= vβφ∗i−1(z,v) + vφ∗i+1(z,v). (3.20)

Writing in the form of continued fractions, we get

φ∗i (z,v)
φ∗i−1(z,v)

= vβ

z− v
(
φ∗i+1(z,v)/φ∗i (z,v)

) = vβ

z−
v2β

z−
v2β

z− ··· . (3.21)

Solving the above continued fractions, we get

φ∗i (z,v)
φ∗i−1(z,v)

=
z−

√
z2− 4v2β

2v
, i= 1,2,3, . . . ,

φ∗i (z,v)
φ∗i−1(z,v)

= vβ

z

(
1−

√
1− 4(v2β/z2)

2(v2β/z2)

)
= vβ

z
C
(
v2β

z2

)
.

(3.22)

Before we proceed further, we give a brief discussion on the function C(z) below.
Let C(z) be the complex function defined by

C(z)= 1−√1− 4z
2z

. (3.23)
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For |z| ≤ 1/4, we have

C(z)=
∞∑
n=0

cnz
n, (3.24)

where the numbers cn are referred to as the Catalan number given by

cn =
(

2n
n

)
1

n+ 1
. (3.25)

More generally, for k ≥ 1 and |z| ≤ 1/4, we have

Ck(z)=
∞∑
n=0

s(k,n)zn, (3.26)

where the numbers s(k,n) are given by (3.11).
Continuing our discussion from (3.22), we easily get, for i≥ 1 and |vβ/z2| < 1/4,

φ∗i (z,v)= vβ

z
C
(
v2β

z2

)
φ∗i−1(z,v)

= viβi

zi
Ci
(
v2β

z2

)
φ∗0 (z,v)= viβi

zi

∞∑
l=0

s(i, l)
(
v2β

z2

)l
φ∗0 (z,v).

(3.27)

We thus have, for i≥ 1 and |vβ/z2| < 1/4,

∞∑
n=0

Hi(n,v)
zn+1

= viβi

zi

∞∑
l=0

s(i, l)
(
v2β

z2

)l ∞∑
n=0

H0(n,v)
zn+1

= βi
∞∑
l=0

s(i, l)βlv2l+i
∞∑
n=0

H0(n,v)
z2l+i+n+1

= βi
∞∑
l=0

s(i, l)βlv2l+i
∞∑

n=2l+i

H0(n− 2l− i,v)
zn+1

= βi
∞∑
n=i

1
zn+1

�(n−i)/2�∑
l=0

s(i, l)βlv2l+iH0(n− 2l− i,v),

(3.28)

where the last equality is obtained by exchanging the order of summations. This leads,
for i≥ 1, to the following expression of Hi(n,v):

Hi(n,v)=




0 if 0≤ n < i,

βi
�(n−i)/2�∑

l=0

s(i, l)βlv2l+iH0(n− 2l− i,v) if n≥ i.
(3.29)

This means, in particular, that bi(n,k)= 0 for i≥ 1 and 0≤ n < i.
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We consider now the case where i≥ 1 and n≥ i. By definition of Hi(n,v), we have

n∑
k=0

vkBi(n,k)= βi
�(n−i)/2�∑

l=0

s(i, l)βlv2l+i
n−2l−i∑
m=0

vmB0(n− 2l− i,m)

= βi
�(n−i)/2�∑

l=0

s(i, l)βl
n−2l−i∑
m=0

vm+2l+iB0(n− 2l− i,m)

= βi
�(n−i)/2�∑

l=0

s(i, l)βl
n∑

k=2l+i

vkB0(n− 2l− i,k− 2l− i)

= βi
n∑
k=i

vk
�(k−i)/2�∑

l=0

s(i, l)βlb0(n− 2l− i,k− 2l− i),

(3.30)

where the last equality is obtained by exchanging the order of summations. This leads,
for i≥ 1 and n≥ i, to the following expression of Bi(n,k):

Bi(n,k)=




0 if 0≤ k < i,

βi
�(k−i)/2�∑

l=0

s(i, l)βlB0(n− 2l− i,k− l− i) if i≤ k ≤ n,

0 if k > n.

(3.31)

Using the transformation (3.13) and also from (2.3), we get

bi(n,k)=




0 if 0≤ k < i,
(√

β
)i
Ui

(
1

2
√
β

) �(k−i)/2�∑
l=0

s(i, l)βlb0(n− 2l− i,k− l− i) if i≤ k ≤ n,

0 if k > n.

(3.32)

In particular, for i= 1, the ballot numbers s(1, l) are the Catalan number cl. Thus,

b1(n,k)=




0 if k = 0,
�(k−i)/2�∑

l=0


2l

l


 βl

l+ 1
b0(n− 2l− 1,k− l− 1) if 1≤ k ≤ n,

0 if k > n.

(3.33)

�

The proof of Theorem 3.1 is thus completed by replacing (3.33) in (3.6). �

Note that in the modified recurrence relation given by (3.6), bi(n,k) is explicitly ex-
pressed in terms of b0(·,·) with lower orders of n and k thereby reducing the computa-
tional complexity involved in the evaluation of b0(n,0).
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Proposition 3.4. For all n≥ 0,

b0(n,n)=




1
k+ 1


2k

k


βk if n= 2k,

0 if n= 2k+ 1.

(3.34)

Proof. For every t ≥ 0 and x ∈ [0,rt), the solution (3.1) can be simplified as

Fi(t,x)=
∞∑
n=0

e−t
1
rn

n∑
k=0

xk(rt− x)n−k

k!(n− k)!
bi(n,k), i= 0,1,2, . . . . (3.35)

Therefore, we get

Fi(t,0)= lim
x→0

∞∑
n=0

e−t
tn

n!

n∑
k=0

(
n
k

)(
x

rt

)k(
1− x

rt

)n−k
bi(n,k)=

∞∑
n=0

e−t
tn

n!
bi(n,0). (3.36)

Note that Fi(t,0) = 0 for i = 1,2,3, . . . because when X(t) = i, the corresponding net ef-
fective rate r is positive. Hence we have

bi(n,0)= 0, n≥ 0, i≥ 1. (3.37)

Also for t > 0, we have

F0(t,rt)= lim
x→rt

F0(t,x)= P
(
X(t)= 0

)
. (3.38)

From (3.35), we obtain

lim
x→rt

F0(t,x)=
∞∑
n=0

e−t
tn

n!
b0(n,n). (3.39)

Hence from (3.38) and (3.39), we obtain

∞∑
n=0

e−t
tn

n!
b0(n,n)= P

(
X(t)= 0

)
. (3.40)

Also, from (2.4), we have

P
(
X(t)= 0

)= 2e−tI1(αt)
αt

=
e−tI1

(
2
√
βt
)

√
βt

=
∞∑
k=0

e−t
t2k

k!
βk

(k+ 1)!
. (3.41)

Hence, we have

∞∑
n=0

e−t
tn

n!
b0(n,n)=

∞∑
k=0

e−t
t2k

k!
βk

(k+ 1)!
. (3.42)

Collecting the coefficients of powers of t on both sides, we get (3.34). �
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In this way, we determine b0(n,0) for all n ≥ 1 from Theorem 3.1 where the b0(n,k)
for 0≤ k ≤ n− 1 and hence b1(n,k) for 1 ≤ k ≤ n are obtained from the simple relation
established in Proposition 3.2 and Lemma 3.3, respectively. Further, for all n≥ 1, b0(n,n)
are calculated from the compact formula derived in Proposition 3.4.

4. Numerical illustration

In this section, we discuss the numerical investigation carried out to study the behaviour
of q0(t) given by (3.4) with respect to time. Towards this end, we define the truncation
step as

N(ε, t)=min

{
n≥ 0 |

n∑
h=0

e−t
th

h!
≥ 1− ε

}
. (4.1)

It is easy to check that N(ε, t) is an increasing function of t. So if q0(t) has to be eval-
uated at M points, say t1 < ··· < tM , we only need to evaluate b0(n,0) for n = 0,1, . . . ,
N(ε, tM), and to compute

q(N)
0 (t)=

N(ε,tM)∑
n=0

e−t
tn

n!
b0(n,0). (4.2)

Indeed, for every t ≤ tM , we have

q0(t)− q(N)
0 (t)=

∞∑
n=N(ε,tM)+1

e−t
tn

n!
b0(n,0)

≤
∞∑

n=N(ε,tM)+1

e−t
tn

n!
= 1−

N(ε,tM)∑
n=0

e−t
tn

n!
= 1−

N(ε,t)∑
n=0

e−t
tn

n!
≤ ε,

(4.3)

where the first inequality comes from the fact that the bi(n,k) are between 0 and 1 as
shown in [6].

Below we give the algorithm which we developed to bring out the variations in the
form of graphs.

Algorithm 4.1.
input: t1 < ··· < tM , ε

output: q(N)
0 (t1) < ··· < q(N)

0 (tM)
Compute N =N(ε, tM) from relation (4.1).
b0(0,0)= 1; b1(0,0)= 0
for n= 1 to N do

Compute b0(n,n) from relation (3.34).
for k = n− 1 step −1 to 0 do

Compute b0(n,k) from relation (3.2).
endfor
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Figure 4.1. Variation of q0(t) against t for varying r when β = 0.1 and varying β when r = 1 with
r0 =−1.

b1(n,0)= 0
for k = 1 to n do

Compute b1(n,k) from relation (3.33).
endfor
for i= 1 to M do

Compute q(N)
0 (t) from relation (4.2).

endfor
endfor

Figure 4.1 depicts the variation of the function q0(t) against t for r0 = −1, varying
values of r when β = 0.1, and varying values of β when r = 1. As the net input rate of
the fluid increases, the probability with which the buffer becomes empty over a period of
time decreases faster and hence q0(t) approaches zero, as seen in Figure 4.1. In Figure 4.2,
the variation in q0(t) against time is plotted for r = 1.0, β = 0.1 and r = 0.1, β = 0.25. It is
observed that for other values of r and β, the curves lie in the intermediate region.

5. Analytical solution

In this section, we present an explicit transient solution for the fluid model under con-
sideration. We discuss the method of continued fractions to solve the governing system
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Figure 4.2. Variation of q0(t) against t for varying r and β with r0 =−1.

of partial differential equations. Laplace transform of (2.5) with respect to t yields

sF∗0 (s,x)−F0(0,x) + r0
∂F∗0
∂x

(s,x)=−F∗0 (s,x) +µ1F
∗
1 (s,x),

sF∗j (s,x)−Fj(0,x) + r
∂F∗j
∂x

(s,x)

= λj−1F
∗
j−1(s,x)−F∗j (s,x) +µj+1F

∗
j+1(s,x) for j = 1,2,3, . . . .

(5.1)

Taking Laplace transform of (5.1) again with respect to x, we get

sF∗∗0 (s,w)− 1
w

+ r0wF
∗∗
0 (s,w)− r0F

∗
0 (s,0)=−F∗∗0 (s,w) +µ1F

∗∗
1 (s,w),

sF∗∗j (s,w) + rwF∗∗j (s,w)− rF∗j (s,0)= λj−1F
∗∗
j−1(s,w)−F∗∗j (s,w) +µj+1F

∗∗
j+1(s,w).

(5.2)

Rewriting the above system of equations,

(
s+ r0w+ 1

)
F∗∗0 (s,w)−µ1F

∗∗
1 (s,w)

= 1
w

+ r0q
∗
0 (s)− λj−1F

∗∗
j−1(s,w) + (s+ 1 + rw)F∗∗j (s,w)−µj+1F

∗∗
j+1(s,w)= 0, j ≥ 1.

(5.3)

Define

f ∗∗0 (s,w)= F∗∗0 (s,w),

f ∗∗j (s,w)= (−1) j
µ1µ2 ···µj

r0r j−1 F∗∗j (s,w) for j ≥ 1.
(5.4)
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Making use of the above transformation, (5.3) becomes
(
w+

s+ 1
r0

)
f ∗∗0 (s,w)− f ∗∗1 (s,w)= 1

r0w
+ q∗0 (s),

λ0µ1

r0r
f ∗∗0 (s,w) +

(
w+

s+ 1
r

)
f ∗∗1 (s,w) + f ∗∗2 (s,w)= 0,

λj−1µj

r2
f ∗∗j−1(s,w) +

(
w+

s+ 1
r

)
f ∗∗j (s,w) + f ∗∗j+1 (s,w)= 0, j = 2,3, . . . .

(5.5)

These equations can be conveniently rewritten in the form of continued fractions as fol-
lows:

f ∗∗0 (s,w)= 1/r0w+ q∗0 (s)
w+ (s+ 1)/r0− f ∗∗1 (s,w)/ f ∗∗0 (s,w)

,

f ∗∗1 (s,w)
f ∗∗0 (s,w)

=− β/r0r

w+ (s+ 1)/r + f ∗∗2 (s,w)/ f ∗∗1 (s,w)
,

f ∗∗j (s,w)

f ∗∗j−1(s,w)
=− β/r2

w+ (s+ 1)/r + f ∗∗j+1 (s,w)/ f ∗∗j (s,w)
for j = 2,3, . . . .

(5.6)

Hence we have

f ∗∗0 (s,w)= 1/r0w+ q∗0 (s)
w+ (s+ 1)/r0−

β/r0r

w+ (s+ 1)/r−
β/r2

w+ (s+ 1)/r− ··· . (5.7)

Define

f (s,w)= 1
w+ (s+ 1)/r−

β/r2

w+ (s+ 1)/r−
β/r2

w+ (s+ 1)/r− ···

= 1
w+ (s+ 1)/r− (β/r2

)
f (s,w)

.
(5.8)

That is,

β

r2

(
f (s,w)

)2−
(
w+

s+ 1
r

)
f (s,w) + 1= 0. (5.9)

Solving the above quadratic equation, we obtain

f (s,w)=
(
w+ (s+ 1)/r

)−√(w+ (s+ 1)/r
)2− 4β/r2

2β/r2
. (5.10)

Using the above definition, we have

f ∗∗1 (s,w)
f ∗∗0 (s,w)

=− β

r0r
f (s,w),

f ∗∗j (s,w)

f ∗∗j−1(s,w)
=− β

r2
f (s,w) for j = 2,3 . . . ,

(5.11)
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and hence

f ∗∗0 (s,w)= 1/r0w+ q∗0 (s)
w+ (s+ 1)/r0−

(
β/r0r

)
f (s,w)

= 1/r0w+ q∗0 (s)

w+ (s+ 1)/r0−
(
r/2r0

)[(
w+ (s+ 1)/r

)−√(w+ (s+ 1)/r
)2− 4β/r2

] .
(5.12)

We denote w+ (s+ 1)/r = θ and 2
√
β/r = ν, then

f ∗∗0 (s,w)= 1/r0w+ q∗0 (s)(
w+ (s+ 1)/r0

)− (r/2r0
)(
θ−√θ2− ν2

) . (5.13)

From (5.4), F∗∗0 (s,w)= f ∗∗0 (s,w), and hence we get

F∗∗0 (s,w)=
(
q∗0 (s) +

1
r0w

) ∞∑
k=0

(
r

2r0

)k (θ−√θ2− ν2)k(
w+ (s+ 1)/r0

)k+1 for
∣∣∣∣ β f (s,w)
r
(
r0w+ s+ 1

)∣∣∣∣ < 1.

(5.14)

Also from (5.11), we have

f ∗∗j (s,w)= r

r0

(
− β

r2
f (s,w)

) j

f ∗∗0 (s,w) for j = 1,2,3 . . . . (5.15)

Getting back to the transformation using (5.4), we obtain

F∗∗j (s,w)= r j

µ1µ2 ···µj

(
β

r2
f (s,w)

) j

F∗∗0 (s,w)

=
(
r

2

) j 1
µ1µ2 . . .µ j

(
q∗0 (s) +

1
r0w

) ∞∑
k=0

(
r

2r0

)k (θ−√θ2− ν2
) j+k

(
w+ (s+ 1)/r0

)k+1 .

(5.16)

Hence from (2.3) we have

F∗∗j (s,w)=
(

r

2
√
β

) j

Uj

(
1

2
√
β

)(
q∗0 (s) +

1
r0w

) ∞∑
k=0

(
r

2r0

)k (θ−√θ2− ν2
) j+k

(
w+ (s+ 1)/r0

)k+1 . (5.17)

Inverting the above expression, we obtain the transient buffer content distribution as
given in the following theorem.
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Theorem 5.1. For every t ≥ 0 and x ∈ [0,rt), we have

F0(t,x)= e−x/r0q0

(
t− x

r0

)
+ e−t − e−x/r0e−(t−x/r0)

+
∞∑
k=1

(
r

2r0

)k ∫ x

0
e−(1/r)(x−y) νkkIk

(
ν(x− y)

)
k!(x− y)

·
{
yke−y/r0H

(
t− x− y

r
− y

r0

)
q0

(
t− x− y

r
− y

r0

)

+ rk0 e
−(t−(x−y)/r)

(
t− x− y

r

)k}
dy,

Fj(t,x)=
(

r

2
√
β

) j

Uj

(
1

2
√
β

)

×
∞∑
k=0

(
r

2r0

)k ∫ x

0
e−(1/r)(x−y) ν j+k( j + k)I j+k

(
ν(x− y)

)
k!(x− y)

·
{
yke−y/r0H

(
t− x− y

r
− y

r0

)
q0

(
t− x− y

r
− y

r0

)

+ rk0 e
−λ(t−(x−y)/r)

(
t− x− y

r

)k}
dy for j = 1,2, . . . ,

(5.18)

where H(·) denotes the Heaviside function.
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