DAVIS-TYPE THEOREMS FOR MARTINGALE DIFFERENCE SEQUENCES

GEORGE STOICA

Received 25 February 2004 and in revised form 10 August 2004

We study Davis-type theorems on the optimal rate of convergence of moderate deviation probabilities. In the case of martingale difference sequences, under the finite *p*th moments hypothesis $(1 \le p < \infty)$, and depending on the normalization factor, our results show that Davis' theorems either hold if and only if p > 2 or fail for all $p \ge 1$. This is in sharp contrast with the classical case of i.i.d. centered sequences, where both Davis' theorems hold under the finite second moment hypothesis (or less).

1. Introduction

Let $(X_n)_{n\geq 1}$ be a sequence of random variables on a probability space (Ω, \mathcal{F}, P) and, for each $n \geq 1$, denote by \mathcal{F}_n the σ -algebra generated by X_1, X_2, \ldots, X_n . We say that $(X_n)_{n\geq 1}$ is martingale difference sequence if $S_n := X_1 + \cdots + X_n$ is a martingale with respect to the filtration $(\mathcal{F}_n)_{n\geq 1}$, that is, $E[S_n|\mathcal{F}_{n-1}] = S_{n-1}$ a.s. for $n \geq 1$ (here $S_0 = 0$ and \mathcal{F}_0 is the trivial σ -algebra). Obviously, any i.i.d. centered sequence $(X_n)_{n\geq 1}$ from L^1 is a martingale difference sequence, but the converse is false (consider, e.g., ergodic dynamical systems of positive entropy). Let $p \geq 1$; we say that the martingale difference sequence $(X_n)_{n\geq 1}$ is L^p -bounded if it has finite *p*th moments, that is, $||X_n||_p \leq C$ for some constant C > 0 and any $n \geq 1$.

Davis' first and second theorems refer to the rate of convergence of the *moderate devi ations* probabilities $P[|S_n| > \varepsilon(n \log n)^{1/2}]$ or $P[|S_n| > \varepsilon(n \log \log n)^{1/2}]$, for $\varepsilon > 0$; they were studied for L^2 -bounded i.i.d. sequences in Davis [1, 2] (see also [3, 4, 5]). In contrast with the i.i.d. case, in this paper, we prove that Davis' first theorem for L^p -bounded martingale difference sequences holds if and only if p > 2. Depending on the normalization factor therein, we prove that Davis' second theorem for L^p -bounded martingale difference sequences holds if and only if p > 2, or fails for any $p \ge 1$. Our results complement the optimal rates of convergence in the Baum-Katz-type theorems for martingale difference sequences obtained in [6, 7], that is, the rate of convergence of the *large deviations* probabilities $P[|S_n| > \varepsilon n^{\alpha}]$, with $1/2 < \alpha \le 1$. Moreover, sharp precise asymptotics (as $\varepsilon > 0$) are known for i.i.d. centered sequences in both Baum-Katz and Davis' theorems (see [4, 5]). In the martingale difference case, our proofs of Davis' theorems will also provide, as consequence, such asymptotics.

2. Davis' first theorem

Let $\varepsilon > 0$ and let $\delta = \delta(p)$ be a function of $p \ge 1$. Consider the series

$$\sum_{n=2}^{\infty} \frac{(\log n)^{\delta}}{n} P[|S_n| > \varepsilon(n\log n)^{1/2}].$$

$$(2.1)$$

Assume $(X_n)_{n\geq 1}$ is an i.i.d. sequence and $\delta = 1$. *Davis' first theorem* says that series (2.1) is convergent for any $\varepsilon > 0$ if and only if $(X_n)_{n\geq 1}$ is an L^2 -bounded centered sequence (see [1, 3, 4]).

In the martingale difference sequences case, we have the following result.

THEOREM 2.1. (i) For any p > 2 and L^p -bounded martingale difference sequence $(X_n)_{n \ge 1}$, series (2.1) is convergent for any $0 \le \delta < p/2 - 1$ and any $\varepsilon > 0$.

(ii) For any $p \ge 1$ there exists an L^p -bounded martingale difference sequence $(X_n)_{n\ge 1}$ such that series (2.1) diverges for any $\delta > p/2 - 1$ and any $\varepsilon > 0$.

(iii) There exist a probability space (Ω, \mathcal{F}, P) and an $L^{p-\lambda}$ -bounded martingale difference sequence $(X_n)_{n\geq 1}$ (for all $0 < \lambda \le p-1$) such that series (2.1) diverges for $\delta \ge p/2 - 1$ and any $\varepsilon > 0$.

Proof. Throughout the paper, C > 0 denotes a generic numerical constant. The sign ~ between two series means that they are either both convergent or both divergent. In the sequel we use that each of the series

$$\sum_{n=2}^{\infty} \frac{(\log n)^{\alpha}}{n^{\beta}}, \qquad \sum_{n=3}^{\infty} \frac{(\log \log n)^{\alpha}}{n(\log n)^{\beta}}$$
(2.2)

is convergent if and only if $\beta > 1$ or $\beta = 1$ and $\alpha < -1$ (by the integral test).

The idea in proving Theorem 2.1(i) is to obtain direct sharp estimates for the twosided deviation probabilities $P[|X_n| - (\log n)^a]$ for some a > 0 to be specified later, instead of using standard remainder term estimates for the central limit theorem. To this aim, we are going to use the following truncated processes from [6, Theorem 3.2] adapted to our problem:

$$X_n^1 := X_n \mathbf{1}_{\{|X_n| \le (\log n)^a\}} - E[X_n \mathbf{1}_{\{|X_n| \le (\log n)^a\}} | \mathcal{F}_{n-1}],$$

$$X_n^2 := X_n \mathbf{1}_{\{|X_n| > (\log n)^a\}} - E[X_n \mathbf{1}_{\{|X_n| > (\log n)^a\}} | \mathcal{F}_{n-1}],$$
(2.3)

where $(\mathcal{F}_n)_{n\geq 1}$ is the filtration generated by $(X_n)_{n\geq 1}$, and \mathcal{F}_0 is the trivial σ -algebra. It is immediate that $(X_n^1)_{n\geq 1}$ and $(X_n^2)_{n\geq 1}$ are martingale difference sequences with respect to $(\mathcal{F}_n)_{n\geq 1}$ and $X_n = X_n^1 + X_n^2$. Put $S_n^i = X_1^i + \cdots + X_n^i$; i = 1, 2.

Let p > 2; as $||X_k||_p \le C$, we have, for any $k \ge 1$ and x > 0,

$$F_k(x) := P[|X_k| > x] \le Cx^{-p}.$$
(2.4)

We obtain

$$E |X_{k}^{2}|^{2} \leq -\int_{(\log n)^{a}}^{+\infty} x^{2} dF_{k}(x)$$

$$= -\lim_{N \to +\infty} \left[N^{2} F_{k}(N) - (\log n)^{2a} F_{k}((\log n)^{a}) + 2 \int_{(\log n)^{a}}^{N} x F_{k}(x) dx \right] \qquad (2.5)$$

$$\leq C (\log n)^{(2-p)a}.$$

The second line is obtained by integration by parts and by using estimation (2.4) in the proper integral in (2.5).

By a general property for the martingale difference sequences, we have

$$E |S_n^2|^2 = \sum_{k=1}^n E |X_k^2|^2.$$
(2.6)

Combining (2.5) and (2.6) gives

$$P\left[\left|S_{n}^{2}\right| > \frac{\varepsilon}{2}(n\log n)^{1/2}\right] = P\left[\left|S_{n}^{2}\right|^{2} > \frac{\varepsilon^{2}}{4}n\log n\right]$$
$$\leq C\varepsilon^{-2}(n\log n)^{-1}E\left|S_{n}^{2}\right|^{2}$$
$$\leq C\varepsilon^{-2}(\log n)^{(2-p)a-1}.$$
(2.7)

Let $\alpha > 2$; by [6, Theorem 3.6], and taking into account that $|X_n^1| \le 2(\log n)^a$, we obtain

$$E |S_n^1|^{\alpha} \le C n^{\alpha/2 - 1} \sum_{k=1}^n E |X_k^1|^{\alpha} \le C n^{\alpha/2} (\log n)^{a\alpha}.$$
 (2.8)

Hence

$$P\left[\left|S_{n}^{1}\right|^{\alpha} > \left(\frac{\varepsilon}{2}\right)^{\alpha} (n\log n)^{\alpha/2}\right] \le C\varepsilon^{-\alpha} (n\log n)^{-\alpha/2} E\left|S_{n}^{1}\right|^{\alpha} \le C\varepsilon^{-\alpha} (\log n)^{a\alpha-\alpha/2}.$$
 (2.9)

Let $0 \le \delta < p/2 - 1$. In the sequel take $\alpha > \alpha_0 := 2(p-2)(1+\delta)/(p-2-2\delta)$, and note that $\alpha_0 \ge 2$. By (2.7) and (2.9) we obtain that series (2.1) is dominated by

$$\sum_{n=2}^{\infty} \frac{(\log n)^{\delta}}{n} P\left[\left| S_n^1 \right| > \frac{\varepsilon}{2} (n\log n)^{1/2} \right] + \sum_{n=2}^{\infty} \frac{(\log n)^{\delta}}{n} P\left[\left| S_n^2 \right| > \frac{\varepsilon}{2} (n\log n)^{1/2} \right]$$

$$\leq C\varepsilon^{-\alpha} \sum_{n=2}^{\infty} \frac{(\log n)^{a\alpha - \alpha/2 + \delta}}{n} + C\varepsilon^{-2} \sum_{n=2}^{\infty} \frac{(\log n)^{(2-p)a - 1 + \delta}}{n} =: A + B.$$
(2.10)

Part (i) of Theorem 2.1 is proved if we choose $\delta/(p-2) < a < (\alpha - 2\delta - 2)/2\alpha$. Indeed, the first inequality ensures the convergence of series B, and the second inequality ensures the convergence of series A. Such an *a* exists, because the compatibility inequality $\delta/(p-2) < (\alpha - 2\delta - 2)/2\alpha$ is equivalent to $\alpha > \alpha_0$.

162 Davis-type theorems for martingale difference sequences

For part (ii) of Theorem 2.1, let $p \ge 1$ and $\delta > p/2 - 1$. We need to construct a martingale difference sequence $(X_n)_{n\ge 1}$ with $||X_n||_p \le C$ for any $n \ge 1$, and such that series (2.1) diverges. To this aim, consider $X_n = Z \cdot Y_n$, where $(Y_n)_{n\ge 1}$ is an i.i.d. bounded centered sequence, and Z is independent of $(Y_n)_{n\ge 1}$ with

$$P[|Z| > n] = Cn^{-c} \tag{2.11}$$

for $n \ge 1$ (where *C* is a normalization factor), for some c > 0 to be specified later. If c > p, then $(X_n)_{n\ge 1}$ has finite *p*th moments, as

$$E |X_n|^p \le CE |Z|^p \le C \sum_{n=1}^{\infty} n^p \left(P [|Z| > n] - P [|Z| > n+1] \right) \sim \sum_{n=1}^{\infty} n^{p-c-1}.$$
(2.12)

By independence and the central limit theorem, we have

$$P[|S_n| > \varepsilon(n\log n)^{1/2}] \ge P[|Y_1 + \dots + Y_n| > n^{1/2}] \cdot P[|Z| > \varepsilon(\log n)^{1/2}]$$

$$\ge CP[|Z| > \varepsilon(\log n)^{1/2}],$$
(2.13)

hence

$$\sum_{n=2}^{\infty} \frac{(\log n)^{\delta}}{n} P[|S_n| > \varepsilon(n\log n)^{1/2}] \ge C \sum_{n=2}^{\infty} n^{-1} (\log n)^{\delta - c/2}.$$
 (2.14)

The latter series in (2.14) diverges if $\delta \ge c/2 - 1$. Hence, for series (2.1) to diverge, it suffices to choose $p < c \le 2\delta + 2$. Such *c* exists because the compatibility inequality $p < 2\delta + 2$ is equivalent to $\delta > p/2 - 1$.

Let $\delta \ge p/2 - 1$; to prove Theorem 2.1(iii) consider *Z* with finite second moment and such that

$$P[|Z| > n] \ge \frac{C}{n^p} \tag{2.15}$$

for $n \ge 1$. Define as in the proof of part (ii) $X_n = Z \cdot Y_n$ and note that $(X_n)_{n\ge 1}$ has finite moments of order $p - \lambda$, for all $0 < \lambda \le p - 1$. As such,

$$\sum_{n=2}^{\infty} \frac{(\log n)^{\delta}}{n} P[|S_n| > \varepsilon(n\log n)^{1/2}]$$

$$\geq C \sum_{n=2}^{\infty} \frac{(\log n)^{\delta}}{n} P[|Z| > \varepsilon(\log n)^{1/2}] \geq C \sum_{n=2}^{\infty} \frac{(\log n)^{\delta - p/2}}{n} = +\infty.$$
(2.16)

Remark 2.2. In particular, from Theorem 2.1, we deduce the following. If $1 \le p \le 2$, then series (2.1) diverges for any $\delta \ge 0$ and some L^p -bounded martingale difference sequence $(X_n)_{n\ge 1}$. For any p > 2 and L^p -bounded martingale difference sequence $(X_n)_{n\ge 1}$, series (2.1) converges for some $\delta > 0$: if p > 3 one can take $\delta = 1/2$, and if p > 4 one can take $\delta = 1$, and so forth.

The asymptotics, as $\varepsilon > 0$, in Theorem 2.1(i) are given below.

COROLLARY 2.3. For any p > 2 and L^p -bounded martingale difference sequence $(X_n)_{n \ge 1}$, it holds that

$$\lim_{\varepsilon \to 0} \varepsilon^{\alpha_0} \sum_{n=2}^{\infty} \frac{(\log n)^{\delta}}{n} P[|S_n| > \varepsilon(n\log n)^{1/2}] < +\infty$$
(2.17)

for any $0 \le \delta < p/2 - 1$ *, and where* $\alpha_0 := 2(p-2)(1+\delta)/(p-2-2\delta)$ *.*

Proof. In formula (2.10), as $\varepsilon > 0$, series B behaves like ε^{-2} and series A behaves like ε^{α} , for $\alpha > \alpha_0$. Notice that $\alpha_0 \ge 2\delta + 2 \ge 2$, hence the normalization factor ε^{α_0} makes the limit in formula (2.17) finite.

Remark 2.4. For L^2 -bounded centered i.i.d. sequences, the optimal normalization factor in Corollary 3.2 is $\varepsilon^{2\delta+2}$ (see [4, Theorem 3]), in which case the limit in (2.17) is strictly positive. Moreover, note that $\alpha_0 \ge 2\delta + 2 \ge 2$ and $\lim \alpha_0 = 2\delta + 2$ as $p \to \infty$, hence the latter result can be viewed as a limiting case of our general result (2.17).

3. Davis' second theorem

Let $\varepsilon > 0$ and let $\delta = \delta(p)$ be a function of $p \ge 1$. Consider the series

$$\sum_{n=3}^{\infty} \frac{1}{n(\log n)^{\delta}} P[|S_n| > \varepsilon(n\log\log n)^{1/2}].$$
(3.1)

Assume $(X_n)_{n\geq 1}$ is an i.i.d. sequence. If $\delta = 0$, *Davis' second theorem* says that series (3.1) converges when $\varepsilon > \sigma\sqrt{2}$ if and only if $(X_n)_{n\geq 1}$ is an L^2 -bounded centered sequence, and where $\sigma^2 := E[X_1^2]$. If $\delta = 1$, series (3.1) is convergent for any $\varepsilon > 0$ if $(X_n)_{n\geq 1}$ is centered and satisfies slightly less than a second moment, but the necessary and sufficient moment condition is not known (see [2, 3, 4, 5]).

In the martingale difference sequences case, we have the following result.

THEOREM 3.1. (i) For any p > 2 and L^p -bounded martingale difference sequence $(X_n)_{n \ge 1}$, series (3.1) is convergent for $\delta \ge 1$ and any $\varepsilon > 0$.

(ii) For any $1 \le p < 2$ there exists an L^p -bounded martingale difference sequence $(X_n)_{n\ge 1}$ such that series (3.1) diverges for $\delta = 1$ and any $\varepsilon > 0$.

(iii) For any $p \ge 1$ there exists an L^p -bounded martingale difference sequence $(X_n)_{n\ge 1}$ such that series (3.1) diverges for any $0 \le \delta < 1$ and $\varepsilon > 0$.

(iv) There exist a probability space (Ω, \mathcal{F}, P) and an $L^{2-\lambda}$ -bounded martingale difference sequence $(X_n)_{n\geq 1}$ (for all $0 < \lambda \leq 1$) such that series (3.1) diverges for $0 \leq \delta \leq 1$ and any $\varepsilon > 0$.

164 Davis-type theorems for martingale difference sequences

Proof. To prove (i), first remark that formulas (2.7) and (2.9) can be proved the same way as we did in Theorem 2.1(i) when replacing $(\log n)^a$ by $(\log \log n)^a$. As such, with the same notations therein, we obtain

$$\sum_{n=3}^{\infty} \frac{1}{n(\log n)^{\delta}} P\left[\left| S_n \right| > \frac{\varepsilon}{2} (n \log \log n)^{1/2} \right]$$

$$\leq C\varepsilon^{-\alpha} \sum_{n=3}^{\infty} \frac{(\log \log n)^{a\alpha - \alpha/2}}{n(\log n)^{\delta}} + C\varepsilon^{-2} \sum_{n=3}^{\infty} \frac{(\log \log n)^{(2-p)a-1}}{n(\log n)^{\delta}}.$$
(3.2)

From (3.2) we deduce that series (3.1) with $\delta > 1$ is convergent regardless of the values of *a* and α ; also, series (3.1) with $\delta = 1$ is convergent if $0 < a < (\alpha - 2)/2\alpha$. Indeed, in the latter case, the second series in the second line of (3.2) is convergent if a > 0 and the first series in the second line of (3.2) is convergent if $a < (\alpha - 2)/2\alpha$. Such *a* exists because $\alpha > 2$.

For parts (ii) and (iii) of Theorem 3.1, within the same construction of the counterexample of martingale difference sequence in Theorem 2.1(ii), take *Z* with $P[|Z| > n] = Cn^{-c}$ for some c > p. Note that $(X_n)_{n \ge 1}$ have finite *p*th-order moments. As

$$P[|S_n| > \varepsilon(n \log \log n)^{1/2}] \ge P[|Y_1 + \dots + Y_n| > n^{1/2}] \cdot P[|Z| > \varepsilon(\log \log n)^{1/2}]$$

$$\ge C \cdot P[|Z| > \varepsilon(\log \log n)^{1/2}],$$
(3.3)

series (3.1) dominates the following analog of (2.14):

$$C\sum_{n=3}^{\infty} \frac{1}{n(\log n)^{\delta}} P\big[|Z| > \varepsilon (\log\log n)^{1/2}\big] \ge C\sum_{n=3}^{\infty} \frac{(\log\log n)^{-c/2}}{n(\log n)^{\delta}}.$$
(3.4)

The latter series in (3.4) diverges for any $0 \le \delta < 1$ and c > 0, and this proves (iii); it also diverges for $\delta = 1$ and c < 2, and this proves (ii) for $1 \le p < 2$.

To prove (iv) consider *Z* with finite second moment and such that $P[|Z| > n] \ge C/n^2$ for $n \ge 1$. Define as above $X_n = Z \cdot Y_n$ and note that $(X_n)_{n\ge 1}$ has finite moments of order $2 - \lambda$, for all $0 < \lambda \le 1$. As such,

$$\sum_{n=3}^{\infty} \frac{1}{n(\log n)^{\delta}} P[|S_n| > \varepsilon(n\log\log n)^{1/2}] \ge C \sum_{n=3}^{\infty} \frac{1}{n(\log n)^{\delta}} P[|Z| > \varepsilon(\log\log n)^{1/2}]$$

$$\ge C \sum_{n=3}^{\infty} \frac{1}{n(\log n)^{\delta}(\log\log n)} = +\infty,$$
(3.5)

as $0 \le \delta \le 1$.

The asymptotics, as $\varepsilon > 0$, in Theorem 3.1(i) are given below.

COROLLARY 3.2. For any p > 2, $\delta \ge 1$ and L^p -bounded martingale difference sequence $(X_n)_{n\ge 1}$, it holds that

$$\lim_{\varepsilon \to 0} \varepsilon^2 \sum_{n=3}^{\infty} \frac{1}{n(\log n)^{\delta}} P[|S_n| > \varepsilon(n\log n\log n)^{1/2}] < +\infty.$$
(3.6)

 \square

Proof. In formula (3.2), as $\varepsilon > 0$, the second series behaves like ε^{-2} and the first series behaves like ε^{α} , for all $\alpha > 2$. Hence the normalization factor ε^2 makes the limit in formula (3.6) finite.

Remark 3.3. For L^2 -bounded centered i.i.d. sequences, the optimal normalization factor in Corollary 3.2 is precisely ε^2 (see [5]), that is, the limit in (3.6) is strictly positive. In other words, our Corollary 3.2 gives sharp rates of convergence for series (3.1).

References

- [1] J. A. Davis, *Convergence rates for probabilities of moderate deviations*, Ann. Math. Stat. **39** (1968), 2016–2028.
- [2] _____, Convergence rates for the law of the iterated logarithm, Ann. Math. Stat. **39** (1968), 1479–1485.
- [3] A. Gut, Convergence rates for probabilities of moderate deviations for sums of random variables with multidimensional indices, Ann. Probab. 8 (1980), no. 2, 298–313.
- [4] A. Gut and A. Spătaru, Precise asymptotics in the Baum-Katz and Davis laws of large numbers, J. Math. Anal. Appl. 248 (2000), no. 1, 233–246.
- [5] _____, Precise asymptotics in the law of the iterated logarithm, Ann. Probab. 28 (2000), no. 4, 1870–1883.
- [6] E. Lesigne and D. Volný, *Large deviations for martingales*, Stochastic Process. Appl. 96 (2001), no. 1, 143–159.
- [7] Y. Li, A martingale inequality and large deviations, Statist. Probab. Lett. 62 (2003), no. 3, 317–321.

George Stoica: Department of Mathematical Sciences, University of New Brunswick, P.O. Box 5050, Saint John, NB, Canada E2L 4L5

E-mail address: stoica@unbsj.ca