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We study Davis-type theorems on the optimal rate of convergence of moderate deviation
probabilities. In the case of martingale difference sequences, under the finite pth mo-
ments hypothesis (1 ≤ p <∞), and depending on the normalization factor, our results
show that Davis’ theorems either hold if and only if p > 2 or fail for all p ≥ 1. This is
in sharp contrast with the classical case of i.i.d. centered sequences, where both Davis’
theorems hold under the finite second moment hypothesis (or less).

1. Introduction

Let (Xn)n≥1 be a sequence of random variables on a probability space (Ω,�,P) and, for
each n ≥ 1, denote by �n the σ-algebra generated by X1,X2, . . . ,Xn. We say that (Xn)n≥1

is martingale difference sequence if Sn := X1 + ··· + Xn is a martingale with respect to
the filtration (�n)n≥1, that is, E[Sn|�n−1]= Sn−1 a.s. for n≥ 1 (here S0 = 0 and �0 is the
trivial σ-algebra). Obviously, any i.i.d. centered sequence (Xn)n≥1 from L1 is a martingale
difference sequence, but the converse is false (consider, e.g., ergodic dynamical systems
of positive entropy). Let p ≥ 1; we say that the martingale difference sequence (Xn)n≥1 is
Lp-bounded if it has finite pth moments, that is, ‖Xn‖p ≤ C for some constant C > 0 and
any n≥ 1.

Davis’ first and second theorems refer to the rate of convergence of the moderate devi-
ations probabilities P[|Sn| > ε(n logn)1/2] or P[|Sn| > ε(n loglogn)1/2], for ε > 0; they were
studied for L2-bounded i.i.d. sequences in Davis [1, 2] (see also [3, 4, 5]). In contrast with
the i.i.d. case, in this paper, we prove that Davis’ first theorem for Lp-bounded martin-
gale difference sequences holds if and only if p > 2. Depending on the normalization fac-
tor therein, we prove that Davis’ second theorem for Lp-bounded martingale difference
sequences holds if and only if p > 2, or fails for any p ≥ 1. Our results complement the
optimal rates of convergence in the Baum-Katz-type theorems for martingale difference
sequences obtained in [6, 7], that is, the rate of convergence of the large deviations proba-
bilities P[|Sn| > εnα], with 1/2 < α≤ 1. Moreover, sharp precise asymptotics (as ε ↘ 0) are
known for i.i.d. centered sequences in both Baum-Katz and Davis’ theorems (see [4, 5]).
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In the martingale difference case, our proofs of Davis’ theorems will also provide, as con-
sequence, such asymptotics.

2. Davis’ first theorem

Let ε > 0 and let δ = δ(p) be a function of p ≥ 1. Consider the series

∞∑
n=2

(logn)δ

n
P
[∣∣Sn∣∣ > ε(n logn)1/2]. (2.1)

Assume (Xn)n≥1 is an i.i.d. sequence and δ = 1. Davis’ first theorem says that series (2.1)
is convergent for any ε > 0 if and only if (Xn)n≥1 is an L2-bounded centered sequence (see
[1, 3, 4]).

In the martingale difference sequences case, we have the following result.

Theorem 2.1. (i) For any p > 2 and Lp-bounded martingale difference sequence (Xn)n≥1,
series (2.1) is convergent for any 0≤ δ < p/2− 1 and any ε > 0.

(ii) For any p ≥ 1 there exists an Lp-bounded martingale difference sequence (Xn)n≥1

such that series (2.1) diverges for any δ > p/2− 1 and any ε > 0.
(iii) There exist a probability space (Ω,�,P) and an Lp−λ-bounded martingale difference

sequence (Xn)n≥1 (for all 0 < λ ≤ p− 1) such that series (2.1) diverges for δ ≥ p/2− 1 and
any ε > 0.

Proof. Throughout the paper, C > 0 denotes a generic numerical constant. The sign ∼
between two series means that they are either both convergent or both divergent. In the
sequel we use that each of the series

∞∑
n=2

(logn)α

nβ
,

∞∑
n=3

(loglogn)α

n(logn)β
(2.2)

is convergent if and only if β > 1 or β = 1 and α <−1 (by the integral test).
The idea in proving Theorem 2.1(i) is to obtain direct sharp estimates for the two-

sided deviation probabilities P[|Xn|− (logn)a] for some a > 0 to be specified later, instead
of using standard remainder term estimates for the central limit theorem. To this aim, we
are going to use the following truncated processes from [6, Theorem 3.2] adapted to our
problem:

X1
n := Xn1{|Xn|≤(logn)a} −E

[
Xn1{|Xn|≤(logn)a} |�n−1

]
,

X2
n := Xn1{|Xn|>(logn)a} −E

[
Xn1{|Xn|>(logn)a} |�n−1

]
,

(2.3)

where (�n)n≥1 is the filtration generated by (Xn)n≥1, and �0 is the trivial σ-algebra. It is
immediate that (X1

n)n≥1 and (X2
n)n≥1 are martingale difference sequences with respect to

(�n)n≥1 and Xn = X1
n +X2

n . Put Sin = Xi
1 + ···+Xi

n; i= 1,2.
Let p > 2; as ‖Xk‖p ≤ C, we have, for any k ≥ 1 and x > 0,

Fk(x) := P
[∣∣Xk

∣∣ > x
]≤ Cx−p. (2.4)
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We obtain

E
∣∣X2

k

∣∣2 ≤−
∫ +∞

(logn)a
x2dFk(x)

=− lim
N→+∞

[
N2Fk(N)− (logn)2aFk

(
(logn)a

)
+ 2
∫ N

(logn)a
xFk(x)dx

]

≤ C(logn)(2−p)a.

(2.5)

The second line is obtained by integration by parts and by using estimation (2.4) in the
proper integral in (2.5).

By a general property for the martingale difference sequences, we have

E
∣∣S2

n

∣∣2 =
n∑

k=1

E
∣∣X2

k

∣∣2
. (2.6)

Combining (2.5) and (2.6) gives

P
[∣∣S2

n

∣∣ > ε

2
(n logn)1/2

]
= P

[∣∣S2
n

∣∣2
>
ε2

4
n logn

]

≤ Cε−2(n logn)−1E
∣∣S2

n

∣∣2

≤ Cε−2(logn)(2−p)a−1.

(2.7)

Let α > 2; by [6, Theorem 3.6], and taking into account that |X1
n| ≤ 2(logn)a, we obtain

E
∣∣S1

n

∣∣α ≤ Cnα/2−1
n∑

k=1

E
∣∣X1

k

∣∣α ≤ Cnα/2(logn)aα. (2.8)

Hence

P
[∣∣S1

n

∣∣α >
(
ε

2

)α
(n logn)α/2

]
≤ Cε−α(n logn)−α/2E

∣∣S1
n

∣∣α ≤ Cε−α(logn)aα−α/2. (2.9)

Let 0 ≤ δ < p/2− 1. In the sequel take α > α0 := 2(p− 2)(1 + δ)/(p− 2− 2δ), and note
that α0 ≥ 2. By (2.7) and (2.9) we obtain that series (2.1) is dominated by

∞∑
n=2

(logn)δ

n
P
[∣∣S1

n

∣∣ > ε

2
(n logn)1/2

]
+

∞∑
n=2

(logn)δ

n
P
[∣∣S2

n

∣∣ > ε

2
(n logn)1/2

]

≤ Cε−α
∞∑
n=2

(logn)aα−α/2+δ

n
+Cε−2

∞∑
n=2

(logn)(2−p)a−1+δ

n
=: A+B.

(2.10)

Part (i) of Theorem 2.1 is proved if we choose δ/(p− 2) < a < (α− 2δ − 2)/2α. In-
deed, the first inequality ensures the convergence of series B, and the second inequality
ensures the convergence of series A. Such an a exists, because the compatibility inequality
δ/(p-2) < (α− 2δ− 2)/2α is equivalent to α > α0.
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For part (ii) of Theorem 2.1, let p ≥ 1 and δ > p/2− 1. We need to construct a martin-
gale difference sequence (Xn)n≥1 with ‖Xn‖p ≤ C for any n≥ 1, and such that series (2.1)
diverges. To this aim, consider Xn = Z ·Yn, where (Yn)n≥1 is an i.i.d. bounded centered
sequence, and Z is independent of (Yn)n≥1 with

P
[|Z| > n

]= Cn−c (2.11)

for n≥ 1 (where C is a normalization factor), for some c > 0 to be specified later. If c > p,
then (Xn)n≥1 has finite pth moments, as

E
∣∣Xn

∣∣p ≤ CE|Z|p ≤ C
∞∑
n=1

np
(
P
[|Z| > n

]−P
[|Z| > n+ 1

])∼
∞∑
n=1

np−c−1. (2.12)

By independence and the central limit theorem, we have

P
[|Sn| > ε(n logn)1/2]≥ P

[|Y1 + ···+Yn| > n1/2] ·P[|Z| > ε(logn)1/2]
≥ CP

[|Z| > ε(logn)1/2], (2.13)

hence

∞∑
n=2

(logn)δ

n
P
[∣∣Sn∣∣ > ε(n logn)1/2]≥ C

∞∑
n=2

n−1(logn)δ−c/2. (2.14)

The latter series in (2.14) diverges if δ ≥ c/2− 1. Hence, for series (2.1) to diverge, it
suffices to choose p < c ≤ 2δ + 2. Such c exists because the compatibility inequality p <
2δ + 2 is equivalent to δ > p/2− 1.

Let δ ≥ p/2− 1; to prove Theorem 2.1(iii) consider Z with finite second moment and
such that

P
[|Z| > n

]≥ C

np (2.15)

for n≥ 1. Define as in the proof of part (ii) Xn = Z ·Yn and note that (Xn)n≥1 has finite
moments of order p− λ, for all 0 < λ≤ p− 1. As such,

∞∑
n=2

(logn)δ

n
P
[∣∣Sn∣∣ > ε(n logn)1/2]

≥ C
∞∑
n=2

(logn)δ

n
P
[|Z| > ε(logn)1/2]≥ C

∞∑
n=2

(logn)δ−p/2

n
= +∞.

(2.16)

�
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Remark 2.2. In particular, from Theorem 2.1, we deduce the following. If 1≤ p ≤ 2, then
series (2.1) diverges for any δ ≥ 0 and some Lp-bounded martingale difference sequence
(Xn)n≥1. For any p > 2 and Lp-bounded martingale difference sequence (Xn)n≥1, series
(2.1) converges for some δ > 0: if p > 3 one can take δ = 1/2, and if p > 4 one can take
δ = 1, and so forth.

The asymptotics, as ε ↘ 0, in Theorem 2.1(i) are given below.

Corollary 2.3. For any p > 2 and Lp-bounded martingale difference sequence (Xn)n≥1, it
holds that

lim
ε↘0

εα0

∞∑
n=2

(logn)δ

n
P
[∣∣Sn∣∣ > ε(n logn)1/2] < +∞ (2.17)

for any 0≤ δ < p/2− 1, and where α0 := 2(p− 2)(1 + δ)/(p− 2− 2δ).

Proof. In formula (2.10), as ε ↘ 0, series B behaves like ε−2 and series A behaves like εα,
for α > α0. Notice that α0 ≥ 2δ + 2≥ 2, hence the normalization factor εα0 makes the limit
in formula (2.17) finite. �

Remark 2.4. For L2-bounded centered i.i.d. sequences, the optimal normalization factor
in Corollary 3.2 is ε2δ+2 (see [4, Theorem 3]), in which case the limit in (2.17) is strictly
positive. Moreover, note that α0 ≥ 2δ + 2 ≥ 2 and limα0 = 2δ + 2 as p →∞, hence the
latter result can be viewed as a limiting case of our general result (2.17).

3. Davis’ second theorem

Let ε > 0 and let δ = δ(p) be a function of p ≥ 1. Consider the series

∞∑
n=3

1
n(logn)δ

P
[∣∣Sn∣∣ > ε(n loglogn)1/2]. (3.1)

Assume (Xn)n≥1 is an i.i.d. sequence. If δ = 0, Davis’ second theorem says that series
(3.1) converges when ε > σ

√
2 if and only if (Xn)n≥1 is an L2-bounded centered sequence,

and where σ2 := E[X2
1 ]. If δ = 1, series (3.1) is convergent for any ε > 0 if (Xn)n≥1 is cen-

tered and satisfies slightly less than a second moment, but the necessary and sufficient
moment condition is not known (see [2, 3, 4, 5]).

In the martingale difference sequences case, we have the following result.

Theorem 3.1. (i) For any p > 2 and Lp-bounded martingale difference sequence (Xn)n≥1,
series (3.1) is convergent for δ ≥ 1 and any ε > 0.

(ii) For any 1≤ p < 2 there exists an Lp-bounded martingale difference sequence (Xn)n≥1

such that series (3.1) diverges for δ = 1 and any ε > 0.
(iii) For any p ≥ 1 there exists an Lp-bounded martingale difference sequence (Xn)n≥1

such that series (3.1) diverges for any 0≤ δ < 1 and ε > 0.
(iv) There exist a probability space (Ω,�,P) and an L2−λ-bounded martingale difference

sequence (Xn)n≥1 (for all 0 < λ ≤ 1) such that series (3.1) diverges for 0 ≤ δ ≤ 1 and any
ε > 0.
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Proof. To prove (i), first remark that formulas (2.7) and (2.9) can be proved the same
way as we did in Theorem 2.1(i) when replacing (logn)a by (loglogn)a. As such, with the
same notations therein, we obtain

∞∑
n=3

1
n(logn)δ

P
[∣∣Sn∣∣ > ε

2
(n loglogn)1/2

]

≤ Cε−α
∞∑
n=3

(loglogn)aα−α/2

n(logn)δ
+Cε−2

∞∑
n=3

(loglogn)(2−p)a−1

n(logn)δ
.

(3.2)

From (3.2) we deduce that series (3.1) with δ > 1 is convergent regardless of the values
of a and α; also, series (3.1) with δ = 1 is convergent if 0 < a < (α− 2)/2α. Indeed, in the
latter case, the second series in the second line of (3.2) is convergent if a > 0 and the first
series in the second line of (3.2) is convergent if a < (α− 2)/2α. Such a exists because
α > 2.

For parts (ii) and (iii) of Theorem 3.1, within the same construction of the counterex-
ample of martingale difference sequence in Theorem 2.1(ii), take Z with P[|Z| > n] =
Cn−c for some c > p. Note that (Xn)n≥1 have finite pth-order moments. As

P
[∣∣Sn∣∣ > ε(n loglogn)1/2]≥ P

[∣∣Y1 + ···+Yn

∣∣ > n1/2] ·P[|Z| > ε(loglogn)1/2]
≥ C ·P[|Z| > ε(loglogn)1/2], (3.3)

series (3.1) dominates the following analog of (2.14):

C
∞∑
n=3

1
n(logn)δ

P
[|Z| > ε(loglogn)1/2]≥ C

∞∑
n=3

(loglogn)−c/2

n(logn)δ
. (3.4)

The latter series in (3.4) diverges for any 0 ≤ δ < 1 and c > 0, and this proves (iii); it
also diverges for δ = 1 and c < 2, and this proves (ii) for 1≤ p < 2.

To prove (iv) consider Z with finite second moment and such that P[|Z| > n]≥ C/n2

for n≥ 1. Define as above Xn = Z ·Yn and note that (Xn)n≥1 has finite moments of order
2− λ, for all 0 < λ≤ 1. As such,

∞∑
n=3

1
n(logn)δ

P
[∣∣Sn∣∣ > ε(n loglogn)1/2]≥ C

∞∑
n=3

1
n(logn)δ

P
[|Z| > ε(loglogn)1/2]

≥ C
∞∑
n=3

1
n(logn)δ(loglogn)

= +∞,

(3.5)

as 0≤ δ ≤ 1. �

The asymptotics, as ε ↘ 0, in Theorem 3.1(i) are given below.

Corollary 3.2. For any p > 2, δ ≥ 1 and Lp-bounded martingale difference sequence
(Xn)n≥1, it holds that

lim
ε↘0

ε2
∞∑
n=3

1
n(logn)δ

P
[∣∣Sn∣∣ > ε(n logn logn)1/2] < +∞. (3.6)



George Stoica 165

Proof. In formula (3.2), as ε ↘ 0, the second series behaves like ε−2 and the first series
behaves like εα, for all α > 2. Hence the normalization factor ε2 makes the limit in formula
(3.6) finite. �

Remark 3.3. For L2-bounded centered i.i.d. sequences, the optimal normalization factor
in Corollary 3.2 is precisely ε2 (see [5]), that is, the limit in (3.6) is strictly positive. In
other words, our Corollary 3.2 gives sharp rates of convergence for series (3.1).
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