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We present a simple formula for the expected number of times that a complex-valued
Gaussian stochastic process has a zero imaginary part and the absolute value of its real
part is bounded by a constant value M. We show that only some mild conditions on
the stochastic process are needed for our formula to remain valid. We further apply this
formula to a random algebraic polynomial with complex coefficients. We show how the
above expected value in the case of random algebraic polynomials varies for different
behaviour of M.

1. Introduction

There is a significant amount of work concerning the expected number of zeros of station-
ary normal processes. For the obvious difficulties that arise, less is known in the nonsta-
tionary case, see, for example, [2] and references therein. However, random polynomials
are special cases of the latter processes and, therefore, their properties are of special inter-
est. Also random polynomials with complex coefficients will introduce a new dimension
to the study of nonstationary stochastic processes, caused by real and imaginary parts of
polynomials.

In this work, we initially develop some properties of a complex-valued stochastic pro-
cess in order to apply the result to random polynomials with complex coefficients. There
are many mathematical interests in these types of polynomials, see [5, 6]. Also the physi-
cal interest in general theory of random polynomials is described in the significant work
of Edelman and Kostlan [4] which contains several new and interesting methods. The
earlier results concerning various types of polynomials are reviewed in the comprehen-
sive book of Bharucha-Reid and Sambandham [1]. Wilkins [8, 9] produced an analytical
method which significantly improved the previous results.

As noted by Dunnage [3], for the case of random polynomials with complex coeffi-
cients, there can be no analogue of the asymptotic formula for the expected number of
real zeros. Therefore, it is of special interest to study the events in which the imaginary
part of the polynomial is zero and the real part is bounded by a constant M. To this
end, a complex number a(t) + ıb(t) is called a real M-almost zero at t = t0 if b(t0)= 0 and
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|a(t0)| <M. On the other hand, it is called zero M-almost real if a(t0)= 0 and |b(t0)| <M.
In [5], the average number E{N(α,β;M)} of real M-almost zeros of a complex-valued
stochastic process H(t)= ζ(t) + ıξ(t) in the interval t ∈ (α,β) is given as

E
{
N(α,β;M)

}=
∫ β

α
dt
∫M

−M
dx
∫∞
−∞
|z|pt(x,0,z)dz. (1.1)

In (1.1), pt(x, y,z) denotes the three-dimensional density function for the real part ζ(t)
of the process, the imaginary part ξ(t), and its quadratic mean derivative ξ′(t). The above
formula holds for ζ(t) and ξ(t) subject to conventional limitations:

(i) ζ(t) and ξ(t) are real-valued separable processes;
(ii) they possess continuous sample paths with probability one; and

(iii) their joint distribution is nonsingular for each t;
(iv) E{ξ(t)} has a continuous derivative for all t;
(v) cov(ξ(t),ξ(s)) has a second mixed partial derivative which is continuous for all t

and s.
The above formula is then applied to the random algebraic polynomial

�(x)=
n−1∑
j=0

(
ajx

j + ıbjx
j
)
, (1.2)

to obtain , with n → ∞, the asymptotic approximation of the sought expected value.
The polynomial coefficients aj + ıbj have real and imaginary parts aj and bj forming
sequences of independent normal random variables. The work [5] dealt with the case
when these random variables were all with mean 0 and variance 1. In the present work,
we will show that the case of arbitrary mean and variance is amenable to a similar, albeit
more technically involved, asymptotic analysis.

2. Gaussian complex-valued processes with independent real and imaginary parts

In this section, we consider only Gaussian processes, and will show how formula (1.1)
can be simplified in a particular case when ζ(t) and ξ(t) are stochastically independent.
We make no additional assumptions about the expected values or variances involved. The
covariance matrix of the processes ζ(t), ξ(t), and ξ′(t) is

Σ=


A2 0 0
0 B2 F
0 F C2


 , (2.1)

where

A2 = var
{
ζ(t)

}
, B2 = var

{
ξ(t)

}
, C2 = var

{
ξ′(t)

}
, F = cov

{
ξ(t), ξ́(t)

}
.

(2.2)

By the assumption of nonsingularity,

∆2 = B2C2−F2 (2.3)
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is nonnegative. Denote also the expected values as follows:

m1 = E
{
ζ(t)

}
, m2 = E

{
ξ(t)

}
, m3 = E

{
ξ′(t)

}
. (2.4)

Using our knowledge of the normal distribution, we expand the density pt(x, y,z), and
a straightforward algebra transforms formula (1.1) to its “complicated” form

E
{
N(α,β;M)

}
= (2π)−3/2

∫ β

α
d(t)

(∫M

−M

{∫∞
−∞
|z|exp

[
− Ax2

2
− Cz2

2
+ xX1 + zX2− X0

2

]
dz
}
dx
)
dt,

(2.5)

defining

A= 1
A2

, B= C2

∆2
, C= B2

∆2
, F= −F

∆2
,

d(t)= (detΣ)−1/2 = (A∆)−1, X0 =m2
1A +m2

2B +m2
3C + 2m1m3F,

X1 =m1A, X2 =m2F +m3C.

(2.6)

We rewrite the expression inside the exponent of z and x in the form

−a(x+ f )2− c(z+ g)2 +h, (2.7)

where a, b, c, f , g, and h are expressions that depend neither on z nor on x, but possibly
on t. Equating the coefficients at the like terms gives

a= A

2
= 1

2A2
, c = C

2
= B2

2∆2
, f = −X1

A
=−m1,

g = −X2

C
= m2F

B2
−m3, h= m2

2

2

[
F2

C
−B

]
=− m2

2

2B2
.

(2.8)

With two further variable changes, ζ = z+ g and τ = x+ f , formula (2.5) simplifies to

E
{
N
(
α,β;M

)}= (2π)−3/2
∫ β

α
d(t)exp(h)

∫∞
−∞

∫ f +M

f−M
|g − ζ|exp

[− aτ2− cζ2]dτ dζ dt.
(2.9)

Now integration over τ and over ζ can be separated. Moreover, we remove the absolute
value sign by partitioning the integration interval over ζ into two, about the point ζ = g,
such that (2.9) transforms to

E
{
N(α,β;M)

}=H1 +H2, (2.10)
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where

H1 = (2π)−3/2
∫ β

α
d(t)exp(h)g(t)

×
(∫ f +M

f−M
exp

[− aτ2]dτ)(
∫ g

−g
exp

[− cζ2]dζ)dt,
(2.11)

H2 = (2π)−3/2
∫ β

α
d(t)exp(h)

(∫ f +M

f−M
exp

[− aτ2]dτ)

×
(∫∞

g
ζ exp

[− cζ2]dζ −
∫ g

−∞
ζ exp

[− cζ2]dζ)dt.
(2.12)

It turns out that H1 defined in (2.11) is a bounded quantity that does not contribute
anything significant to the asymptotic estimate of the expected number of real M-almost
zeros in Theorem 3.1 in the next section. This effect is similar to that in [7] and is achieved
through a similar statement that follows.

Lemma 2.1. If limt→α(m2/B) and limt→β(m2/B) exist as finite or infinite, and if ξ and ζ
satisfy the above conditions for formula (2.10) to hold, then the componentH1 in this formula
is bounded by a constant

H1 =O(1). (2.13)

Proof. From (2.11), after some algebra,

H1 = (2π)−3/2
∫ β

α
A−1∆−1 exp

(
− m2

2

2B2

)(
m2

F

B2
−m3

)

×
(∫ −m1+M

−m1−M
exp

[
− τ2

2A2

]
dτ
)(∫ g

−g
exp

[
− B2

2∆2
ζ2
]
dζ
)
dt.

(2.14)

Notice that

∣∣∣∣
∫ g

−g
exp

[
− B2

2∆2
ζ2
]
dζ
∣∣∣∣≤ ∆

√
2π
B

,
∣∣∣∣
∫ −m1+M

−m1−M
exp

[
− τ2

2A2

]
dτ
∣∣∣∣≤ A

√
2π. (2.15)

Thus, from (2.14),

∣∣H1
∣∣≤ (2π)−1/2

∣∣∣∣
∫ β

α
B−1

(
m2F

B2
−m3

)
exp

(
− m2

2

2B2

)
dt
∣∣∣∣. (2.16)

By assumption (iv), m2 is differentiable, and differentiation over t can be exchanged with
taking the expected value (essentially integration over ξ)

d
(
m2
)

dt
= E

(
dξ

dt

)
=m3. (2.17)
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By assumption (v), d(var(ξ))/dt exists, and again differentiation can be interchanged with
taking the expected value, such that

d
(

var(ξ)
)

dt
= 2
(
E(ξξ′)−m2m3

)= 2F. (2.18)

Also by definition of B2, it is easy to show that

dB

dt
= F

B
. (2.19)

We change the integration variable in (2.16) from t to u =m2/B. Then from (2.17) and
(2.19), du= B−1(m3−m2FB−2)dt. With the new variable, inequality (2.16) becomes

∣∣H1
∣∣≤ 1√

2π

∣∣∣∣−
∫ uβ

uα
exp

(
− u2

2

)
du
∣∣∣∣= ∣∣Φ(uα)−Φ

(
uβ
)∣∣≤ 1=O(1), (2.20)

where Φ(x) = (2π)−1/2
∫ x
−∞ exp(−s2/2)ds is the standard normal distribution function,

uα= limt→α(m2/B), and uβ= limt→β(m2/B). The limits exist by assumption, the lemma
is proved. �

3. Random algebraic polynomials

In this section, we apply formula (2.10) and Lemma 2.1 to estimate the expected number
of real M-almost zeros of polynomial

P(x)=
n∑
j=0

(
ajx

j + ıbjx
j
)= F(x) + ıG(x) (3.1)

in real variable x with complex-valued coefficients aj + ıbj , where aj and bj are all inde-
pendent real Gaussian random variables. Denote their expected values

E
(
aj
)= µ, E

(
bj
)= ν, (3.2)

where µ and ν are, generally speaking, different values and both are nonzero. Denote
variances

var
(
aj
)= σ2, var

(
bj
)= υ2, (3.3)

and assume that they are, in general, nonunit and not equal to each other.

Theorem 3.1. If the coefficients in polynomial (3.1) are defined as above, and if there exists
a constant k > 1 such that M/σ = o(nk), then

(A) for M/σ = o(lnn),

E
{
N(−∞,∞;M)

}= o(lnn); (3.4)



200 Real almost zeros of random polynomials

(B) for (n/ lnn)= o(ν2/υ2),

E
{
N(−∞,∞;M)

}= o(lnn); (3.5)

(C) and for ν2/υ2 = o(n−1 lnn),
√
n/ lnn= o(M/σ), and µ/σ =O(

√
n−1 lnn),

E
{
N(−∞,∞;M)

}∼ π−1 lnn. (3.6)

3.1. Proof of Theorem 3.1. First of all, we rewrite H2 in terms of the random polynomial
(3.1). From definition (2.12), after some algebra,

H2 = (2π)−3/2
∫ β

α
(A∆)−1 exp

(
− m2

2

2B2

)(∫ −m1+M

−m1−M
exp

[
− τ2

2A2

]
dτ
)

×
(∫∞

g
ζ exp

[
− B2

2∆2
ζ2
]
dζ −

∫ g

−∞
ζ exp

[
− B2

2∆2
ζ2
]
dζ
)
dx.

(3.7)

The above integrals over ζ can be taken, and the integral over τ can be expressed in terms
of the standard normal distribution function.

H2 = π−1
∫ β

α

∆

B2
exp

(−T(x)
)[
Φ
(
S+(x)

)−Φ
(
S−(x)

)]
dx, (3.8)

where

T(x)= m2
2

2B2
+

B2

2∆2

(
m2F

B2
−m3

)2

, (3.9)

S+(x)=−m1 +M

A
, S−(x)=−m1−M

A
. (3.10)

By Lemma 2.1 and formula (2.10), we have

E
{
N(−∞,∞;M)

}=H2 +O(1), (3.11)

hence the evaluation of the sought expected value is reduced to the evaluation of H2, in
(3.8). For clarity, we list the expected values and covariances involved in the following:

m1 = µ
xn+1− 1
x− 1

, m2 = ν
xn+1− 1
x− 1

, m3 = ν
nxn+1−nxn− xn + 1

(x− 1)2
,

A2 = σ2
(
x2n+2− 1

)
x2− 1

, B2 = υ2
(
x2n+2− 1

)
x2− 1

,

C2 = υ2
{
n2x2n

x2− 1
− 2nx2n(

x2− 1
)2 +

(
1 + x2

)(
x2n− 1

)
(
x2− 1

)3

}
,

F = υ2
{
nx2n+1

x2− 1
+
x
(
1− x2n

)
(
x2− 1

)2

}
.

(3.12)
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These values form the components inside formula (3.8), as follows. From (2.3),

∆2 = υ4(
x2− 1

)4

{(
1− x2n+2)2− (n+ 1)2x2n(x2− 1

)2
}
. (3.13)

From (3.10),

S+(x)=
(
M

σ
− µ

σ
V(x)

)
U(x), S−(x)=

(
− M

σ
− µ

σ
V(x)

)
U(x), (3.14)

where

U(x)=
√

x2− 1
x2n+2− 1

, V(x)= xn+1− 1
x− 1

. (3.15)

Also

∆

B2
=
√(

1− x2n+2
)2− (n+ 1)2x2n

(
x2− 1

)2(
x2− 1

)(
x2n+2− 1

) . (3.16)

Therefore with the above formulae, formula (3.9) results in

T(x)= ν2(x+ 1)
(
xn+1− 1

)2

υ2(x− 1)
[
x2n+2− 1 + (n+ 1)xn

(
x2− 1

)] . (3.17)

We proceed by splitting the x axis into several intervals, and attaining estimates on each
of them in turn. Let ε ≡ ε(n) = nγ−1, where γ = ln(k lnn)(lnn)−1, and k is the constant
from the theorem formulation. In other words, ε = k lnn/n. It is easy to show that ε has
the following properties:

lim
n→∞ε(n)= 0, (3.18)√

nε(n)= nγ/2 =
√
k lnn= o(lnn), (3.19)

n(1− ε)n −→ nexp(−nε)= nexp(−k lnn)= n1−k −→ 0, (3.20)

(1 + ε)−n −→ exp(−nε)−→ 0 as n−→∞. (3.21)

3.1.1. Negative tail: interval −∞ < x < −1− ε. In this interval, it is clear that T(x) > 0.
Then exp(−T(x)) < 1, and

∣∣H2
∣∣ < π−1

∣∣∣∣
∫ −1−ε

−∞
∆

B2

[
Φ
(
S+(x)

)−Φ
(
S−(x)

)]
dx
∣∣∣∣. (3.22)

Changing the integration variable to y =−x−1 transforms this inequality to

∣∣H2
∣∣ < π−1

∣∣∣∣
∫ (1+ε)−1

0

∆(1/y)
y2B2(1/y)

[
Φ
(
S+
(

1
y

))
−Φ

(
S−
(

1
y

))]
dy
∣∣∣∣, (3.23)
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where

∆

y2B2
= 1

1− y2

√√√√1− (n+ 1)2y2n
(
1− y2

)2

(
1− y2n+2

)2 , (3.24)

Φ
(
S+)−Φ

(
S−)= 1√

2π

∫ (MU−µVU)/σ

(−MU−µVU)/σ
exp

(
− ζ2

2

)
dζ. (3.25)

Changing variable ζ = s− µVU/σ , where U and V are given in (3.15), in the last expres-
sion produces

Φ
(
S+)−Φ

(
S−)= 2√

2π

∫MU/σ

0
exp

(
− 1

2

{
s− µ

σ
VU

}2)
ds

≤
√

2
π

∫MU/σ

0
ds= M

σ

√√√√2
(
1− y2

)
y2n

π
(
1− y2n+2

) .
(3.26)

Notice that in this interval y < 1, and since

1− y2n+2

1− y2
=

n+1∑
j=1

y2( j−1) < n+ 1 (3.27)

shows that (3.24) is bounded,

∣∣∣∣ ∆(y)
y2B2(y)

∣∣∣∣ <
√

1− y2n

1− y2
. (3.28)

With (3.26) and (3.28), inequality (3.23) can be strengthened and estimated as follows:

∣∣H2
∣∣ < 2

π
√

2π
M

σ

∣∣∣∣
∫ (1+ε)−1

0

∆U

y2B2
dy
∣∣∣∣

<
2

π
√

2π
M

σ

∣∣∣∣∣
∫ (1+ε)−1

0

√
y2n

1− y2
dy

∣∣∣∣∣
<

2
π
√

2π
M

σ
(1 + ε)−n

∣∣∣∣∣
∫ (1+ε)−1

0

1√
1− y2

dy

∣∣∣∣∣
<

1√
2π

M

σ
(1 + ε)−n −→ 1√

2π
M

σ
n−k −→ 0,

(3.29)

as n→∞. Therefore

E
{
N(−∞,−1− ε;M)

}=O(1). (3.30)

3.1.2. Neighbourhood of −1: interval −1− ε ≤ x ≤ −1 + ε. As in the previous interval,
exp(−T(x)) < 1 and Φ(S+)−Φ(S−) < 1, both expressions approaching 1 in the limit
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with x→−1. Hence from (3.8),

∣∣H2
∣∣ < π−1

∣∣∣∣
∫ −1

−1−ε
∆

B2
dx
∣∣∣∣+π−1

∣∣∣∣
∫ −1+ε

−1

∆

B2
dx
∣∣∣∣

= π−1

∣∣∣∣∣
∫ 1

(1+ε)−1

1
1− y2

√√√√1− (n+ 1)2y2n
(
1− y2

)2

(
1− y2n+2

)2 dy

∣∣∣∣∣

+π−1

∣∣∣∣∣
∫ 1

1−ε
1

1− x2

√√√√1− (n+ 1)2x2n
(
1− x2

)2

(
1− x2n+2

)2 dx

∣∣∣∣∣.

(3.31)

Here, the variable change y =−1/x and (3.24) were used in the interval x ∈ [−1− ε,−1],
and the fact that ∆/B2 given in (3.16) is an even function was used in the interval x ∈
[−1,−1 + ε].

From the geometric progression sum, for all x ≤ 1, we have 1− x2n+2 ≤ (2n+ 2)(1− x).
Therefore,

(
n+ 1

)2
x2n
(
1− x2

)2

(
1− x2n+2

)2 ≥ x2n(1 + x)2

4
. (3.32)

This immediately yields

1− (n+ 1)2x2n
(
1− x2

)2

(
1− x2n+2

)2

≤
(

1− xn(1 + x)
2

)(
1 +

xn(1 + x)
2

)
≤ 2− xn(1 + x)

= (1− xn
)

+
(
1− xn+1)≤ (n+n+ 1)(1− x).

(3.33)

Also from (3.31) and (3.33),

∣∣H2
∣∣ <

√
2n+ 1
π

{∣∣∣∣
∫ 1

(1+ε)−1

dy√
1− y

∣∣∣∣+
∣∣∣∣
∫ 1

1−ε
dx√
1− x

∣∣∣∣
}

= 2
π

√
2 +

1
n

{
1√

1 + ε
+ 1
}√

k lnn=O
(√

lnn
)= o(lnn).

(3.34)

Thereby, we have proved that

E
{
N(−1− ε,−1 + ε;M)

}= o(lnn). (3.35)

3.1.3. Neighbourhood of +1 and the positive tail: intervals 1− ε ≤ x ≤ 1 + ε and 1 + ε <
x < +∞. Since ∆/B2 given in (3.16) is an even function, and the upper boundaries in
the inequalities (3.26) and (3.28) are even functions too, the reasoning on these intervals
repeats entirely that on the previous two intervals, with y = 1/x variable change for x ≥ 1.
Therefore,

E
{
N(1− ε,1 + ε;M)

}= o(lnn), E
{
N(1 + ε,∞;M)

}=O(1). (3.36)
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3.1.4. Main negative interval −1 + ε < x ≤ 0. This interval turns out to contain, on av-
erage, most of the real M-almost zeros. The estimates here depend on the behaviour of
ratios M/σ , µ/σ , and ν/υ with respect to the growth of n. We therefore break our analysis
into several distinct cases that produce different results.

Case A (M/σ = o(lnn)). That is, either M/σ is a constant or this ratio grows “much
slower” than n if it at all depends on n. Similarly to Section 3.1.1,

∣∣H2
∣∣ < π−1

∣∣∣∣
∫ 0

−1+ε

∆

B2

[
Φ
(
S+(x)

)−Φ
(
S−(x)

)]
dx
∣∣∣∣. (3.37)

We also observe that, like (3.26) and (3.28),

Φ
(
S+)−Φ

(
S−)≤ M

σ

√√√√ 2
(
1− x2

)
π
(
1− x2n+2

) ,
∣∣∣∣ ∆

B2

∣∣∣∣ <
√

1− x2n

1− x2
, (3.38)

respectively. Hence,

∣∣H2
∣∣ < 2

π
√

2π
M

σ

∣∣∣∣
∫ 0

−1+ε

∆U

B2
dx
∣∣∣∣

<
2

π
√

2π
M

σ

∣∣∣∣∣∣
∫ 0

−1+ε

√√√√ (
1− x2n

)
(
1− x2

)(
1− x2n+2

) dx
∣∣∣∣∣∣

<
2

π
√

2π
M

σ

∣∣∣∣
∫ 0

−1+ε

dx√
1− x2

∣∣∣∣ < M

σ
√

2π
.

(3.39)

Therefore, for the above assumptions,

E
{
N(−1 + ε,0;M)

}= o(lnn). (3.40)

This concludes Case A on this interval.

To proceed with other cases, we first notice that in the present interval, the inequality
|(n+ 1)xn| < (n+ 1)(1− ε)n holds, and by (3.20) the quantity |(n+ 1)xn| tends to 0 with
n→∞. Hence by (3.16), (3.17) and the principle of compressed variable,

T(x)−→ ν2(x+ 1)
υ2
(
1− x

) ,
∆

B2
−→ 1(

1− x2
) . (3.41)

By the same principle, (3.14) and (3.15) give

S+(x)−→
(
M

σ
− µ

σ(1− x)

)√
1− x2, (3.42)

S−(x)−→
(
− M

σ
− µ

σ(1− x)

)√
1− x2. (3.43)

Changing the integration variable to y = −x in (3.8) and using the above expressions
gives

H2 −→
∫ 1−ε

0
O1(y)dy−

∫ 1−ε

0
O2(y)dy, (3.44)
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where
∫ 1−ε

0
O1(y)dy = 1

π

∫ 1−ε

0

1
1− y2

exp
(
− ν2(1− y)

υ2(1 + y)

)
Φ
[(

M

σ
− µ

σ(1 + y)

)√
1− y2

]
dy,

∫ 1−ε

0
O2(y)dy = 1

π

∫ 1−ε

0

1
1− y2

exp
(
− ν2(1− y)

υ2(1 + y)

)
Φ
[(
− M

σ
− µ

σ(1 + y)

)√
1− y2

]
dy.

(3.45)

Now we need a quantity δ(n) such that ε(n) < δ(n) < 1, δ(n) → 0 and ln(δ−1(n)) =
o(ln(ε−1(n))) as n→∞. That is, δ can be any infinitesimal that bounds ε from above,
and such that lnδ is of order less than lnε with n→∞. We choose δ = (lnn)−1, which
obviously satisfies these conditions. Then,

∫ 1−ε

1−δ
O1(y)dy ≤

∫ 1−ε

0
O1(y)dy ≤

∫ 1−ε

1−δ
O1(y)dy +π−1

∫ 1−δ

0

dy

1− y2
,

−
∫ 1−ε

1−δ
O2(y)dy−π−1

∫ 1−δ

0

dy

1− y2
≤−

∫ 1−ε

0
O2(y)dy ≤−

∫ 1−ε

1−δ
O2(y)dy.

(3.46)

Also notice that

π−1
∫ 1−δ

0

dy

1− y2
= (2π)−1 ln

(
2− δ

δ

)
=O

(
ln
(
δ−1))= o(lnn). (3.47)

Hence by adding the two above inequalities, we have

∫ 1−ε

1−δ

(
O1(y)−O2(y)

)
dy−O

(
ln(lnn)

)

≤
∫ 1−ε

0

(
O1(y)−O2(y)

)
dy ≤

∫ 1−ε

1−δ

(
O1(y)−O2(y)

)
dy +O

(
ln(lnn)

)
.

(3.48)

In other words, using (3.44), we have

H2 −→
∫ 1−ε

1−δ

(
O1(y)−O2(y)

)
dy +O

(
ln(lnn)

)
(3.49)

with n→∞. Therefore noticing that

π−1
∫ 1−ε

1−δ
dy

1− y2
= (2π)−1 ln

∣∣∣∣ y + 1
y− 1

∣∣∣∣
1−ε

1−δ
−→ (2π)−1[ ln

(
2ε−1)− ln

(
2δ−1)]

= (2π)−1[ ln(n)− ln(k)
]= (2π)−1 lnn+O(1)

(3.50)

and using the mean value theorem in (3.49) leads to

H2 −→
[
Φ
{(

M

σ
− µ

σ
(
1 + y∗

))√1− y2∗
}
−Φ

{(
− M

σ
− µ

σ
(
1 + y∗

))√1− y2∗
}]

× exp
(
− ν2

υ2

1− y∗
1 + y∗

)
lnn
2π

+O
(

ln(lnn)
)
,

(3.51)
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where y∗ is the mean value theorem constant in the range 1− δ < y∗ < 1− ε. Since both
δ and ε tend to 0 as n increases, (3.51) can be strengthened as

H2 −→
[
Φ
{(

M

σ
− µ

2σ

)√
2s∗
}
−Φ

{(
− M

σ
− µ

2σ

)√
2s∗
}]

× exp
(
− ν2

υ2

s∗
2

)
lnn
2π

+O
(

ln(lnn)
)
,

(3.52)

where ε < s∗ < δ and s∗ = 1− y∗.
One can see that depending on the character of the asymptotic behaviour of the pa-

rameters involved, equation (3.52) can produce various values ranging from H2 →
O(ln(lnn)) to H2 � (2π)−1 lnn. The rest of our analysis in the present interval is to con-
sider several particular cases of the parameter combinations that yield various special
cases of (3.52).

Case B ((n/ lnn)= o(ν2/υ2)). That is, ν2/υ2 is assumed to be growing faster than n/ lnn.
Then (ν2/υ2)s∗ > (ν2/υ2)ε= (ν2/υ2)(k lnn)/n→ +∞, and so

exp
(
− s∗ν2

2υ2

)
−→ 0 (3.53)

as n→∞. Since the quantity in square brackets in (3.52) is bounded, we thereby arrive to
H2 → o(lnn) +O(ln(lnn)), and

E
{
N(−1 + ε,0;M)

}= o(lnn), (3.54)

and this concludes Case B on this interval.

Case C (ν2/υ2 = o(n−1 lnn),
√
n/ lnn= o(M/σ), µ/σ =O(

√
n−1 lnn)). Here,

ν2

υ2
s∗ <

ν2

υ2
δ = ν2

υ2 lnn
= o
(
n−1)−→ 0, (3.55)

and thus

exp
(
− ν2

υ2

s∗
2

)
−→ 1 (3.56)

as n→∞. Then instead of (3.52), we have

H2 −→
[
Φ
{(

M
√

2s∗
σ

− µ
√

2s∗
2σ

)}
−Φ

{(
− M

√
2s∗
σ

− µ
√

2s∗
2σ

)}]
lnn
2π

+O
(

ln(lnn)
)
.

(3.57)

From the condition on M/σ , we have

M
√

2s∗
σ

>
M
√

2ε
σ

= M
√

2k lnn
σ
√
n

−→ +∞. (3.58)

In turn, from the condition on µ/σ , we have

|µ|√2s∗
σ

<
|µ|√2δ

σ
= |µ|√2

σ
√

lnn
=O

(
n−1/2)−→ 0. (3.59)
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With (3.58) and (3.59), it is easy to see that the expression in square brackets in (3.57)
tends to Φ(+∞)−Φ(−∞)= 1, and therefore

E
{
N(−1 + ε,0;M)

}∼ lnn
2π

. (3.60)

Case C is concluded on this interval, and hence we have no more cases to consider.

3.1.5. Main positive interval 0 < x < 1− ε. On this interval, the analysis borrows a lot
from the analysis on its negative counterpart above. In order to avoid repetition, we only
highlight the generations necessary.

Case A (M/σ = o(lnn)). Since all the estimates in Case A above are even, we arrive at the
symmetric conclusion

E
{
N(0,1− ε;M)

}= o(lnn), (3.61)

and Case A is concluded.

Also formulae (3.41), (3.42), and (3.43) hold exactly as above. The quantity δ remains
the same. By the same reasoning in terms of x as we did in terms of y, a sequence of
expressions similar to those obtained in (3.44), (3.49), and (3.51) is produced. These
easily yield

H2 −→
[
Φ
{(

M

σ
− µ

σ
(
1− x∗

))√1− x2∗
}
−Φ

{(
− M

σ
− µ

σ
(
1− x∗

))√1− x2∗
}]

× exp
(
− ν2

υ2

1 + x∗
1− x∗

)
lnn
2π

+O
(

ln(lnn)
)
,

(3.62)

where x∗ is the mean value theorem constant from the range 1− δ < x∗ < 1− ε. The
subtle difference between formulae (3.51) and (3.62) is the location of singularities. With
s∗ = 1− x∗, (3.62) becomes

H2 −→
[
Φ
{(

M

σ
− µ

σs∗

)√
2s∗
}
−Φ

{(
− M

σ
− µ

σs∗

)√
2s∗
}]

× exp
(
− ν2

υ2

2
s∗

)
lnn
2π

+O
(

ln(lnn)
)
.

(3.63)

In contrast to its counterpart (3.52), formula (3.63) contains infinitesimals in denomina-
tors. Nevertheless, as we show below, this does not hamper analysis of the two remaining
cases.

Case B ((n/ lnn) = o(ν2/υ2)). Clearly, (ν2/υ2)n−1 lnn → ∞ and furthermore (ν2/υ2)
lnn→∞. Then

ν2

υ2
s−1
∗ >

ν2

υ2
δ−1 = ν2

υ2
lnn−→∞, and so exp

(
− ν2

υ2

2
s∗

)
−→ 0, (3.64)
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leading to

E
{
N(0,1− ε;M)

}= o(lnn). (3.65)

This concludes Case B on this interval.

Case C (ν2/υ2 = o(n−1 lnn),
√
n/ lnn= o(M/σ), µ/σ =O(

√
n−1 lnn)). Here,

ν2

υ2s∗
<

ν2

υ2ε
= ν2/υ2

kn−1 lnn
−→ 0, and thus exp

(
− ν2

υ2

2
s∗

)
−→ 1 (3.66)

as n→∞. Then instead of (3.57), we have

H2 −→
[
Φ
{(

M
√

2s∗
σ

− µ

σ

√
2
s∗

)}
−Φ

{(
− M

√
2s∗
σ

− µ

σ

√
2
s∗

)}]

× lnn
2π

+O
(

ln(lnn)
)
.

(3.67)

Equation (3.58) takes place as above, and from the condition on µ/σ , we have

|µ|
σ
√
s∗

<
|µ|
σ
√
ε
= |µ|/σ√

kn−1 lnn
=O(1). (3.68)

Thus, in (3.67), the infinite quantities containing M will outgrow the bounded quantities
containing µ, such that Φ(+∞)−Φ(−∞)= 1. Therefore

E
{
N(0,1− ε;M)

}∼ lnn
2π

. (3.69)

3.1.6. Bringing the results together. Combining formulae (3.30), (3.35), and (3.36) shows

E
{
N(−∞,−1 + ε;M)

}= o(lnn), E
{
N(1− ε,∞;M)

}= o(lnn). (3.70)

That is, the tail sections of the axis contain an asymptotically small number of real M-
almost zeros. Putting together formulae (3.40) with (3.61), (3.54) with (3.65), and (3.60)
with (3.69) for the central section of the axis shows that

E
{
N(−1 + ε,1− ε;M)

}= o(lnn) (3.71)

in both Cases A and B. However, the conditions of Case C produce

E
{
N(−1 + ε,1− ε;M)

}∼ π−1 lnn. (3.72)

Combining these results for the tail and central sections completes the proof of the theo-
rem.
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