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Motivated by the ideas of Kinoshita, we introduce the concept of minimal essential set of
the coincident points for set-valued mappings, and we prove that there exists at least one
minimal essential set and one essential component of the coincident points for set-valued
mappings (satisfying some conditions).

1. Introduction

Kinoshita [3] introduced the notion of essential component to the set of fixed points and
proved that for any continuous mapping of the Hilbert cube into itself, there exists at least
one essential component of the set of its fixed points. The natural extension of fixed point
theory is the study of coincident points. Tan et al. [5] introduced the concept of essential
coincident points for multivalued mappings, they also discussed the generic stability of
coincident points for multivalued mappings. However, as can be seen in Example 2.9,
there exist no essential coincident points.

In this paper, motivated by the ideas of Kinoshita, we introduce the concept of minimal
essential set of the coincident points for set-valued mappings, and we prove that there
exists at least one minimal essential set of the coincident points for set-valued mappings
(satisfying some conditions), and hence there exists at least one essential component of
the coincident points.

2. Preliminaries

Let K be a subset of a metric space (E,d); for any δ > 0, we denote by O(K ,δ)= {x ∈ E :
d(x,K) < δ} the open neighborhood of K with radius δ in E.

Let X be a nonempty compact convex subset of a Banach space V . Let

S= { f : X −→ 2X upper semicontinuous and nonempty closed convex values
}

, (2.1)

where 2X denotes the family of all nonempty subsets of X .
For any f , f ′ ∈ S, define

ρ1
(
f , f ′

)= sup
x∈X

H
(
f (x), f ′(x)

)
, (2.2)
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where H is the Hausdorff metric defined on X . Clearly, (S,ρ1) is a complete metric space.
Let

Y =
{

( f ,g)∈ S× S : f ,g ∈ S, for any x ∈ BdX ,
(
f (x)− g(x)

)∩(⋃
λ>0

λ(X − x)
)
�= ∅

}
,

(2.3)
where BdX denotes the boundary of X , then (Y ,ρ) is a complete metric space, where
ρ(( f ,g),( f ′,g′))= ρ1( f , f ′) + ρ1(g,g′).

Theorem 2.1. Y ⊂ S× S is a closed subset.

Proof. Let yα = ( fα,gα) ∈ Y with yα → y = ( f ,g) ∈ S× S. Since ( fα,gα) ∈ Y , for any x ∈
BdX , one has

(
fα(x)− gα(x)

)∩
(⋃

λ>0

λ(X − x)

)
�= ∅. (2.4)

Then there exist uα ∈ fα(x) and vα ∈ gα(x) such that

uα− vα ∈
⋃
λ>0

λ(X − x). (2.5)

Note that fα → f , gα→ g, X is compact, {uα} has a cluster point u0 ∈ f (x), and {vα} has
a cluster point v0 ∈ g(x). Without loss of generality, we may assume that uα→ u0 ∈ f (x),
vα→ v0 ∈ g(x).

(1) If there exists infinite α such that uα = vα, then u0 = v0, and hence u0 − v0 ∈⋃
λ>0 λ(X − x).
(2) If there exists infinite α such that uα �= vα, then there exists k > 0 such that

uα− vα ∈
⋃

0<λ<k

λ(X − x). (2.6)

Hence there exists λα with 0 < λα < k such that uα− vα ∈ λα(X − x). So there exists zα ∈ X
such that uα− vα = λα(zα− x). Note that X is compact, {zα} has a cluster point z0 ∈ X , we
may assume that zα→ z0. And since 0 < λα < k, we may assume that λα→ λ0(≥ 0), hence

u0− v0 = λ0
(
z0− x

)
. (2.7)

If λ0 = 0, then u0 − v0 = 0 ∈ ⋃λ>0λ(X − x). If λ0 �= 0, then u0 − v0 = λ0(z0 − x) ∈
λ0(X − x)⊂⋃λ>0 λ(X − x). Hence, for any x ∈ BdX ,

(
f (x)− g(x)

)∩
(⋃

λ>0

λ(X − x)

)
�= ∅. (2.8)

Therefore Y ⊂ S× S is a closed subset. �

For any y = ( f ,g) ∈ Y , we denote by CC(y) = {x ∈ X : f (x)∩ g(x) �= ∅} the set of
coincident points of the set-valued mappings f and g, by [2, Theorem 10], CC(y) �= ∅,
thus y → CC(y) indeed defines a set-valued mapping of coincident points from Y to X
and we have the following theorem.
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Theorem 2.2. The mapping CC : Y → 2X is upper semicontinuous with nonempty compact
values.

Proof. For any y = ( f ,g) ∈ Y , we need to prove that CC(y) ⊂ X is compact. Let a se-
quence {xα} ⊂ CC(y) and xα→ x0 ∈ X . Since xα ∈ CC(y), we have f (xα)∩ g(xα) �= ∅.

Suppose that f (x0)∩ g(x0)=∅, then there exists δ > 0 such that

O
(
f
(
x0
)
,δ
)∩O

(
g
(
x0
)
,δ
)=∅. (2.9)

By upper semicontinuities of f and g, and since xα→ x0, there exists α0 such that for any
α > α0, f (xα)⊂O( f (x0),δ) and g(xα)⊂O( f (x0),δ), then f (xα)∩ g(xα)=∅, which con-
tradicts the fact that f (xα)∩ g(xα) �= ∅, hence x0 ∈ CC(y) and hence CC(y) is compact.

Since X is compact, we want to prove that the mapping CC is upper semicontinuous,
we only need to prove that the GraphCC of CC is closed:

GraphCC = {(y,x)∈ Y ×X : x ∈ CC(y), y ∈ Y
}
. (2.10)

Let a sequence {(yα,xα)}⊂GraphCC and (yα,xα)→(y0,x0)∈Y×X . Denote yα= ( fα,gα),
y0 = ( f0,g0), then xα ∈ CC(yα) and fα(xα)∩ gα(xα) �= ∅.

Suppose that f0(x0)∩ g0(x0)=∅, then there exists δ∗ > 0 such that

O
(
f0
(
x0
)
,δ∗

)∩O
(
g0
(
x0
)
,δ∗

)=∅. (2.11)

Since fα→ f0, gα→ g0, xα→ x0, and f0, g0 are upper semicontinuous, there exists α∗ such
that

fα
(
xα
)⊂O

(
f0
(
xα
)
,
δ∗

2

)
⊂O

(
f0
(
x0
)
,δ∗

)
, ∀α > α∗,

gα
(
xα
)⊂O

(
g0
(
xα
)
,
δ∗

2

)
⊂O

(
g0
(
x0
)
,δ∗), ∀α > α∗.

(2.12)

Hence fα(xα)∩ gα(xα) =∅, which contradicts the fact that fα(xα)∩ gα(xα) �= ∅. So the
mapping CC is upper semicontinuous with nonempty compact values. �

For each y ∈ Y , the component of a point x ∈ CC(y) is the union of all connected
subsets of CC(y) which contain the point x, see [1, page 356], components are connected
closed subsets of CC(y) and are also connected compact. It is easy to see that the com-
ponents of two distinct points of CC(y) either coincide or are disjoint, so that all com-
ponents constitute a decomposition of CC(y) into connected pairwise disjoint compact
subsets, that is,

CC(y)=
⋃
α∈Λ

Cα(y), (2.13)

where Λ is an index set, for any α ∈ Λ, Cα(y) is a nonempty connected compact subset
and for any α, β ∈Λ (α �= β), Cα(y)∩Cβ(y)=∅.
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Definition 2.3. For y ∈ Y , CC(y) =⋃α∈ΛCα(y), Cα(y) is called an essential component
if for each open set O containing Cα(y), there exists δ > 0 such that for any y′ ∈ Y with
ρ(y, y′) < δ, CC(y′)∩O �= ∅.

Definition 2.4. For y ∈ Y , e(y)⊂ CC(y) is a nonempty closed set, e(y) is called an essen-
tial set of CC(y) (with respect to Y) if for any open set U with U ⊃ e(y), there is δ > 0
such that for any y′ ∈ Y with ρ(y, y′) < δ, CC(y′)∩U �= ∅.

Definition 2.5. For y ∈ Y , m(y) ⊂ CC(y) is an essential set, m(y) is called a minimal
essential set of CC(y) (with respect to Y) if m(y) is a minimal element of the family of
essential sets of CC(y) ordered by set inclusion.

Remark 2.6. If e1(y) ⊂ CC(y) is an essential set of CC(y) (with respect to Y), e2(y) ⊂
CC(y) is closed, and e1(y)⊂ e2(y), then e2(y) is also an essential set of CC(y).

Remark 2.7. If x ∈ CC(y) is an essential coincident point (see [5]) of CC(y), then {x} is
an essential set of CC(y); e(y)⊂ CC(y) is an essential set and e(y)= {x}, then x ∈ CC(y)
is an essential coincident point of CC(y).

Remark 2.8. If A⊂ CC(y) is closed, x ∈ A⊂ CC(y), and x is an essential coincident point
of CC(y), then A is an essential set and {x} is a minimal essential set of CC(y).

Example 2.9. LetX = [0,1], for any x ∈ X , f (x)= [0,x], g(x)= [x,1], then y = ( f ,g)∈ Y
and CC(y) = {x ∈ [0,1] : f (x)∩ g(x) �= ∅} = [0,1]. But x0 is not an essential coinci-
dent point for any x0 ∈ CC(y). If x0 ∈ (0,1), for all ε > 0, take δ > 0 (δ < ε/2) such that
O(x0,δ)= (x0− δ,x0 + δ)⊂ [0,1].

Define the set-valued mappings f ε,gε : X → 2X by

gε(x)= g(x),

f ε(x)=




[0,x], x ∈ [0,x0− δ
]
,[

0,
(

1− ε

2δ

)
x+

ε

2δ

(
x0− δ

)]
, x ∈ [x0− δ,x0

]
,

[
0,
(

1 +
ε

2δ

)
x− ε

2δ

(
x0 + δ

)]
, x ∈ (x0,x0 + δ

]
,

[0,x], x ∈ (x0 + δ,1
]
,

(2.14)

then yε = ( f ε,gε) ∈ Y and ρ(y, yε) < ε, but CC(yε)∩O(x0,δ) =∅, hence x0 ∈ (0,1) is
not an essential coincident point.

Similarly, if x0 = 1, for all ε : 0 < ε < 1/2, take δ > 0 (δ < ε/2) such that (1− δ,1]⊂ (0,1].
Define the set-valued mappings f ε,gε : X → 2X by

gε(x)= g(x),

f ε(x)=




[0,x] if x ∈ [0,1− δ],[
0,
(

1− ε

2δ

)
x+

ε

2δ
(1− δ)

]
if x ∈ (1− δ,1].

(2.15)

If x0 = 0, for all ε > 0 (< 1/2), take δ > 0 (δ < ε/2) such that [0,δ)⊂ [0,1).
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Define the set-valued mappings f ε,gε : X → 2X by

f ε(x)= f (x),

gε(x)=




[(
1− ε

2δ

)
x+

ε

2
,1
]

if x ∈ [0,δ],

[x,1] if x ∈ (δ,1].

(2.16)

Hence, for any x0 ∈ CC(y)= [0,1], x0 is not an essential coincident point.

3. The minimal essential set of coincident points

By Zorn lemma, we obtain the following theorem.

Theorem 3.1. For any y ∈ Y , there exists at least one minimal essential set of CC(y).

Proof. By Theorem 2.2, the map CC : Y → 2X is upper semicontinuous and CC(y) is
compact for any y ∈ Y , then CC(y) is an essential set.

Let E(y) denote the family of all essential sets of CC(y) ordered by set inclusion. Let
{eα(y)}α∈Γ be a decreasing chain of E(y), then limeα(y) =⋂α∈Γ eα(y) �= ∅ and is com-
pact. Denoting e(y) = limeα(y), we need to prove that e(y) is the lower bound of the
chain {eα}α∈Γ, that is, e(y)∈ E(y). Since eα(y) is compact, by [4, page 43], H(eα(y),e(y))
→ 0, where H is the Hausdorff metric defined on X , hence for any open set O with
O ⊃ e(y), there is α1 ∈ Γ such that eα(y)⊂O for any α > α1. Since eα(y) is an essential set
of CC(y), there exists δ > 0 such that CC(y′)∩O �= ∅ for any y′ ∈ Y with ρ(y, y′) < δ,
then e(y) is an essential set of CC(y), e(y) is the lower bound of the chain {eα}α∈Γ. There-
fore, by Zorn lemma, E(y) has a minimal element and this minimal element is a minimal
essential set of CC(y). �

Theorem 3.2. For any y ∈ Y , the minimal essential set of CC(y) is connected.

Proof. Let m(y) be a minimal essential set of CC(y). Suppose that m(y) was not con-
nected, then there exist two nonempty closed sets C1(y), C2(y) and two open U1, U2 such
that C1(y) ⊂ U1, C2(y) ⊂ U2 and m(y) = C1(y)∪C2(y), U1 ∩U2 =∅. Because m(y) is
a minimal essential set of CC(y), C1(y) and C2(y) are not essential sets. Since C1(y) and
C2(y) are compact, there exist two open sets is V1 and V2 which satisfy

C1(y)⊂V1 ⊂ V̄1 ⊂U1, C2(y)⊂V2 ⊂ V̄2 ⊂U2, (3.1)

where V̄i denotes the closure of Vi , i= 1,2.
For any δ > 0, there exist y1 = ( f1,g1), y2 = ( f2,g2) ∈ Y with ρ(y, y1) < δ, ρ(y, y2) < δ

such that

CC
(
y1
)∩V1 =∅, CC

(
y2
)∩V2 =∅. (3.2)
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Define two set-valued maps f ∗ : X → 2X and g∗ : X → 2X as follows:

f ∗(x)=



f1(x) if x ∈ V̄1,

f2(x) if x ∈ V̄2,

ξ(x) f1(x) +η(x) f2(x) if x ∈ X \ V̄1∪ V̄2,

g∗(x)=



g1(x) if x ∈ V̄1,

g2(x) if x ∈ V̄2,

ξ(x)g1(x) +η(x)g2(x) if x ∈ X \ V̄1∪ V̄2,

(3.3)

where

ξ(x)= d
(
x,V̄2

)
d
(
x,V̄2

)
+d
(
x,V̄1

) , η(x)= d
(
x,V̄1

)
d
(
x,V̄2

)
+d
(
x,V̄1

) . (3.4)

It is easy to see that y∗ = ( f ∗,g∗)∈ Y , then CC(y∗) �= ∅ and CC(y∗)∩ (V1∪V2)=∅.
Since ρ(y, y∗) = ρ1( f , f ∗) + ρ1(g,g∗), by [6, Lemma 3.1], we have ρ(y, y∗) < δ, but

m(y)⊂ C1(y)∪C2(y)⊂V1∪V2, by Definition 2.4, m(y) is not an essential set of CC(y),
which contradicts the fact that m(y) is a minimal essential set, hence m(y) is connected
and the proof is complete. �

By Theorems 3.1 and 3.2, we have the following corollaries.

Corollary 3.3. For any y ∈ Y , there exists at least one connected minimal essential set of
CC(y).

Corollary 3.4. For any y ∈ Y , there exists at least one essential component of CC(y).

Proof. For any y ∈ Y , by Corollary 3.3, there exists at least one connected minimal essen-
tial set m(y) of CC(y), since m(y) is connected, there exists a component M(y) of CC(y)
such that m(y)⊂M(y), by Definition 2.3, M(y) is an essential component of CC(y). �

Remark 3.5. If g(x)= x for any x ∈ X , then for any f ∈ S and x ∈ BdX ,

(
f (x)− g(x)

)∩
(⋃

λ>0

λ(X − x)

)
= ( f (x)− x

)∩
(⋃

λ>0

λ(X − x)

)
�= ∅. (3.5)

Therefore y = ( f ,g) ∈ Y and CC(y) = F( f ), where F( f ) denotes the set of fixed points
of f .

By Corollary 3.4, we have the following corollary.

Corollary 3.6. For any f ∈ S, there is at least one essential component of F( f ).

Remark 3.7. Corollary 3.6 is a generalization of [3, Theorem 3].
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Example 3.8. Let X = [−1,1],

f (x)=

{0}, −1≤ x < 0,

[0,x], 0≤ x ≤ 1,

g(x)=

[x,−1], −1≤ x < 0,

[0,x− 1], 0≤ x ≤ 1.

(3.6)

Then y = ( f ,g)∈ Y and CC(y)= {x ∈ [0,1] : f (x)∩ g(x) �= ∅} = [0,1]⊂ [−1,1].
Suppose that [0,1] is not an essential set of CC(y), then there exists an open set U with

U ⊃ [0,1] (Let U = (−ε,1], 0 < ε < 1), for all δ > 0, there exists yδ ∈ Y with H(y, yδ) < δ
such that CC(yδ)∩U =∅, that is, CC(yδ)⊂ [−1,−ε].

Take δ = ε/4, for any y0 = ( f 0,g0)∈ Y with ρ1( f , f 0) < δ/2 and ρ1(g,g0) < δ/2, one has
ρ(y, y0) < δ, and for all x ∈ [−1,−ε], H( f (x), f 0(x)) < ρ1( f , f 0) < δ/2, H(g(x),g0(x)) <
ρ1(g,g0) < δ/2, then f 0(x) ⊂ (−δ/2,δ/2), g0(x) ⊂ [−ε + δ/2,−1] = [(−7/2)δ,−1], and
[−δ/2,δ/2]∩ [(−7/2)δ,−1]=∅, hence f 0(x)∩ g0(x)=∅ for any x ∈ [−1,−ε], CC(y0)
⊂ (−ε,1] which contradicts the fact that CC(y0)⊂ [−1,−ε]. Therefore, [0,1] is an essen-
tial set and hence [0,1] is a minimal essential set.
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