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We implement the Heston stochastic volatility model by using multidimensional
Ornstein-Uhlenbeck processes and a special Girsanov transformation, and consider the
Malliavin calculus of this model. We derive explicit formulas for the Malliavin derivatives
of the Heston volatility and the log-price, and give a formula for the local volatility which
is approachable by Monte-Carlo methods.

1. Introduction

Within the last ten years there have been many published and unpublished contributions
on how to apply Malliavin calculus in the context of mathematical finance. The purpose
of this paper is on one side to give the mathematical background for the application of
Malliavin calculus in the framework of the Heston stochastic volatility model, and on the
other side to provide an applicable formula for the local volatility. The Heston model is
one of the most applied stochastic volatility models. It is more or less characterized by a
volatility process which satisfies the following stochastic differential equation

dvt = κ
(
ν− vt

)
dt+ θ

√
vtdWt. (1.1)

Processes satisfying (1.1) are also said to be of Cox-Ingersoll-Ross type (see [1]). The
problems in applying Malliavin calculus methods to this process come mainly from the
fact that the square root is not differentiable in 0 and is not even locally Lipschitz con-
tinuous. The standard results for diffusions with Lipschitz coefficients cannot be used
here (see [11]). Although existence and path-wise uniqueness of such a process is guar-
anteed by general theorems (see [8, Chapter IV, Theorems 2.3 and 2.4]), the lack of a
concrete representation leads to problems when computations have to be done. As an
example I should mention that until the result of Deelstra and Delbaen [2] appeared, it
was not even clear whether the standard Euler scheme for (1.1) converges. Deelstra and
Delbaen’s result however, does not imply that the corresponding Euler scheme for the
Malliavin derivative converges. This paper shows how one can avoid these problems by
working with a multidimensional Brownian motion instead of a one-dimensional one,
and considering the corresponding multidimensional Malliavin calculus. We show that
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for special coefficients the process (vt) can be represented as the square of a multidi-
mensional Ornstein-Uhlenbeck process. In the case of general coefficients, we apply a
Girsanov transformation in order to adjust the drift term. The set-up of this paper is as
follows. We will first present some background on Malliavin calculus and then consider
the Malliavin calculus of Ornstein-Uhlenbeck processes as well as their squares. After
this we setup our version of the Heston stochastic volatility model and show that in fact,
Malliavin calculus is applicable to this model. In the last section, we apply our results to
give a formula for the local volatility in the Heston model. By local volatility we mean the
conditional expectation of the volatility, given the spot price of the stock, that is,

E
(√
vT |ST = x

)
. (1.2)

Sometimes also the expression E(vT |ST = x) is referred to as local volatility. Both ex-
pressions appear in the literature. Using our formula, Monte-Carlo methods can be ap-
plied to compute the local volatility. This is of practical relevance for the calibration of
the model, which means the adaptation of model coefficients to observed market data.

2. Preliminaries: a short introduction into Malliavin calculus

In this section, we summarize the construction of the Malliavin derivative operator and
shortly revise its main properties. Though changed by its appearance, the material pre-
sented here has mainly been taken from the classical references [11, 14].

Assume we have a probability space (Ω,�,P) on which there is defined an m-dimen-
sional Brownian motionW. We would like to differentiate functionals of the form

F : Ω−→R (2.1)

or at least those of a certain nice subclass. For this we first assume that the functional is
given by

F = f
(
Wt1 , . . . ,Wtl

)
, (2.2)

where f ∈ C∞b ((Rm)l) is a smooth function with bounded derivatives of all orders. Given
h∈ L2([0,T],Rm), we have that

∫ ·
0 h(s)ds∈ C0([0,T],Rm), where the integral is computed

component wise and the dot indicates that the upper bound of the integral is taken as a
variable. The subspace of C0([0,T],Rm) generated by this kind of functions is called the
Cameron-Martin space. The directional derivative of F in direction

∫ ·
0 h(s)ds at ω is given

by

DhF(ω) := d

dε

∣∣∣∣
ε=0

F̃
(
W(ω) + ε ·

∫ ·
0
h(s)ds

)

= d

dε

∣∣∣∣
ε=0

f
(
Wt1 (ω) +

∫ t1
0
h(s)ds, . . . ,Wtl(ω) +

∫ tl
0
h(s)ds

)

=
m∑
i=1

∇i f
(
Wt1 (ω), . . . ,Wtl(ω)

)� ·∫ ti
0
h(s)ds,

(2.3)
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where F̃ is the functional on the m-dimensional Wiener space through which F factorizes
and ∇i denotes the gradient with respect to the ith m-dimensional argument in f . Now
for fixed ω, consider the linear bounded functional on L2[0,T] given by

h �−→DhF(ω). (2.4)

By the Riesz representation theorem, there is an element DF(ω) in L2([0,T],Rm)
which is considered as a row vector such that

DhF(ω)=< h,DF(ω)� >L2([0,T],Rm)=
∫ T

0
DF(ω)(s)h(s)ds ∀h∈ L2([0,T],Rm

)
. (2.5)

In the following we denote DF(ω)(s) with DsF(ω). We now consider ω as a variable.
The assumption that f has bounded derivatives of all orders ensures that for all p ≥ 1, we
have DF ∈ Lp(Ω,L2([0,T],Rm)) when considered as an L2([0,T],Rm)-valued functional
in ω.

Assume now that the functional F is not necessarily cylindrical but there exists a se-
quence of cylindrical functionals Fi such that (Fi) converges to F in Lp(Ω) and (DFi)
converges to G in Lp(Ω,L2([0,T],Rm)). Then we define

DF :=G= lim
i→∞

DFi. (2.6)

Using the Cameron-Martin theorem it is not hard to show that if one has another
sequence (F̃i) converging to F in Lp(Ω) such that (DF̃i) converges to G̃ in Lp(Ω,L2([0,T],
Rm)), then G= G̃ in Lp. This basically shows that the operator

D : Lp(Ω)−→ Lp
(
Ω,L2([0,T],Rm

))
(2.7)

defined on the cylindrical functionals is closable.

Definition 2.1. For p ≥ 1, define the Malliavin derivative operator

D : Lp(Ω)−→ Lp
(
Ω,L2([0,T],Rm

))
(2.8)

as the closure of the operator above. For F in the domain of D, define

‖F‖1,p := ‖F‖Lp(Ω) +‖DF‖Lp(Ω,(L2[0,T],Rm)). (2.9)

Then the domain of D is precisely the closure of the cylindrical functionals under the
norm above. It will be denoted withD1,p.

Example 2.2. The following is easy to verify (see [12, Example 4.8]). Assume m= 1 and
f ∈ L2[0,T], then F = ∫ t0 f (u)dWu ∈D1,2 and

DsF =Ds

∫ t
0
f (u)dWu = f (s) · 1{s≤t}. (2.10)

In particular for an Ornstein-Uhlenbeck process given by

σt = e−βt
(
z+

∫ t
0
δeβudWu

)
(2.11)
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for positive constants β and δ, one has σt ∈D1,2 and

Dsσt = δe−β(t−s) · 1{s≤t}. (2.12)

If the functional F is vector-valued, then the Malliavin derivative is computed compo-
nent wise and considered as a matrix in the same way as the Jacobian matrix in standard
calculus. In the following we restrict ourselves to the case where p = 2. Then we are deal-
ing with Hilbert spaces.

Definition 2.3. The adjoint operator δ =D∗, where

δ : L2(Ω,Rm
)−→ L2(Ω), (2.13)

is called the Skorohod integral. Denote its domain with dom(δ).

The word “integral” is motivated by the following proposition.

Proposition 2.4. The class L2
a(Ω× [0,T],Rm) of adapted square integrable processes is

contained in dom(δ) and on this class the Skorohod integral coincides with the Itô integral.

The following formula is called the integration by parts formula of Malliavin calculus.

Proposition 2.5. If F ∈D1,2 and u∈ dom(δ), then

E

(∫ T
0
DtF ·u(·, t)dt

)
= E(F · δ(u)

)
. (2.14)

Proof. This follows directly from the definition of δ as the adjoint operator of D. �

Another useful formula for computing Malliavin derivatives is the following chain rule
(see [10, Lemma 2.1]).

Proposition 2.6. Let φ : Rk → R be a continuously differentiable function and let F =
(F1, . . . ,Fk) such that Fi∈D1,2. Then φ(F)∈D1,2 if and only if φ(F)∈L2(Ω) and∇φ(F)�DF
∈ L2(Ω× [0,T],Rm), and in this case

Dtφ(F)=∇φ(F)� ·DtF. (2.15)

Example 2.7. Consider the Ornstein-Uhlenbeck process of Example 2.2 and take φ(x)=
x2. Clearly σ2

t = φ(σt)∈ L2(Ω) and furthermore considered as a function of ω and s,

φ′
(
σt
)
Dsσt = 2σtδe−β(t−s) · 1{s≤t} ∈ L2(Ω× [0,T]

)
. (2.16)

Therefore σ2
t ∈D1,2 and Dsσ

2
t = 2δe−β(t−s)σt · 1{s≤t}.

The integration by parts formula is the key point in the proof of the following propo-
sition about conditional expectations.
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Proposition 2.8. Let F ∈D1,2 be Rk-valued, let G∈D1,2 be R-valued, and let Q ∼ P be
an equivalent measure such that there exists a process (ηs) satisfying

ZT := dQ
dP

= exp

(
−
∫ T

0
ηsdWs− 1

2

∫ T
0
η2
s ds

)
∈D1,2. (2.17)

Consider the Malliavin calculus under P and assume thatDtG is nondegenerate P-almost
sure for almost all t ∈ [0,T] and there exists a process (ut)∈ dom(δ) such that

(1) E(
∫ T

0 (DtG)utdt|σ(ZT ,F,G))= 1,

(2) E(
∫ T

0 (DtZT)utdt|σ(ZT ,F,G))= 0,

(3) E(
∫ T

0 (DtF)utdt|σ(ZT ,F,G))= (0, . . . ,0)�.
Let φ :Rk →R be measurable and of at most linear growth at infinity. Then the following

formula holds

EQ
(
φ(F)|G= 0

)= EQ
(
1{G>0}φ(F)δ(u)

)
EQ
(
1{G>0}δ(u)

) . (2.18)

Proof. We first consider the case where P =Q. This is more or less the case considered
in [5]. We repeat the main arguments. Denote with δ0 the Dirac distribution and with H
the Heaviside function 1{x>0}. At least formally we have H′ = δ0 and

E
(
φ(F)|G= 0

)= E
(
φ(F)δ0(G)

)
E
(
δ0(G)

) . (2.19)

Using our assumptions on the process u, the chain rule, and the integration by parts
formula, we can write

E
(
φ(F)δ0(G)

)= E
(
φ(F)δ0(G) ·E

(∫ T
0

(
DtG

)
utdt|σ(F,G)

))

= E
(∫ T

0
φ(F)Dt

(
H(G)

) ·utdt
)

= E
(∫ T

0
Dt
(
φ(F)H(G)

)
utdt

)
−E

(∫ T
0
∇φ(F)

(
DtF

)
H(G)utdt

)

= E(φ(F)H(G)δ(u)
)−E


H(G)∇φ(F)E

(∫ T
0

(
DtF

)
utdt|σ(F,G)

)
︸ ︷︷ ︸

=(0,...,0)�




= E(φ(F)H(G)δ(u)
)
,

(2.20)

where we used condition (3). To establish the third equality above we used a special
kind of product rule for the Malliavin derivative, which in this case is a consequence
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of Proposition 2.6. The result forQ= P then follows from

E
(
δ0(G)

)= E
(
δ0(G) ·E

(∫ T
0
DtG ·utdt|σ(F,G)

))

= E
(∫ T

0
Dt
(
H(G)

) ·utdt
)

= E(H(G)δ(u)
)
.

(2.21)

To prove the statement in the general case for a measure Q with ZT = dQ/dP, we
define the Rk+1-valued functional F̄ via

F̄ =
(
ZT
F

)
, (2.22)

and instead of φ(y), we consider the function ψ(x, y) := x ·φ(y). The function ψ(x, y) is
not of linear growth at infinity, however one can verify that the approximation procedure
presented in [5] works for ψ. Conditions (2) and (3) above imply that

E

(∫ T
0

(
DtF̄

)
utdt|σ

(
ZT ,F,G

))= (0, . . . ,0)�, (2.23)

and condition (1) is unchanged to the previous case. Therefore applying the already
proven part of the statement for P utilizing F̄, G, and ψ instead of F, G, and φ we ob-
tain

E
(
ZTφ(F)|G= 0

)= E
(
1{G>0}ZTφ(F)δ(u)

)
E
(
1{G>0}δ(u)

) , (2.24)

and for P utilizing ZT , G, and id (y) instead of F, G, and φ(y),

E
(
ZT |G= 0

)= E
(
1{G>0}ZTδ(u)

)
E
(
1{G>0}δ(u)

) . (2.25)

Using a general result on conditional expectations (see [12, Lemma 8.2.4]) we obtain

EQ
(
φ(F)|G= 0

)= E
(
ZTφ(F)|G= 0

)
E
(
ZT |G= 0

)
= E

(
1{G>0}ZTφ(F)δ(u)

)/
E
(
1{G>0}δ(u)

)
E
(
1{G>0}ZTδ(u)

)/
E
(
1{G>0}δ(u)

)
= EQ

(
1{G>0}φ(F)δ(u)

)
EQ
(
1{G>0}δ(u)

) ,

(2.26)

which proves the general result. �
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3. The Heston stochastic volatility model

In this section, we set up our version of the Heston stochastic volatility model. Given
coefficients κ, θ, ν as in (1.1) as well as the initial volatility x > 0, we fix a natural num-
ber n ≥ 2 and work in the framework of an (n+ 1)-dimensional Brownian motion W =
(W0, . . . ,Wn)� defined on some probability space (Ω,�,P). For the volatility process vt
only dimensions 1,2, . . . ,n are needed, dimension 0 will be used exclusively for modeling
the stock price. We first assume that there exist positive constants δ, β such that

κ := 2β, ν := nδ2

2β
, θ := 2δ. (3.1)

We consider the n-dimensional Ornstein-Uhlenbeck process σ̃t which has as its com-
ponents n independent Ornstein-Uhlenbeck processes σ̃ it starting at time 0 at z :=√x/n
satisfying

dσ̃it =−βσ̃itdt+ δdWi
t (3.2)

for i= 1, . . . ,n. Clearly we have

d
[
σ̃t, σ̃t

]= δ2 · Id ·dt, (3.3)

where Id denotes the n× n identity matrix. We define a new process vt by applying the
function

f :Rn −→R,

f
(
x1, . . . ,xn

)
:=

n∑
i=1

x2
i

(3.4)

on σ̃t:

vt := f
(
σ̃t
)= n∑

i=1

(
σ̃ it
)2 = σ̃�t σ̃t . (3.5)

Denoting Ŵt = (W1
t , . . . ,Wn

t ), we get by application of the Itô formula

dvt =∇ f
(
σ̃t
)�
dσ̃t +

1
2
∆ f
(
σ̃t
)
δ2dt

= 2σ̃�t
(−βσ̃tdt+ δdŴt

)
+nδ2dt

= (nδ2− 2βvt
)
dt+ 2δσ̃�t dŴt

= (nδ2− 2βvt
)
dt+ 2δ

√
vt · σ̃

�
t√
vt
dŴt .

(3.6)

To justify the last step, we need
√
vt to be strictly greater than zero almost sure for

all t ∈ [0,T]. For n ≥ 2 this is in fact true and the reason for this is more or less, that
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Brownian motion in two- or higher-dimensional space never hits the origin at any time
t > 0 (see [9, Proposition 3.22, page 161]). We define a one-dimensional stochastic process
(Wt) via

dWt = σ̃�t√
vt
dŴt . (3.7)

It follows immediately from the Lévy characterization (see [9, Theorem 3.16, page
157]) of Brownian motion, that Wt is a one-dimensional Brownian motion. Using this,
we can write the equation for vt as

dvt =
(
nδ2− 2βvt

)
dt+ 2δ

√
vtdWt. (3.8)

Substituting κ, θ, and ν from the beginning of this section we can write the last equa-
tion as

dvt = κ
(
ν− vt

)
dt+ θ

√
vtdWt (3.9)

with v0 = x. If the coefficients κ, θ, and ν do not admit a representation via α, β, and n,
then we proceed as follows. We choose n= 2, δ := θ/2, and β := κ/2. Then the procedure
presented above yields a process vt satisfying

dvt =
(

1
2
θ2− κvt

)
dt+ θ

√
vtdWt. (3.10)

We define the process (ηt) by

ηt := (1/2)θ2− κν

θ
√
vt

. (3.11)

(The following lemma was pointed out to me by M. Yor.)

Lemma 3.1. If θ2 ≤ 2κν, then the process (ηt) satisfies the Novikov-condition

E

(
exp

(
1
2

∫ T
0
η2
t dt

))
<∞. (3.12)

Proof. It is not hard to show that a Cox-Ingersoll-Ross-type process (vt) satisfying (1.1) is
just a reparametrized Bessel process (see [6, Section I.5]). The condition θ2 ≤ 2κν ensures
that the dimension of the corresponding Bessel process is at least two (i.e., δ ≥ 2 or µ≥ 0
in the notation of Revuz and Yor). The statement of the lemma then follows from an
analogous result for Bessel processes (see [13, Example 1.22, page 450]). �

The condition θ2 ≤ 2κν is a standard condition when working with Cox-Ingersoll-
Ross-type processes in mathematical finance. The main implication of this condition is
that the process never hits zero, which perfectly fits the application.

Applying the Girsanov theorem we see that under the equivalent measureQ given by

dQ
dP

= exp

(
−
∫ T

0
ηsdWs− 1

2

∫ T
0
η2
s ds

)
, (3.13)



Christian-Oliver Ewald 315

the process given by (3.10) satisfies

dvt = κ
(
ν− vt

)
dt+ θ

√
vtdW̃t, (3.14)

where W̃t =Wt +
∫ t

0 ηsds is a Q-Brownian motion. In terms of the n-dimensional P-
Brownian motion (Ŵt) the density term is given by

dQ
dP

= exp

(
−
∫ T

0
ηs
σ̃�s√
vs
dŴs− 1

2

∫ T
0
η2
s ds

)
, (3.15)

and therefore the zero component (W0
t ) of the (n+ 1)-dimensional P-Brownian motion

(Wt) is not affected by the Girsanov transformation and remains a Brownian motion
under Q. For notational reasons, we denote the zero component (W0

t ) with (Bt). Then
(Bt) and (W̃t) are uncorrelated Brownian motions underQ.

We now consider the financial market modeled on (Ω,�,Q) consisting of one stock
(St) following the dynamics

dSt = St
(
btdt+

√
vt
(
µdBt + ρdW̃t

))
(3.16)

with respect to some initial condition S0 = x and vt following the dynamics (3.14). Here
−1≤ ρ, µ≤ 1 with ρ2 +µ2 = 1 are chosen in order to allow correlation between stock and
volatility. This model has been introduced by Heston [7] and has since been called the
Heston model. Equation (3.16) can be solved easily:

St = S0 · exp
(∫ t

0
bs− 1

2
vsds+µ

∫ t
0

√
vsdBs + ρ

∫ t
0

√
vsdW̃s

)
. (3.17)

From now on we assume the standard condition θ2 ≤ 2κν whenever we speak of the
Heston model.

4. The Malliavin derivative of volatility and stock price in the Heston model

In this section, we show that the volatility process vt and its square root
√
vt as well as

the log-price log(St) in the Heston model belong to D1,2. Furthermore we compute their
Malliavin derivatives. The Malliavin calculus considered in this section is the Malliavin
calculus corresponding to the original measure P not to Q. It is not clear whether the
Malliavin derivatives with respect to the measure Q, or equivalently with respect to the
Q-Brownian motion (W̃t), exist (see however [3]). We keep the notation of the pre-
vious section and denote with D the Malliavin derivative with respect to the (n + 1)-
dimensional Brownian motionWt, and with D̂ the Malliavin derivative with respect to the
n-dimensional Brownian motion Ŵt. ClearlyD = (D0,D̂) whereD0 denotes the Malliavin
derivative with respect to (W0

t )= (Bt).
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Proposition 4.1. The Heston volatility process vt and its square root
√
vt modeled as in

Section 3 belong to D1,2 and satisfy

Dsvt = 2e−β(t−s)δ · 1{s≤t}
(
0, σ̃1

t , . . . , σ̃nt
)
,

Ds
√
vt = 1√

vt
δe−β(t−s) · 1{s≤t}

(
0, σ̃1

t , . . . , σ̃nt
)
.

(4.1)

Furthermore σ̃T ∈D1,2 and

Dsσ̃T = δe−β(T−s) · 1{s≤T}




0

... Id

0




, (4.2)

where Id denotes the n×n identity matrix.

Proof. It follows from Example 2.2 that

D̂sσ̃t = δe−β(t−s) · 1{s≤t} · Id, (4.3)

and from Example 2.7 that

D̂svt = 2e−β(t−s)δσ̃t� · 1{s≤t}. (4.4)

Since the square root is obviously not Lipschitz continuous, we cannot just apply the
chain rule to compute D̂s

√
vt. We have to go one step back and consider

√
vt as the Eu-

clidean norm of the n-dimensional Ornstein-Uhlenbeck process (σ̃t). The norm function
‖ · ‖ :Rn →R is obviously Lipschitz continuous. Therefore it follows from [11, Proposi-
tion 1.2.3] that

√
vt = ‖σ̃t‖ ∈D1,2. Since the norm function is everywhere differentiable

(except in the origin) with derivative

∇‖x‖ = x

‖x‖ , (4.5)

it follows by an elementary approximation procedure that

D̂s
√
vt =Ds

∥∥σ̃t∥∥= σ̃�t
‖σ̃t‖ D̂sσ̃t

= σ̃�t
vt
δe−β(t−s)1{s≤t}.

(4.6)

The statements in the proposition therefore follow from D = (D0,D̂) and the fact that
σ̃t and therefore also vt and

√
vt do not depend on (W0

t ). �

We assume in the following that the drift term of the stock is equal to the deterministic
constant interest rate. This corresponds to a risk neutral setting, that is, P is already an
equivalent martingale measure for the market.
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Proposition 4.2. The terminal log-price ζT = log(ST) in the Heston model given by the
logarithm of (3.17) for terminal time t = T belongs to D1,2. Its partial Malliavin derivatives
are given by

D0
s ζT = µ

√
vs,

Di
sζT = ρσ̃ is − 2δeβs

∫ T
s
σ̃ it e

−βtdt+ δeβs
(
µ
∫ T
s
e−βt

σ̃ it√
vt
dW0

t + ρ
∫ T
s
e−βtdWi

t

)
(4.7)

for all 1≤ i≤ n.

Proof. Defining the Rn+1-valued process (ut) as ut = (µ
√
vt,ρσ̃1

t , . . . ,ρσ̃nt )�, we can write
ζT as

ζT = rT − 1
2

∫ T
0
vtdt+

∫ T
0
u�t dWt . (4.8)

It then follows [11, (1.46), page 38] (see also [14, Proposition II.2, page 13] for the
multidimensional case) that ζT ∈D1,2 with Malliavin derivative given by

DsζT =−1
2

∫ T
0
Dsvtdt+u�s +

(∫ T
0

(
Dsut

)�
dWt

)�
(4.9)

for all 0≤ s≤ T . It follows from the second part of Proposition 4.1 that

Dsut = 1{s≤t}




0 µδe−β(t−s) σ̃
1
t√
vt

··· µδe−β(t−s) σ̃
n
t√
vt

0 ρδe−β(t−s) 0 ··· 0

0

...
...

. . .
...

0

0 0 ··· 0 ρδe−β(t−s)




= 1{s≤t}δe−β(t−s)




0 µ
σ̃1
t√
vt

··· µ
σ̃nt√
vt

0 ρ 0 ··· 0

0

...
...

. . .
...

0

0 0 ··· 0 ρ




(4.10)
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and therefore

∫ T
0

(
Dsut

)�
dWt =




0

µ
∫ T
s
δe−β(t−s) σ̃

1
t√
vt
dW0

t + ρ
∫ T
s
δe−β(t−s)dW1

t

...

µ
∫ T
s
δe−β(t−s) σ̃

n
t√
vt
dW0

t + ρ
∫ T
s
δe−β(t−s)dWn

t



. (4.11)

Applying the first part of Proposition 4.1 we get

∫ T
0
Dsvtdt = 2δeβs

(
0,
∫ T
s
σ̃1
t e
−βtdt, . . . ,

∫ T
s
σ̃nt e

−βtdt

)
(4.12)

which finally proves the correctness of the formulas stated in the proposition. �

One can also show that ST ∈D1,2. Basically one has to apply the chain rule Proposition
2.6 on ST = exp(ζT). Since the exponential function is not globally Lipschitz, checking the
technical assumptions in Proposition 2.6 is not completely trivial, however it is possible,
using explicit formulas for the distribution of ST (which are known). Since we do not
need the result for ST in this paper we omit the tedious proof.

The results obtained in this section are necessary whenever one wants to apply Malli-
avin calculus techniques in the framework of the Heston model. We will see a nice ap-
plication in the next section. For other applications in the framework of calibration of
stochastic volatility models see, for example, [4].

5. The local volatility in the Heston model

We consider the Heston stochastic volatility model from Section 3. A natural question is,
if we know the stock price ST or equivalently the log-price ζT at terminal time T , what
can we say about the volatility, or mathematically more precisely, what can we say about
E(
√
vt|ST = x). The last expression is called local volatility and plays a major role in the

calibration of stochastic volatility models. Sometimes the expression E(vt|ST = x) is also
referred to as local volatility. Knowing the local volatility of a model and comparing it
to observed volatility data from the market can help to calibrate the model, that is to
determine the parameters of the model (here κ, θ, ν) in a way that the model fits the
observed market data best. We will now develop a formula for this expression which is
tractable by Monte-Carlo methods and does not use kernel estimation techniques. It was
shown in general (see [5]) that the type of formula obtained in this paper is faster and
more accurate than corresponding formulas using kernel estimation techniques.
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Theorem 5.1. Consider the Heston stochastic volatility model where stock price (St) and
volatility (vt) follow the dynamics

dSt = St
(
rdt+

√
vt
(
µdBt + ρdW̃t

))
,

dvt = κ
(
ν− vt

)
dt+ θ

√
vtdW̃t,

(5.1)

where (Bt,W̃t) is a two-dimensional Brownian motion on (Ω,�,Q) where the coefficients of
the model satisfy the standard assumption θ2 ≤ 2κν. Assume furthermore that the correlation
coefficient satisfies ρ �= 1, −1. Then the two following formulas hold:

EQ
(√
vT |ST = x

)= EQ
(
1{ST>x} ·√vT

∫ T
0 (1/

√
vt)dBt

)
EQ
(
1{ST>x} ·

∫ T
0

(
1/
√
vt
)
dBt

) ,

EQ
(
vT |ST = x

)= EQ
(
1{ST>x} · vT

∫ T
0

(
1/
√
vt
)
dBt

)
EQ
(
1{ST>x} ·

∫ T
0

(
1/
√
vt
)
dBt

) .

(5.2)

Proof. We are going to apply Proposition 2.8. Since θ2 ≤ 2κν, we can consider the equiv-
alent measure P∼Q which is related toQ by

dQ
dP

= exp

(
−
∫ T

0
ηsdWs− 1

2

∫ T
0
η2
s ds

)
, (5.3)

where the process (ηs) is given by ηs = ((1/2)θ2− κν)/θ
√
vs (see Lemma 3.1). As the dis-

cussion following Lemma 3.1 shows, there exists a two-dimensional P-Ornstein-
Uhlenbeck process (σ̃t) satisfying

dσ̃t =−


κ

2
κ

2


dt+

θ

2
d


W1

t

W2
t


 (5.4)

with a two-dimensional P-Brownian motion (W1
t ,W2

t )� such that vt = ‖σ̃t‖, and fur-
thermore (B,W1

t ,W2
t ) is a three-dimensional P-Brownian motion.

Let ζt = log(St) denote the log-price process. Choose

F = σ̃T ,

G= ζT − log(x),

φ
(
x1, . . . ,xn

)=
√√√√ n∑
i=1

x2
i =

∥∥(x1, . . . ,xn
)∥∥.

(5.5)

The function φ is clearly measurable and of linear growth at infinity. Propositions 4.1
and 4.2 show that F and G belong toD1,2. The same holds for ZT . The latter follows after
a long and tedious but straightforward check of the technical assumptions by application
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of the chain rule Proposition 2.6. We now define the process (us) as follows:

us =




(
T ·D0

s ζT
)−1

0
...
...
0



=




(
Tµ
√
vs
)−1

0
...
...
0



. (5.6)

Since the first column of Dsσ̃T consists only of zeroes (see Proposition 4.1), it is clear
that (us) satisfies the following three equations:

E

(∫ T
0

(
DsζT

)
usds|σ

(
ZT , σ̃T ,ζT − ln(x)

))= 1,

E

(∫ T
0

(
Dsσ̃T

)
usds|σ

(
ZT , σ̃T ,ζT − ln(x)

))= (0,0,0)�,

E

(∫ T
0

(
DsZT

)
usds|σ

(
ZT , σ̃T ,ζT − ln(x)

))= 0.

(5.7)

We can therefore apply Proposition 2.8 in order to compute EQ(
√
vT |ζT = log(x)).

Since (us) is adapted, it follows from Proposition 2.4 that the Skorohod integral can be
replaced by the Itô integral and therefore

EQ
(√
vT |ζT = log(x)

)= EQ
(
1{ζT>log(x)} ·√vT

∫ T
0 (1/

√
vt)dBt

)
EQ
(
1{ζT>log(x)} ·

∫ T
0 (1/

√
vt)dBt

) , (5.8)

where we used that the deterministic term (Tµ)−1 cancels. Since obviously ST > x⇔ ζT >
log(x), one can now pass from the log-price process to the actual price process. This
shows the validity of the first formula. In order to prove the second formula, one pro-
ceeds in exactly the same way as before by choosing the function ψ(x1, . . . ,xn)=∑n

i=1 x
2
i =

‖(x1, . . . ,xn)‖2 instead of φ. However one has to deal with the fact that this function is
not of linear growth at infinity. Nevertheless the second result can be obtained by ap-
proximating the function ψ by a monotonic sequence of functions which are of linear
growth at infinity and use the theorem of monotone convergence. We omit this tedious
but straightforward part of the proof. �

The theorem above gives an easy-to-implement method to compute the expected lo-
cal volatility with Monte-Carlo methods. In fact there are two possibilities to arrange the
simulation. The first possibility is that one works under the reference measure P with the
advantage that one only has to simulate Ornstein-Uhlenbeck processes and the drawback
that one has to use the simulation to compute the density dQ/dP. The second possibil-
ity is that one works under the original measure Q with the advantage that the density
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Figure 5.1. Local volatility in the Heston model: ρ =−0.2. The x-axis represents the logarithmic stock
price ζT at terminal time and the y-axis represents local volatility E(

√
vT |ST = x).

process does not have to be simulated and the drawback that the simulation of the volatil-
ity process is more difficult (see, e.g., [2] for the convergence of the Euler scheme for Cox-
Ingersoll-Ross-type processes). Within our own numerical experiments we observed that
the first approach works better, however we are far from giving an analytical proof of this
observation.

For the simulations presented in the following, we used the version of the Heston
volatility discussed in Section 3 in the framework of two Ornstein-Uhlenbeck processes.
We simulated n = 10000 paths of the logarithmic stock price ζt over the time interval
[0,1]. For the simulation of the Ornstein-Uhlenbeck processes we used a simple stochas-
tic Euler scheme with time discretization ∆= 0.05. As parameters for the model, we chose
κ= 2, ν= 0.04, θ = 0.4 as well as r = 0.025 for the deterministic interest rate. Finally we
chose ζ0 = log(100)≈ 4.6 for the initial log-price of the stock (i.e., S0 = 100) and v0 = 0.16
for the initial variance (i.e.,

√
v0 = 0.4 for the initial volatility). This setting needs 600000

simulations of a standard normal distributed random variable. With the Maple 8 soft-
ware and an Intel Pentium 4/2.6 GHz processor, each simulation took a little bit over one
hour. For a more accurate simulation, one could of course spend more time on simula-
tion. Nevertheless the result of the simulations is very promising. Figure 5.1 shows the
result of a simulation where the correlation was chosen to be ρ = −0.2. This is a typical
value for applications. One can see the typical volatility smile in the figure. In a future
publication we will study the question of variance reduction. Here one has to make use
of the other Malliavin derivatives Di

rζT for i �= 0, which have not been used in the formula
above. Methods from importance sampling can also be used to fasten up the simulation.
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[6] A. Göing-Jaeschke and M. Yor, A survey and some generalizations of Bessel processes, Bernoulli 9
(2003), no. 2, 313–349.

[7] S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond
and currency options, Review of Financial Studies 6 (1993), no. 2, 327–343.

[8] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 2nd ed.,
North-Holland Mathematical Library, vol. 24, North-Holland, Amsterdam, 1989.

[9] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Graduate Texts in Math-
ematics, vol. 113, Springer, New York, 1988.

[10] J. A. León, R. Navarro, and D. Nualart, An anticipating calculus approach to the utility maxi-
mization of an insider, Math. Finance 13 (2003), no. 1, 171–185.

[11] D. Nualart, The Malliavin Calculus and Related Topics, Probability and Its Applications,
Springer, New York, 1995.

[12] B. Øksendal, Stochastic Differential Equations. An Introduction with Applications, 6th ed., Uni-
versitext, Springer, Berlin, 2003.

[13] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, 3rd ed., Grundlehren der
Mathematischen Wissenschaften, vol. 293, Springer, Berlin, 1999.
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