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Properties of the set of fixed points of some discontinuous multivalued maps in a strictly
convex Banach space are studied; in particular, affirmative answers are provided to the
questions related to set of fixed points and posed by Ko in 1972 and Xu and Beg in 1998.
A result regarding the existence of best approximation is derived.

1. Introduction

The study of fixed points for multivalued contractions and nonexpansive maps using the
Hausdorff metric was initiated by Markin [17]. Later, an interesting and rich fixed point
theory for such maps has been developed. The theory of multivalued maps has applica-
tions in control theory, convex optimization, differential inclusions, and economics (see,
e.g., [3, 8, 16, 22]).

The theory of multivalued nonexpansive mappings is harder than the corresponding
theory of single-valued nonexpansive mappings. It is natural to expect that the theory of
nonself-multivalued noncontinuous functions would be much more complicated.

The concept of a ∗-nonexpansive multivalued map has been introduced and studied
by Husain and Latif [9] which is a generalization of the usual notion of nonexpansive-
ness for single-valued maps. In general, ∗-nonexpansive multivalued maps are neither
nonexpansive nor continuous (see Example 3.7).

Xu [22] has established some fixed point theorems while Beg et al. [2] have recently
studied the interplay between best approximation and fixed point results for ∗-nonex-
pansive maps defined on certain subsets of a Hilbert space and Banach space. For this
class of functions, approximating sequences to a fixed point in Hilbert spaces are con-
structed by Hussain and Khan [10] and its applications to random fixed points and best
approximations in Fréchet spaces are given by Khan and Hussain [12].

In this paper, using the best approximation operator, we (i) establish certain properties
of the set of fixed points of a ∗-nonexpansive multivalued nonself-map in the setup of
a strictly convex Banach space, (ii) prove fixed point results for ∗-nonexpansive random
maps in a Banach space under several boundary conditions, and (iii) provide affirmative
answers to the questions posed by Ko [14] and Xu and Beg [24] related to the set of fixed
points.
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2. Notations and preliminaries

LetC be a subset of a normed spaceX . We denote by 2X ,C(X),K(X),CC(X),CK(X), and
CB(X) the families of all nonempty, nonempty closed, nonempty compact, nonempty
closed convex, nonempty convex compact, and nonempty closed bounded subsets of X ,
respectively.

Define d(x,C)= inf y∈Cd(x, y). The Hausdorff metric on CB(X) induced by the metric
d on X is denoted by H and is defined as

H(A,B)=max

{
sup
a∈A

d(a,B), sup
b∈B

d(b,A)

}
. (2.1)

A mapping T : C→ CB(X) is a contraction if for any x, y ∈ C, H(Tx,Ty)≤ kd(x, y),
where 0 ≤ k < 1. If k = 1, then T is called a nonexpansive map. If H(Tx,Ty) < d(x, y)
whenever x �= y in C, then T is called a strictly nonexpansive mapping [14].

A multivalued map T : C→ 2X is said to be
(i) ∗-nonexpansive if for all x, y ∈ C and ux ∈ Tx with d(x,ux) = d(x,Tx), there

exists uy ∈ Ty with d(y,uy)= d(y,Ty) such that d(ux,uy)≤ d(x, y) (see [9, 10]),
(ii) strictly∗-nonexpansive if for all x �= y in C and ux ∈ Tx with d(x,ux)= d(x,Tx),

there exists uy ∈ Ty with d(y,uy)= d(y,Ty) such that d(ux,uy) < d(x, y),
(iii ) upper semicontinuous (usc) (lower semicontinuous (lsc)) if T−1(B) = {x ∈ C :

Tx∩B �= φ} is closed (open) for each closed (open) subset B of X . If T is both
usc and lsc, then T is continuous,

(iv) asymptotically contractive [19] if there exist some c ∈ (0,1) and r > 0 such that

‖y‖ ≤ c‖x‖, ∀y ∈ Tx, ∀x ∈ C \ rBX , (2.2)

where BX is the closed unit ball of X .
The map T : C→ CB(X) is called (i) H-continuous (continuous with respect to Haus-

dorff metric H) if and only if for any sequence {xn} in C with xn→ x, we have H(Txn,Tx)
→ 0 (the two concepts of set-valued continuity are equivalent when T is compact-valued
(cf. [8, Theorem 20.3, page 94])); (ii) demiclosed at 0 if the conditions xn ∈ C, xn con-
verges weakly to x, yn ∈ Txn and yn → 0 imply that 0∈ Tx. An element x in C is called a
fixed point of a multivalued map T if and only if x ∈ Tx. The set of all fixed points of T
will be denoted by F(T).

For each x ∈ X , let PC(x)= {z ∈ C : d(x,z)= d(x,C)}. Any z ∈ PC(x) is called a point
of best approximation to x from C. If PC(x) �= φ (singleton) for each x ∈ X , then C is
called a proximinal (Chebyshev) set, respectively. If C is proximinal, then the mapping
PC : X → 2C is well defined and is called the metric projection.

The space X is said to have the Oshman property (see [18]) if it is reflexive and the
metric projection on every closed convex subset is usc.

For the multivalued map T and each x ∈ C, we follow Xu [22] to define the best ap-
proximation operator, PT(x)= {ux ∈ Tx : d(x,ux)= d(x,Tx)}, (possibly empty set).

A single-valued (multivalued) map f : C→ X (F : C→ 2X) is said to be a selector of T
if f (x)∈ Tx (Fx ⊆ Tx), respectively, for each x ∈ C.
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The space X is said to have the Opial condition if for every sequence {xn} in X weakly
convergent to x ∈ X , the inequality

liminf
n→∞

∥∥xn− x
∥∥ < liminf

n→∞
∥∥xn− y

∥∥ (2.3)

holds for all y �= x.
Every Hilbert space and the spaces �p (1≤ p <∞) satisfy the Opial condition.
The inward set IC(x) of C at x ∈ X is defined by IC(x) = {x + γ(y − x) : y ∈ C and

γ > 0}. We will denote the closure of C by cl(C).
Let (Ω,�) denote a measurable space with � sigma algebra of subsets of Ω. A mapping

T : Ω→ 2X is called measurable if for any open subset B of X ,T−1(B)= {ω ∈Ω : T(ω)∩
B �= φ} ∈�. A mapping ζ : Ω→ X is said to be a measurable selector of a measurable
mapping T : Ω→ 2X if ζ is measurable and for any ω ∈ Ω, ζ(ω) ∈ T(ω). A mapping
T : Ω×C→ 2X is a random operator if for any x ∈ C, T(·,x) is measurable. A mapping
ζ : Ω→ C is said to be a random fixed point of T if ζ is a measurable map such that for
every ω ∈Ω, ζ(ω)∈ T(ω,ζ(ω)).

A random operator T : Ω × C → 2X is said to be continuous (nonexpansive,
∗-nonexpansive, convex, etc.) if for each ω ∈ Ω, T(ω,·) is continuous (nonexpansive,
∗-nonexpansive, convex, etc.).

The following results are needed.

Proposition 2.1 (see [3, Proposition 2.2]). Let E be a metric space. If T : Ω→ C(E) is a
multivalued mapping, then the following conditions are equivalent:

(i) T is measurable;
(ii) ω→ d(x,T(ω)) is a measurable function of ω for each x ∈ E;

(iii) there exists a sequence { fn(ω)} of measurable selectors of T such that cl{ fn(ω)} =
T(ω) for all ω in Ω.

Theorem 2.2 (see [24, Theorem 3.1]). Let C be a nonempty separable weakly compact
convex subset of a Banach space X . Suppose that the map T : Ω×C→ K(C) is a nonexpan-
sive random mapping. If for each ω ∈Ω, I −T(ω,·) is demiclosed at 0, then the fixed point
set function F of T given by F(ω)= {x ∈ C : x ∈ T(ω,x)} is measurable (and hence T has a
random fixed point).

3.∗-nonexpansive maps

The properties of the set of fixed points of single-valued and multivalued maps have been
considered by a number of authors (see, e.g., Agarwal and O’Regan [1], Browder [4],
Bruck [5], Espı́nola et al. [6], Ko [14], Schöneberg [20], and Xu and Beg [24]). For a wide
class of unbounded closed convex setsC in a Banach space, there exist nonexpansive maps
T : C→ K(C) which fail to have a fixed point (see [13]).

We obtain some properties of the set of fixed points of a ∗-nonexpansive map on a
Banach space with values which are not necessarily subsets of the domain.

Markin [17], Xu [22], and Jachymski [11] have utilized “selections;” we employ “non-
expansive selector,” PT , of a ∗-nonexpansive map T to study the structure of the set of
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fixed points of T . Consequently, we obtain generalized and improved versions of many
results in the current literature.

In Theorem 8.2, Browder [4] has established the following result.

Theorem 3.1. Let C be a nonempty closed, convex, subset of a strictly convex Banach space
X and let T : C→ C be a nonexpansive map. Then the set F(T) of fixed points of T is closed
and convex.

Ko [14] pointed out that Theorem 3.1 need not hold for multivalued nonexpansive
mappings as follows.

Example 3.2 (see [14, Example 3]). Consider C = [0,1]× [0,1] with the usual norm.
Define T : C→ CK(C) by

T(x, y)= the triangle with vertices (0,0), (x,0), and (0, y). (3.1)

Note that T is nonexpansive and the norm in R2 is strictly convex. But the set F(T)=
{(x, y) : (x, y)∈ C and xy = 0} is not convex.

The following generalization of Theorem 3.1 for ∗-nonexpansive continuous map-
pings is obtained in [15].

Theorem 3.3. Let X be a strictly convex Banach space and C a nonempty weakly com-
pact convex subset of X . Let T : C → CC(C) be a ∗-nonexpansive map such that F(T) is
nonempty. Then the set F(T) is convex and is closed if T is continuous.

We present a new proof, through the best approximation operator, of Theorem 3.3
without assuming any type of continuity of the map T and obtain the following structure
theorem.

Theorem 3.4. Let X be a strictly convex Banach space and C a nonempty weakly com-
pact convex subset of X . Let T : C → CC(C) be a ∗-nonexpansive map such that F(T) is
nonempty. Then the set F(T) is closed and convex.

Proof. For each x ∈ C, its image Tx is weakly compact and convex and thus each Tx is
Chebyshev. Hence, each ux in PT(x) is unique. Thus by the definition of ∗-nonexpan-
siveness of T , there is uy = PT(y)∈ Ty for all y in C such that

∥∥PT(x)−PT(y)
∥∥= ∥∥ux −uy

∥∥≤ ‖x− y‖. (3.2)

Hence, PT : C→ C is a nonexpansive selector of T (see also [22]).By the definition of PT ,
we have for each y ∈ C,

d
(
y,PT(y)

)= d
(
y,uy

)= d(y,Ty). (3.3)

Equation (3.3) now implies that F(T)= F(PT). Thus F(PT) and hence F(T) is closed and
convex by Theorem 3.1. �

The following example illustrates our results.
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Example 3.5. Let T : [0,1]→ 2[0,1] be a multivalued map defined by

Tx =




[
0,

1
2

]
, x �= 1

2
,

[0,1], x = 1
2
.

(3.4)

Then

PT(x)=



x, x ∈

[
0,

1
2

]
,

1
2

, x ∈
(

1
2

,1
]
.

(3.5)

This implies that T is a ∗-nonexpansive map. Further, T is usc but not lsc (see [8, Re-
mark 15.2, page 71]) and hence T is not continuous according to both definitions as T is
compact-valued. Note that F(T)= [0,1/2] is closed and convex.

If T is a single-valued strictly nonexpansive map, then F(T) is a singleton. In gen-
eral, this is not true for a multivalued nonexpansive map [17]. The set F(T) is said to
be singleton in a generalized sense if there exists x ∈ F(T) such that F(T) ⊆ Tx. Ko has
given an example of a strictly nonexpansive mapping T : C→ CC(C), in a strictly convex
Banach space, for which the set F(T) is not singleton in a generalized sense (cf. [17, Ex-
ample 4]). Ko raised the following question: is F(T) singleton in a generalized sense if T
is nonexpansive, I is the identity operator, and I −T is convex?

The following proposition provides an affirmative answer to this question for strictly
∗-nonexpansive multivalued mappings.

Proposition 3.6. Let C be a nonempty closed convex subset of a reflexive strictly convex
Banach space X and let T : C→ CC(C) be a strictly ∗-nonexpansive map such that F(T) is
nonempty. Then the set F(T) is singleton in a generalized sense.

Proof. Any closed convex subset of a reflexive strictly convex Banach space is Chebyshev,
so each Tx is Chebyshev. Thus as in the proof of Theorem 3.4, PT : C→ C is a strictly non-
expansive selector of T satisfying (3.3). Hence, F(T)= F(PT) is singleton in a generalized
sense as required. �

The following example supports the above proposition.

Example 3.7. Let T : [0,1]→ 2[0,1] be a multivalued map defined by

Tx =




{
1
2

}
, x ∈

[
0,

1
2

)
∪
(

1
2

,1
]

,
[

1
4

,
3
4

]
, x = 1

2
.

(3.6)
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Then PT(x)= {1/2} for every x ∈ [0,1]. This implies that T is a strictly ∗-nonexpan-
sive map:

H
(
T
(

1
3

)
,T
(

1
2

))
=H

({
1
2

}
,
[

1
4

,
3
4

])

=max

{
sup

a∈{1/2}
d
(
a,
[

1
4

,
3
4

])
, sup
b∈[1/4,3/4]

d
(
b,

1
2

)}

=max
{

0,
1
4

}
= 1

4
>

1
6
=
∣∣∣∣1

3
− 1

2

∣∣∣∣.
(3.7)

This implies that T is not nonexpansive. Obviously, T is compact-valued. Next we show
that T is not lsc.

Let V1/4 be any small open neighbourhood of 1/4. Then the set

T−1(V1/4
)= {x ∈ [0,1] : Tx∩V1/4 �= φ

}= {1
2

}
(3.8)

is not open. Thus T is not continuous in the sense of both definitions.
Note that F(T)= {1/2} is singleton in a generalized sense.

The conclusion of Proposition 3.6 does not hold for ∗-nonexpansive maps as follows.

Example 3.8. Let C = [0,∞) and T : C→ CK(C) be defined by

Tx = [x,2x] for x ∈ C. (3.9)

Then PT(x)= {x} for every x ∈ C. This clearly implies that T is ∗-nonexpansive but not
nonexpansive (cf. [22]). Note that F(T)= C and there does not exist any x in F(T) such
that F(T)⊆ Tx. Thus F(T) is not singleton in a generalized sense.

The above example also indicates that the fixed point set of a ∗-nonexpansive map
need not be bounded in general. However, if T is asymptotically contractive, then we
have the following affirmative result.

Theorem 3.9. Let X be a uniformly convex Banach space and C a nonempty closed convex
subset of X . Let T : C→ CC(C) be a ∗-nonexpansive map which is asymptotically contrac-
tive on C. Then F(T) is nonempty closed, convex, and bounded.

Proof. The map T has a nonexpansive selector f which is also asymptotically contractive
by the asymptotic contractivity of T . Further, F(T)= F( f ) is nonempty closed bounded
and convex (see [19, Corollary 3 and Remark (a)]). �

We are now ready to derive a version of the Ky-Fan best approximation theorem [7]
(compare the result with [10, Theorem 3.1] and [21, Theorem 4.3]).

Theorem 3.10. Let C be a nonempty closed convex subset of a strictly convex Banach space
X with the Oshman property. If T : C→ CC(X) is an H-continuous (or a ∗-nonexpansive)
map and T(C) is relatively compact, then there exists y ∈ C such that

d(y,Ty)= ‖y− f y‖ = d
(
f y, cl

(
IC(y)

))
, for some continuous selector f of T.

(3.10)



Abdul Rahim Khan 329

Proof. The Hausdorff continuity of T implies that f = PT : C→ X is a continuous selec-
tor of T . Since T(C) is relatively compact and f (C) ⊆ T(C), therefore f (C) is relatively
compact. By [18, Theorem 3(0)] and (3.3), we obtain

d(y,Ty)= d(y, f y)= d
(
f y, cl

(
IC(y)

))
, for some y ∈ C. (3.11)

The proof for ∗-nonexpansive map is similar. �

As an application of Theorems 3.4 and 3.10, we obtain the following extension of [9,
Theorem 3.2], [22, Corollary 1], and Theorem 3.3.

Corollary 3.11. Let C be a nonempty closed convex subset of a strictly convex Banach
space X with the Oshman property. If T : C→ CC(C) is a ∗-nonexpansive map and T(C)
is relatively compact, then F(T) is nonempty closed and convex.

Remark 3.12. The map T in Example 3.2 is neither ∗-nonexpansive nor has a nonex-
pansive selection f with F( f )= F(T); for if T is so, then using the same argument as in
the proof of Theorem 3.4, T should have a nonexpansive selector PT : C → C such that
F(T)= F(PT), which should be convex by Theorem 3.1; a contradiction.

Xu [23] obtained the randomization of a remarkable fixed point theorem for mul-
tivalued nonexpansive maps due to Lim [16]. Further, Xu and Beg stated that it is un-
known whether the fixed point set function F in this case is measurable (see [24, page
69]). We prove that the fixed point set function F is measurable if the underlying map is
∗-nonexpansive.

Theorem 3.13. Let C be a nonempty separable closed bounded convex subset of a Banach
space X and T : Ω×C → K(C) a ∗-nonexpansive random operator. Then the fixed point
set function F of T given by F(ω)= {x ∈ C : x ∈ T(ω,x)} is measurable (and hence T has a
random fixed point) provided one of the following conditions holds:

(i) T(ω,·) is convex for each ω ∈Ω and X is a uniformly convex space,
(ii) C is weakly compact and I −T is demiclosed at 0,

(iii) C is weakly compact and X satisfies the Opial condition.

Proof. (i) As before, for each ω ∈Ω, PT(ω,·) : Ω×C → C is a nonexpansive selector of
T(ω,·) and for each y ∈ C, ω ∈Ω,

d
(
y,PT(ω, y)

)= d
(
y,uy

)= d
(
y,T(ω, y)

)
. (3.12)

By Proposition 2.1, T(·,x) is measurable if and only if for each x in C, the function
d(x,T(·,x)) is measurable. Thus by (3.12), for each x in C, d(x,PT(·,x)) is measurable
and hence again by Proposition 2.1, PT(·,x) is measurable (see also [12, Proposition 3.6]).
Thus PT : Ω×C→ C is a nonexpansive random operator.

We observe that if X is a uniformly convex space, then I −PT(ω,·) is demiclosed. Also
(3.12) implies that fixed point set functionG of PT given byG(ω)= {x ∈ C : x = PT(ω,x)}
is equal to F(ω)= {x ∈ C : x ∈ T(ω,x)} for each ω ∈Ω. Consequently, G, and hence F, is
measurable by Theorem 2.2.
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(ii) Note that PT(ω,·) : C→ K(C) is a nonexpansive selector of T(ω,·). Also for each
y ∈ C, ω ∈Ω,

d
(
y,PT(ω, y)

)≤ d
(
y,uy

)= d
(
y,T(ω, y)

)≤ d
(
y,PT(ω, y)

)
. (3.13)

The measurability of PT follows from the arguments adopted in part (i) using (3.13)
instead of (3.12). The demiclosedness of I −T(ω,·) at 0 implies that I −PT(ω,·) is also
demiclosed at 0 as follows.

Suppose that xn → x0 weakly and yn ∈ I − PT(ω,xn) with yn → 0 strongly. Note that
yn ∈ I −PT(ω,xn)⊆ I −T(ω,xn) and I −T(ω,·) is demiclosed at 0 so 0∈ I −T(ω,x0) for
eachω∈Ω. This implies that x0∈T(ω,x0) and hence 0=d(x0,T(ω,x0))= d(x0,PT(ω,x0))
for each ω ∈Ω. Thus x0 ∈ PT(ω,x0) implies that I −PT(ω,·) is demiclosed at 0 for each
ω ∈Ω. Thus G, and hence, F is measurable by Theorem 2.2.

(iii) It is well known that if C is a weakly compact subset of a Banach space X satisfying
the Opial condition and f : C → K(C) is nonexpansive, then I − f is demiclosed on C.
Hence, I − PT(ω,·) is demiclosed for each ω ∈Ω and the conclusion now follows from
part (ii). �

Remark 3.14. It is not common at all that a nonexpansive multivalued mapping admits a
single-valued nonexpansive selection (cf. Example 3.2 and Remark 3.12). However, in the
general setup of metric linear spaces, ∗-nonexpansive maps have nonexpansive selector
satisfying a very useful relation (3.3).
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