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We consider a discrete-time Markov chain observed through another Markov chain. The
proposed model extends models discussed by Elliott et al. (1995). We propose improved
recursive formulae to update smoothed estimates of processes related to the model. These
recursive estimates are used to update the parameter of the model via the expectation
maximization (EM) algorithm.

1. Introduction

Hidden Markov chains have been the subject of extensive studies, see the books [1, 2]
and the references therein. Of particular interest are the discret-time, finite-state hidden
Markov models.

In this paper, using the same techniques as in [3], we propose results that improve the
finite-dimensional smoothers of functionals of a partially observed discrete-time Markov
chain. The model itself extends models discussed in [2]. The proposed formulae for
updating these quantities are recursive. Therefore, recalculation of all backward estimates
is not required in the implementation of the EM algorithm.

This paper is organized as follows. In Section 2, we introduce the model. In Section 3,
a new probability measure under which all processes are independent is defined and a
recursive filter for the state is derived. The main results of this paper are in Section 4
where recursive smoothers are derived.

2. Model dynamics

A system is considered, whose state is described by a finite-state, homogeneous, discrete-
time Markov chain Xk, k ∈N. We suppose that X0 is given, or its distribution is known.
If the state space of Xk has N elements, it can be identified without loss of generality, with
the set

SX =
{
e1, . . . ,eN

}
, (2.1)

where ei are unit vectors in RN with unity as the ith element and zeros elsewhere.
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Write �0
k = σ{X0, . . . ,Xk}, for the σ-field generated by X0, . . . ,Xk, and {�k} for the

complete filtration generated by the �0
k; this augments �0

k by including all subsets of
events of probability zero. The Markov property implies here that

P
(
Xk+1 = ej

∣∣�k
)= P

(
Xk+1 = ej

∣∣Xk
)
. (2.2)

Write aji = P(Xk+1 = ej | Xk = ei), A= (aji)∈RN×N .
Define Vk+1 := Xk+1−AXk so that

Xk+1 =AXk +Vk+1. (2.3)

{Vk}, k ∈N, is a sequence of martingale increments.
The state process X is not observed directly. We observe a second Markov chain Y

on the same state space as X but with probability transitions perturbated by X . More
precisely, suppose that

P
(
Yk+1 = es

∣∣�k ∨ σ
{
Xk+1

})= P
(
Yk+1 = es

∣∣Yk,Xk+1
)
, (2.4)

where {�k} is the complete filtration generated by X and Y .
Write

bs,ri = P
(
Yk+1 = es | Yk = er ,Xk+1 = ei

)
, (2.5)

and B = {bs,ri}, 1≤ s,r, i≤N . Note that
∑M

s=1 bs,ri = 1. We immediately have the following
representation for Y :

Yk+1 = B Yk ⊗Xk+1 +Wk+1, (2.6)

where Wk, k ∈N, is a sequence of martingale increments.
Let {�k} be the complete filtration generated by Y .
Our objective here is to seek recursive filters and smoothers for the states of the Markov

chainX , the number of jumps from one state to another for the occupation time of a state,
and for a process related to the observations.

3. An unnormalized finite-dimensional recursive filter for the state

What we wish to do now is starting with a probability measure P on (Ω,
∨∞

n=1 �n) such
that

(1) the process X is a finite-state Markov chain with transition matrix A;
(2) {Yk}, k ∈N, is a sequence of i.i.d. random variables and

P(Yk+1 = er |�k ∨ σ{Xk+1})= P(Yk+1 = er)= 1/M.
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We will now construct a new measure P on (Ω,
∨∞

n=1 �n) such that under P, E[Yk+1 |
�k ∨ σ{Xk+1}]= BYk ⊗Xk+1. Write

λ� =
N∏

s,r,i=1

(
Nbs,ri

)〈Y� ,es〉〈Y�−1,er〉〈X� ,ei〉, � ∈N, (3.1)

Λk =
k∏

�=1

λ� , (3.2)

where bs,ri is the probability transition defined in (2.5).
With the above definitions, E[λk+1 |�k]= 1. Now set (dP/dP) |�k=Λk. (The existence

of P follows from Kolmogorov’s extension theorem.)
Recall that for a �-adapted sequence {φk},

E
[
φk |�k

]= E
[
Λkφk |�k

]
E
[
Λk |�k

] . (3.3)

Write qk(em), 1≤ t ≤ N , k ∈N, for the unnormalized, conditional probability distri-
bution such that

E
[
Λk
〈
Xk,em

〉 |�k
]= qk

(
em
)
. (3.4)

Now
∑N

i=1〈Xk,ei〉 = 1, so

N∑
i=1

qk
(
ei
)= E

[
Λk

N∑
i=1

〈
Xk,ei

〉∣∣�k

]
= E

[
Λk

∣∣�k
]
. (3.5)

Therefore, the normalized conditional probability distribution

pk
(
em
)= E

[〈
Xk,em

〉 |�k
]

(3.6)

is given by

pk
(
em
)= qk

(
em
)

∑k
j=1 qk

(
ej
) . (3.7)

To simplify the notation, we write

cm
(
Yk,Yk−1

)= N∏
s,r=1

(
Nbs,rm

)〈Yk ,es〉〈Yk−1,er〉,

c
(
Yk,Yk−1

)= (c1
(
Yk,Yk−1

)
, . . . ,cN

(
Yk,Yk−1

))′
.

(3.8)

Theorem 3.1. For k ∈ N, the recursive filter for the unnormalized estimates of the states is
given by

qk = diag
[
c
(
Yk,Yk−1

)]
Aqk−1. (3.9)
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Proof. In view of (3.1), (3.2), (2.3), and the notation in (3.8),

E
[
Λk
〈
Xk,em

〉 |�k
]= N∏

s,r=1

(
Nbs,rm

)〈Yk ,es〉〈Yk−1,er〉
N∑
i=1

E
[
Λk−1

〈
Xk−1,ei

〉〈
Aei,em

〉 |�k
]

= cm
(
Yk,Yk−1

) N∑
i=1

ami
〈
qk−1,ei

〉
,

(3.10)
and

E
[
ΛkXk |�k

]= N∑
m=1

E
[
Λk
〈
Xkem〉 |�k

]
em

=
N∑

m=1

N∑
i=1

amicm
(
YkYk−1

)〈
qk−1,ei

〉
em

= diag
[
c
(
Yk,Yk−1

)]
Aqk−1,

(3.11)

which finishes the proof. �

4. Recursive smoothers

We emphasize again that these improved recursive formulae to update smoothed esti-
mates are used to update the parameters of the model via the EM algorithm.

Theorem 4.1. For k > m, the unnormalized smoothed estimate E[ΛkXm | �k] � γm,k is
given by

γm,k = diag
[
qm
]
vm. (4.1)

Proof. Write
∏k

�=m+1 λ� �Λm+1,k.

E
[
Λk
〈
Xm,ei

〉∣∣�k
]= E

[
Λm
〈
Xm,ei

〉
Λm+1,k

∣∣�k
]

= E
[
Λm
〈
Xm,ei

〉
E
[
Λm+1,k

∣∣�k ∨�m
]∣∣�k

]
= E

[
Λm
〈
Xm,ei

〉
E
[
Λm+1,k

∣∣�k ∨�m
]∣∣�k

]
= E

[
Λm
〈
Xm,ei

〉
E
[
Λm+1,k

∣∣�k ∨
{
Xm = ei

}]∣∣�k
]

= E
[
Λm
〈
Xm,ei

〉∣∣�m
]
E
[
Λm+1,k

∣∣�k ∨
{
Xm = ei

}]
�
〈
qm,ei

〉〈
vm,ei

〉
,

(4.2)

where

vm =
(
E
[
Λm+1,k

∣∣�k ∨
{
Xm = e1

}]
, . . . ,E

[
Λm+1,k

∣∣�k ∨
{
Xm = eN

}])′
. (4.3)
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Therefore,

E
[
ΛkXm

∣∣�k
]= N∑

i=1

eiE
[
Λk
〈
Xm,ei

〉∣∣�k
]

=
N∑
i=1

〈
qm,ei

〉〈
vm,ei

〉
ei

= diag
[
qm
]
vm.

(4.4)

�

The same argument shows that the following lemma holds.

Lemma 4.2. The process v satisfies the backward dynamics

vm = A∗diag
[
c
(
Ym+1,Ym

)]
vm+1; vk = (1, . . . ,1)∈RN . (4.5)

Here A∗ is the matrix transpose of A.

4.1. Recursive smoother for the number of jumps. The number of jumps from state er
to state es in time k is given by

�rs
k =

k∑
�=1

〈
X�−1,er

〉〈
X� ,es

〉
. (4.6)

Theorem 4.3. Write σ(�rs
k )= E[Λk�rs

k |�k].

σ
(
�rs
k

)= k∑
�=1

asr
〈
q�−1,er

〉〈
v�−1,er

〉
. (4.7)

Proof.

E
[
Λk�rs

k

∣∣�k
]= k∑

�=1

E
[〈
X�−1,er

〉〈
X� ,es

〉
Λk

∣∣�k
]

=
k∑

�=1

E
[〈
X�−1,er

〉〈
AX�−1,es

〉
Λk |�k

]

=
k∑

�=1

asrE
[〈
X�−1,er

〉
Λk |�k

]

= asr

k∑
�=1

E
[
Λ�−1

〈
X�−1,er

〉
E
[
Λ�,k

∣∣�k ∨
{
X�−1 = er

}]∣∣�k
]

= asr

k∑
�=1

〈
q�−1,er

〉〈
v�−1,er

〉
,

(4.8)

which finishes the proof. �
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Lemma 4.4.

σ
(
�rs
k+1

)= Γ′kA
∗diag

[
c
(
Yk+1,Yk

)] · 1 + asr
〈
qk,er

〉
, (4.9)

where 1= (1, . . . ,1)∈RN and

Γ′k � asr

k∑
�=1

〈
q�−1,er

〉
e′rA

∗diag
[
c
(
Y� ,Y�−1

)]···A∗diag
[
c
(
Yk−1,Yk

)]
. (4.10)

Proof. Using the backward recursion (4.5),

σ
(
�rs
k

)= asr

k∑
�=1

〈
q�−1,er

〉
e′rA

∗diag
[
c
(
Y� ,Y�−1

)]···A∗diag
[
c
(
Yk+1,Yk

)] · 1

= Γ′k · 1.

(4.11)

Also note that

Γ′k+1 = Γ′kA
∗diag

[
c
(
Yk+1,Yk

)]
+ asr

〈
qk,er

〉
er . (4.12)

Therefore,

σ
(
�rs
k+1

)= Γ′k+1 · 1= Γ′kA
∗diag

[
c
(
Yk+1,Yk

)] · 1 + asr
〈
qk,er

〉
, (4.13)

and the result follows. �

4.2. Recursive smoother for the occupation time. The number of occasions up to time
k for which the Markov chain X has been in state er , 1≤ r ≤N , is

�r
k =

k∑
�=0

〈
X� ,er

〉
. (4.14)

Lemma 4.5. Write σ(�r
k)= E[Λk�r

k |�k].

σ
(
�r
k

)= k∑
�=0

〈
q� ,er

〉〈
v� ,er

〉
, (4.15)

σ
(
�r
k+1

)= Σ′kA
∗diag

[
c
(
Yk+1,Yk

)] · 1 +
〈
qk+1,er

〉
, (4.16)

where

Σ′k �
k∑

�=1

〈
q� ,er

〉
e′rA

∗diag
[
c
(
Y� ,Y�−1

)]···A∗diag
[
c
(
Yk−1,Yk

)]
, (4.17)

and

Σ′k+1 = Σ′kA
∗diag

[
c
(
Yk+1,Yk

)]
+
〈
qk+1,er

〉
er . (4.18)
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4.3. Recursive smoother for state-to-observation transitions. The parameters estima-
tion of our model requires estimates and smoothers of the process

�rsm
k =

k∑
�=1

〈
X�−1,er

〉〈
Y�−1,es

〉〈
Y� ,em

〉
. (4.19)

Lemma 4.6. Write σ(�rsm
k )= E[Λk�rs

k |�k].

σ
(
�rs

k

)= k∑
�=1

〈
q�−1,er

〉〈
v�−1,er

〉〈
Y�−1,es

〉〈
Y� ,em

〉
, (4.20)

σ
(
�rsm

k+1

)=Φ′
kA

∗diag
[
c
(
Yk+1

)] · 1 +
〈
qk,er

〉〈
Yk+1,es

〉
, (4.21)

where

Φ′
k �

k∑
�=1

〈
q�−1,er

〉〈
Y�−1,es

〉〈
Y� ,em

〉
e′rA

∗diag
[
c
(
Y�
)]···A∗diag

[
c
(
Yk
)]

, (4.22)

and

Φ′
k+1 =Φ′

kA
∗diag

[
c
(
Yk+1

)]
+
〈
qk,er

〉〈
Y�−1,es

〉〈
Y� ,em

〉
er . (4.23)
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