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The main purpose of this paper is to give some common fixed point theorems of map-
pings and set-valued mappings of a symmetric space with some applications to proba-
bilistic spaces. In order to get these results, we define the concept of E-weak compatibility
between set-valued and single-valued mappings of a symmetric space.
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1. Preliminaries

In this section, we recall some basic definitions from the theory of symmetric spaces. A
symmetric function on a set X is a nonnegative real-valued function d on X ×X such
that

(1) d(x, y)= 0 if and only if x = y,
(2) d(x, y)= d(y,x).

Let d be symmetric on a setX , and for r >0 and any x∈X , let B(x,r)={y∈X : d(x, y)<r}.
A topology t(d) on X is given by U ∈ t(d) if and only if for each x ∈ U , B(x,r) ⊂ U for
some r > 0. A symmetric d is semimetric if for each x ∈ X and each r > 0, B(x,r) is a
neighborhood of x in the topology t(d). Note that limn→∞d(xn,x)= 0 if and only if xn→x
in the topology t(d).

A sequence in X is said to be d-Cauchy sequence if it satisfies the usual metric condi-
tion. There are several concepts of completeness in this setting (see [1]).

(i) X is S-complete if for every d-Cauchy sequence (xn), there exists x in X with
limn→∞d(x,xn)= 0.

(ii) X is d-Cauchy complete if for every d-Cauchy sequence {xn}, there exists x in X
with xn→x in the topology t(d).
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In order to unify the notation, we need the following two axioms (W.3) and (W.4) given
by Wilson [2] in a symmetric space (X ,d):

(W.3) given (xn), x and y in X , limn→∞d(xn,x)= 0, and limn→∞d(xn, y)= 0 imply that
x = y,

(W.4) given (xn), (yn) and x in X , limn→∞d(xn,x)= 0, and limn→∞d(xn, yn)= 0 imply
that limn→∞d(yn,x)= 0.

Finally, a nonempty subset A of a symmetric space (X ,d) is said to be

(1) d-closed if A
d = A, where

A
d = {x ∈ X : d(x,A)= 0

}
, d(x,A)= inf

{
d(x, y) : y ∈A}. (1.1)

We denote by C(X) the set of all nonempty d-closed subsets of (X ,d).
(2) It is said to be d-bounded if δd(A) <∞, where δd(A)= sup{d(x, y) : x, y ∈ A}.

Let B(X) denote the set of all nonempty d-bounded subsets of X . For A,B ∈ B(X), we
define

δ(A,B)= sup
{
d(a,b) | a∈ A; b∈ B}. (1.2)

It follows immediately from this definition that, for all A,B ∈ B(X), one has

δ(A,B)= δ(B,A),

δ(A,B)= 0 if A= B = {a}, a∈A,

δ(A,A)= δd(A).

(1.3)

2. Main results

2.1. E-weak compatibility.

Definition 2.1. Let A : X→2X be a multivalued mapping and let B be a self-mapping of a
symmetric space (X ,d). One says that A and B are E-weakly compatible if for each u∈ X ,
one has BAu⊆ABu whenever Bu∈ Au.

Examples.
(1) Let X = [1,+∞[. Define A : X→2X and B : X→X by

Ax = [1,2x], Bx = 2x, ∀ x ∈ X. (2.1)

It is clear that, for each x ∈ X , one has Bx ∈ Ax and BAx ⊂ ABx. Then A and B
are E-weakly compatible.

(2) Let X =N= {1,2, . . .}. Define A : X→2X and B : X→X by

Ax = {kx | k ∈N}, Bx = 2x− 1, ∀ x ∈ X. (2.2)

Clearly, one has B1∈ A1 and BA1⊂ AB1=N. Note that 1 is the unique ele-
ment u of N satisfying Bu∈Au. Therefore, A and B are E-weakly compatible.
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Remark 2.2. If A is a single-valued mapping, then the set ABx consists of a single point.
Therefore, E-weak compatibility is reduced to weak compatibility condition given in [3];
that is, two self-mappings A and B of a symmetric space X are said to be weakly compat-
ible if they commute at their coincidence points.

Remark 2.3. In what follows including Section 2.3, we consider a nondecreasing right
continuous function ψ : R+→R+ such that limn→∞ψn(t) = 0 , for all t ∈ ]0,+∞[. Under
the above properties, ψ satisfies ψ(t) < t for all t > 0, and therefore ψ(0)= 0.

2.2. Common fixed point results.

Theorem 2.4. Let A : X→C(X) be a multivalued mapping and let B be a self-mapping of a
d-bounded symmetric space (X ,d) satisfying (W.4) such that

(1) δ(Ax,Ay)≤ ψ(d(Bx,By)) , for all x 	=y in X ,
(2) A and B are E-weakly compatible,
(3) AX ⊂ BX .

If the range of B is an S-complete subspace of X , then A and B have a unique common fixed
point.

Proof. Let x0 ∈ X . Since Ax0 ⊆ BX , choose x1 ∈ X such that Bx1 ∈ Ax0. Choose x2 ∈ X
such that Bx2 ∈ Ax1. Continuing in this fashion, choose xn ∈ X such that Bxn ∈ Axn−1.
Then we have

d
(
Bxn,Bxn+m

)≤ δ(Axn−1,Axn+m−1
)

≤ ψ(d(Bxn−1,Bxn+m−1
))

≤ ψ(δ(Axn−2,Axn+m−2
))

≤ ψ2(d
(
Bxn−2,Bxn+m−2

))

...

≤ ψn(d(Bx0,Bxm
))≤ ψn(δd(X)

)
.

(2.3)

which implies that {Bxn} is a d-Cauchy sequence. Suppose that BX is an S-complete sub-
space of X , then limn→∞d(Bxn,Bu)= 0 for some u∈ X . We claim that Bu∈ Au. Indeed,
we have

d
(
Bxn,Au

)≤ δ(Axn−1,Au
)≤ ψ(d(Bxn−1,Bu

))
. (2.4)

On letting n to infty, we obtain d(Bxn,Au)= 0, and therefore by using (W.4), we obtain

Bu ∈ Au
d = Au. The E-weak compatibility of A and B implies that BAu ⊆ ABu. Since

BAu= {Ba | a∈ Au} and Bu∈Au, it follows that BBu∈ BAu⊆ABu.
Let us show that Bu is a common fixed point of A and B. Suppose that BBu 	=Bu. In

view of (1), it follows that

d(Bu,BBu)≤ δ(Au,ABu)≤ ψ(d(Bu,BBu)
)
< d(Bu,BBu), (2.5)
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which gives a contradiction. Therefore, Bu= BBu∈ABu and Bu is a common fixed point
of A and B. For uniqueness, suppose that there exists u,v ∈ X such that Bu = u ∈ Au,
Bv = v ∈Av, and u 	=v. In view of (1), we have

d(u,v)≤ δ(Au,Av)≤ ψ(d(Bu,Bv)
)

≤ ψ(d(u,v)
)
< d(u,v),

(2.6)

which is a contradiction. Therefore, u= v and the common fixed point is unique. �

When ψ(t)= kt, k ∈ [0,1[, we get the following new result.

Corollary 2.5. Let A : X→C(X) be a multivalued mapping and let B be a self-mapping of
a d-bounded symmetric space (X ,d) satisfying (W.4) such that

(1) δ(Ax,Ay)≤ kd(Bx,By), k ∈ [0,1[ , for all x 	=y in X ,
(2) A and B are E-weakly compatible,
(3) AX ⊂ BX .

If the range of B is an S-complete subspace of X , then A and B have a unique common fixed
point.

Remark 2.6. When A is a single-valued mapping, Corollary 2.5 is reduced to a general-
ization of [4, Theorem 2.1] which in turn generalizes [1, Theorem 1].

Also letting B = IdX (resp., A= IdX) in Theorem 2.4, we get the following new results.

Corollary 2.7. Let A : X→C(X) be a multivalued mapping of a d-bounded S-complete
symmetric space (X ,d) satisfying (W.4) such that

δ(Ax,Ay)≤ ψ(d(x, y)
)
, ∀ x 	=y in X. (2.7)

Then A has a unique fixed point.

Corollary 2.8. Let B be a subjective self-mapping of a d-bounded symmetric space (X ,d)
satisfying (W.4) such that

d(x, y)≤ ψ(d(Bx,By)
)
, ∀ (x, y)∈ X2. (2.8)

If the range of B is an S-complete subspace of X , then B has a unique fixed point.

2.3. Application. A distribution function f is a nondecreasing left continuous real-val-
ued function f defined on the set of real numbers, with inf f = 0 and sup f = 1.
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Definition 2.9. Let X be a set andI a function defined on X ×X such that I(x, y)= Fx,y is
a distribution function. Consider the following conditions:

(i) Fx,y(0)= 0 for all x, y ∈ X ,
(ii) Fx,y =H if and only if x = y, where H denotes the distribution function defined

by

H(x)=
⎧
⎨

⎩
0, if x ≤ 0,

1, if x > 0,
(2.9)

(iii) Fx,y = Fy,x,
(iv) if Fx,y(ε)= 1 and Fy,z(δ)= 1, then Fx,z(ε+ δ)= 1.

If I satisfies (i) and (ii), then it is called a PPM structure on X , and the pair (X ,I) is called
a PPM space. An I satisfying (iii) is said to be symmetric. A symmetric PPM structure
I satisfying (iv) is a probabilistic metric structure, and the pair (X ,I) is a probabilistic
metric space.

Let (X ,I) be a symmetric PPM space. For ε,λ > 0 and x in X , let Nx(ε,λ) = {y ∈ X :
Fx,y(ε) > 1− λ}. A T1 topology t(I) on X is defined as follows:

t(I)= {U ⊆ X | for each x ∈U , there exists ε > 0, such that Nx(ε,ε)⊆U}. (2.10)

Recall that a sequence {xn} is called a fundamental sequence if limn→∞Fxn,xm(t)= 1 for all
t > 0. The space (X ,I) is called F-complete if for every fundamental sequence {xn} there
exists x in X such that limn→∞Fxn,x(t)= 1, for all t > 0. Recently, in [1], it was proved that
each symmetric PPM space admits a compatible symmetric function as follows.

Theorem 2.10 (see [1]). Let (X ,I) be a symmetric PPM space. Let d : X ×X→R+ be a
function defined as follows:

d(x, y)=
⎧
⎨

⎩
0, if y ∈Nx(t, t)∀ t > 0,

sup{t : y 	∈Nx(t, t), 0 < t < 1}, otherwise.
(2.11)

Then,
(1) d(x, y) < t if and only if Fx,y(t) > 1− t;
(2) d is compatible and symmetric for t(I);
(3) (X ,I) is F-complete if and only if (X ,d) is S-complete.

Definition 2.11. Let (X ,I) be a symmetric PPM space and A a nonempty subset of X .

One says that A is I-closed if A
I = A, where

A
I =

{
x ∈ X : sup

a∈A
Fx,a(t)= 1, ∀t > 0

}
. (2.12)

One denotes by CI(X) the set of all nonempty I-closed subsets of X .

Remark 2.12. Let (X ,I) be a symmetric PPM space and let CI(X) be the set of all non-
empty I-closed subsets of X . It is not hard to see that if d is a compatible symmetric
function for t(I), then CI(X) = C(X), where C(X) is the set of all nonempty d-closed
subsets of (X ,d). For A,B ∈ CI(X), set DA,B(ε)= inf a∈A,b∈BFa,b(ε),nbsp;ε > 0.
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Remark 2.13. Note that condition (W.4), defined earlier, is equivalent to the following
condition:

(P.4) limn→∞Fxn,x(t)= 1 and limn→∞Fxn,yn(t)= 1 imply that Fyn,x(t)= 1, for all t > 0.

As an application of our main Theorem 2.4, we have the following result.

Theorem 2.14. Let (X ,I) be a symmetric PPM space that satisfies (P.4) and d a compatible
symmetric function for t(I). Let A : X→CI(X) be a multivalued mapping and let B :→X be
a self-mapping of X such that

(1) FBx,By(t) > 1− t implies that DAx,Ay(ψ(t)) > 1−ψ(t), for all t > 0 , for all x 	=y in
X ,

(2) A and B are E-weakly compatible,
(3) AX ⊂ BX .

If the range of B is an F-complete subspace of X , then A and B have a unique common fixed
point.

Proof. Note that (X ,d) is d-bounded and BX is an S-complete subspace of X . Also
d(x, y) < t if and only if Fx,y(t) > 1− t. Let ε > 0 be given, and set t = d(Bx,By) + ε.
Then d(Bx,By) < t gives FBx,By(t) > 1− t, and therefore DAx,Ay(ψ(t)) > 1−ψ(t).

We claim that δ(Ax,Ay)≤ ψ(d(Bx,By)). Indeed, from DAx,Ay(ψ(t)) > 1−ψ(t), it fol-
lows that

inf
a∈Ax,b∈Ay

Fa,b
(
ψ(t)

)
> 1−ψ(t)=⇒∀(a,b)∈ Ax×Ay, Fa,b

(
ψ(t)

)
> 1−ψ(t), (2.13)

which implies that for all (a,b) ∈ Ax × Ay, d(a,b) < ψ(t), and therefore δ(Ax,Ay) <
ψ(t)= ψ(d(Bx,By) + t). On letting ε be 0 (since ε > 0 was arbitrary), we have δ(Ax,Ay)≤
ψ(d(Bx,By)). Now apply Theorem 2.4. �

For ψ(t)= kt, k ∈ [0,1[, Theorem 2.14 is reduced to the following new result.

Corollary 2.15. Let (X ,I) be a symmetric PPM space that satisfies (P.4) and d a compati-
ble symmetric function for t(I). Let A : X→CI(X) be a multivalued mapping and let B :→X
be a self-mapping of X such that

(1) FBx,By(t) > 1− t implies that DAx,Ay(kt) > 1− kt, k ∈ [0,1[, for all t > 0 , for all
x 	=y in X ,

(2) A and B are E-weakly compatible,
(3) AX ⊂ BX .

If the range of B is an F-complete subspace of X , then A and B have a unique common fixed
point.
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