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The object of this paper is to study the stability behaviours of the deterministic and stochastic
versions of a two-species symmetric competition model. The logistic parameters of the competitive
species are perturbed by colored noises or Ornstein-Uhlenbeck processes due to random
environment. The Fokker-Planck equation has been used to obtain probability density functions.
Here, we have also discussed the relationship between stability behaviours of this model in a
deterministic environment and the corresponding model in a stochastic environment.

1. Introduction

In recent years, scientists have become increasingly aware of the fact that most natural
phenomena do not follow strictly deterministic laws but rather oscillate randomly about
some average behaviour. This is especially true in the ecological models where environmental
influences should be taken as stochastic. Many models in theoretical ecology take the
Volterra-Lotka model of interacting species as a starting point. In an improved analysis,
the influence of the environment has to be taken into account. This is often done by
arbitrarily augmenting the deterministic equations with stochastic terms or taking the
environmental parameters as time dependent and rapidly varying. In both cases, the
corresponding stochastic properties have to be postulated [1]. In 1995, Renshaw mentioned
that the most natural phenomena do not follow strictly deterministic laws but rather oscillate
randomly about some average so that the deterministic equilibrium is not an absolutely fixed
state; instead, it is a “fuzzy” value around which the biological system fluctuates. In fact,
randomness or stochasticity plays a vital role in the structure and function of biological
systems. The environmental factors are time dependent, randomly varying and should be
taken as stochastic. In ecology, we have two types of stochasticity, namely, the demographic
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stochasticity and the environmental stochasticity [2, 3]. Both types of stochasticity play
a significant part in the realistic dynamical modelling of ecosystems. Several systematic
procedures have been developed to obtain the stationary probability density function for the
response of general single-degree-of-freedom nonlinear oscillators and nonlinear dynamical
systems under parametric and external Gaussian white noise excitations [4-7].

In this paper, we have studied the relationship between stability behaviours of a two-
species symmetric competition model in which environmental parameters are prescribed
constant (deterministic environment) and the corresponding model in which these param-
eters have an element of random fluctuation (stochastic environment), where it is assumed
that the fluctuations in the environment manifest themselves as random fluctuations in the
logistic parameters about some mean value, as they usually do in nature [8, 9].

2. Two-Species Symmetric Competition:
Stochastic Differential Equations

Two or more species-populations compete for the same limited food source or in some
way the growth of each is inhibited by members both of its own and of the other species.
For example, competition may be for territory which is directly related to food resources.
Some interesting phenomena have been observed from the study of practical competition
models [10, 11]. Here, we will discuss a competition model which demonstrates a fairly
general principle which is observed to hold in nature. Assume that the two-species symmetric
competition model in a deterministic environment satisfies the following deterministic
differential equations:

Nil(t) % = KO - N] (t) - “Nz(t)/
(2.1)
1 dN;
N " Ko — Na(t) — aN (t),

where Ni(t), N2(t) denote the number or density of individuals of two competing species.
Thus, it is assumed that the per capita growth rate of each population at any instant is a linear
function of the sizes of the two competing populations at that instant. Each population would
grow logistically if it were alone with a constant environmental parameter Ko(> 0) and a
parameter a(> 0) which measures the (symmetric) competition between the two species (i.e.,
it measures the degree to which the presence of one species affects the growth of the other
species), we assume that a < 1.

Let us rewrite the system of differential equations (2.1) in the following form:

% = Ni(B){Ko - Ni(t) - aN> (1)},
(2.2)
AN,

—r = Na(B){Ko = Na(t) - aNi (1)}
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The deterministic equilibrium populations N, N7 are given by

Ky

N =N2=17%~

N*(say). (2.3)

The 2 x 2 interaction matrix in the neighbourhood of this equilibrium is

-N* —-aN*
A= . (2.4)
—aN* —N*
The two eigenvalues of this interaction matrix are Ay = =Ko, A, = —Ko((1 —a)/(1 + a)), and

the deterministic stability criterion is satisfied since a < 1.

To take into account the random environment, we extend model (2.2) to the form of
the following stochastic differential equations:

B = N Ko +21(8) - Ni(9) - aNa(),
2.5)
A2 = Na() (Ko + 102 - Na) - aNi (),

where the fluctuations wu;(t) are colored noises or Ornstein-Uhlenbeck processes which
are more realistic noises than white noises. These are extremely useful to model rapidly
fluctuating phenomena, because it can be seen by studying their spectra that thermal noises
in electrical resistance and climate fluctuations, disregarding the periodicities of astronomical
origin and so forth, are colored noises to a very good approximation. These examples support
the usefulness of the colored noise idealization in applications to natural systems. The
mathematical expectations and correlation functions of the processes u;(t) are given by

(ui(t)) = 0, (ui(t1)ui(t2)> = €50 exp(—60|t1 - tzl), (€, 60 > 0), (2.6)

where ¢, 661 are, respectively, the intensity and the correlation time of the colored noise

and (-) represents the average over the ensemble of the stochastic process. The u;(t) are the
solutions of the stochastic differential equations [12]

du; dw;
2 Sy V2L | = 2.7
T Oou; + 69V 2e FTaG (i=1,2), (2.7)

where 1; = dW;/dt(i = 1,2) are standard white noises characterized by

(m:(t)) =0, (mit)ni(ta)) = 6(t — 1),
(2.8)

() = oot - t2), (7)),

where 6(t) denotes the Dirac delta function.
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Let y; = In Nj; therefore, N; = e¥. Hence,

dyi
dt

= Ko+u(t)—e¥ —ae¥, (i=1,2; j=3-1i). (2.9)

Put n; = y; — y*; therefore, y; = n; + y*, where y* = In N*. Hence,

. n? .
e¥i = "tV =Y {1 +m;+ 2—’| e } =e¥ (1+m)=N"(1+mn). (2.10)
Therefore,
dnl- " . . .
= =-N*"(nj +an;) +u;(t), (i=1,2; j=3-1). (2.11)
From (2.7) and (2.11), we have
d'n +(N*+6 )@ can T s N*(n; +anj) = & VaetWi (i=1,2; j=3-1i)
dar T gr oo\ an) = ooveem g, A= LS )= ‘
(2.12)
Put, X1 =My, Xz = fll, X3 =My and X4 = flz.
Therefore,
) . dw; .
Xoii1 = Xoi,  Xoi = —h1(Xy, X2, X5, Xa) + 60@7/ (i=1,2), (2.13)
where,
h1 = (N* + 60)X2 + (XN*X4 + 60N*(X1 + LKX3),
(2.14)
hz = (N* + 60)X4 + (XN*XZ + 60N*(X3 + aXl).
3. Stationary Probability Density
The reduced Fokker-Planck equation is given by [13]
9 [Ai(x)ps(x)] - 18—2 [Bij(x)ps(x)] =0, (i,j=1,2,3,4) (3.1)
8xi 2 8xi8x]- 1 ! ! T
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where x; are the state variables (representing the possible values) of X;, p is the stationary

probability density, the drift and diffusion coefficients are

Agi-1 = X2i, Az = —h;, Byi-1,j = Bipj-1 =0,

2
Baipj = Zﬁfzklsfjsfil (i,j=1,2),

1,s=1

where

5s€
fui=fn=1, fi2=fn =0, k11=k22=?,

eKob;a
JF{K0+60(1 +£X)}'

kio = ko1 =

After some simplifications using the results of Cai and Lin [13], we have

ps(x1,x3) - eXp{ : <x% 2px1x3+x§>}
s(X1,X3) = ———————— 201-p)\e? To o3 ) ]
Zymlozﬂ 2(1-p%) \ 07 a0
(—oo < X1,Xx3 < Oo)/
where
e
p=-a, 1= 7 \1-a/Ko[Ko +60(1 +a))

5 1
- <%>{K0+600(1+a)}’ AzKO(lK)‘

By integrating over all values of x3, we obtain

1 x;
ps(x1) = expy—— ¢, (oo <x; <oo).

Similarly, we have

1 x3
ps(x3) = exp{ ——> ¢, (-o0<x3 < o).

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)
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4. Concluding Remarks

In this paper, we have studied the relationship between stability behaviours of a two-species
symmetric competition model for interacting species, in which environmental parameters are
prescribed constants (deterministic environment), and the corresponding model in which
these parameters have an element of random fluctuation (stochastic environment). In the
stochastic environment, the environmental parameter K, has been perturbed by colored
noises or Ornstein-Uhlenbeck processes, which are more realistic noises than white noises.

Now, in the deterministic environment, the maximum of the eigenvalues of the 2 x 2
interaction matrix is —A = —Ko((1 + a) /(1 — a)). Therefore, the stability determining quantity
is A, and the deterministic stability criterion is satisfied, since A > 0 (as a < 1). In the
stochastic environment, whose random fluctuation has intensity ¢, the stability provided by
the population interaction dynamics is again characterized by A. It is no longer enough that
A >0, for if e < A, population fluctuations are relatively small; in this case, the probability
cloud persists for an appreciable time, and the environment is effectively deterministic. For
€ < A, but not much less, populations are likely to undergo significant fluctuations, even
though they persist for long times. Finally, if € > A, population exhibit large fluctuations in
this case, the interaction dynamics provides an ever-weaker stabilizing influence to offset the
randomizing o7 (= 03), which rapidly lead to extinction. These results are in good agreement
with those of Samanta [14], Samanta and Maiti [15], and Maiti and Samanta [16].

The correlation time of the colored noise is Tcor = 6 1. The limiting process for Tcor — 0
of the colored noise is the Gaussian white noise, and in this case we obtain the well-known
results of May [8]. Now, for 7., — oo, we see that the population fluctuations are very much
small, and in this case, the environment is effectively deterministic.
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