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ABSTRACT
Based upon the Boussinesq approximation, an initial
value investigation is made of the axisymmetric free
surface flows generated in an inviscid rotating strat-
ified liquid of infinite depth by the prescribed free
surface disturbance. The asymptotic analysis of the
integral solution is carried out by the stationary phase
method to describe the solution for large time and
large distance from the source of the disturbance. The
asymptotic solution is found to consist of the classi-
cal free surface gravity waves and the internal-inertial
waves.
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I. INTRODUCTION.

Recently Debnath and Guha (1989) have studied the Cauchy-Poisson
problem in an inviscid stratified liquid. This problem in a rotating liquid is
of special interest in geophysical fluid dynamics. So the main purpose of this
paper is to generalize the Cauchy-Poisson problem in a uniformly rotating
inviscid stratified liquid of infinite depth.

This paper is concerned with the initial value investigation of the axisym-
metric free surface flows generated in an inviscid rotating stratified liquid of
infinite depth by the prescribed surface disturbance. Based upon the Boussi-
nesq approximation, the problem is solved by the joint use of the Laplace
and Hankel transforms. The formal integral solution for the free surface el-
evation is obtained. Special attention is given to the governing dispersion
relations in the rotating stratified liquid with or without free surface curva-
ture. The limiting cases of the general dispersion relation are discussed as
N or 2f/ tends to zero. The asymptotic analysis of the integral solution is
carried out by the stationary phase approximation to determine the nature
of the Cauchy-Poisson waves for large time and distance from the source
of the disturbance. The asymptotic solution is found to consist of the free
surface gravity waves and internal-inertial waves. The effects of both strati-
fication and rotation are examined. The results of this paper reduce to those
of Debnath and Guha (1989) in the bsence of rotation (12 0).

2. MATHEMATICAL FORMULATION.

rvVe consider the axisymmetric Cauchy-Poisson problem in an inviscid in-
compressible rotating stratified liquid of infinite depth. We use the cylindri-
cal coordinates (r,/9, z) and consider a semi-infinite body of liquid bounded
by 0 < r < c,,-c < z <_ zo(r). The liquid is subjected to a uniform
rotation with angular velocity f/about the vertical axis r = 0 so that the
equation of the paraboloidal free surface with 2l as the latus rectum is given
by

r2

We assume that the disturbed free surface is given by

z = z0( ) + t)
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due to the superimposed initial elevation

()() - 0 = o() t= 0

where 27ra is the displaced volume associated with r/o and 5(r) is the Dirac
function.

In the rotating frame of reference, the unsteady motion of the liquid is
governed by the Boussinesq equations (Greenspan, 1968; Debnath, 1974)

(4) ( + (. v)) + p(2 x ) = -Vp + p

where p is the density, = (u, v, w) is the velocity vector, = k is the
rotation vector, is the unit vector parallel to the z-axis, p is the modified
pressure including centrifugal acceleration, and = (0, 0, g) is the gravita-
tionM acceleration.

The equation of incompressibility of the liquid is

() +.vp=o.
The continuity equation in vector notation is

(a) V.=0.

If p and p are expanded about P0 and p0 in a reference state of hydrostatic
equilibrium then

(7) Vp0 = gpo

(s) p = p0(z) + p’(z, t)
(9/ = po(z) + ’(z,t).

when p’ and p’ are the perturbed quantities. We further assume that the
Rossby number is very small and 0 is sufficiently small to justify the lin-
earization of both the equations of motion and the free surface conditions.
The present problem will be studied under the Boussinesq approximation
which states that the density variation involved in the inertia and the Cori-
olis terms can be neglected but it must be retained in the buoyancy force
term in (4). The density field of the undisturbed liquid is supposed to be
of the form p0 = pooexp(-flz), where fl is a positive constant. The Brunt
Vaisala frequency N given by

= (_ po dz )

1/2
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is real and positive when the mean distribution is stable (d_ez < 0) and itdz
remains constant (N = x) throughout the flow field.

In view of he above assumpgions combined wigh he aceleragion pogen-
tial X = (p’/po) + 9(- o), ghe governing equagions assume ghe form

(11)
,5 ,5 ,5 gp’_,)-7(, , o) + a(-, , 0) = -(, 0, z) (0, 0,

P0

p’ dpo
(12) d"T +w d-’" = 0,

tu u tw
(a) -7+-+ = 0.

The free surface conditions are

(14) X = gr/, w = , + uz(r) on z = z0.

The bottom boundary condition is

(15) z--.0 as z-----oo.

The wave motion is generated in the liquid by the action of the initial
surface elevation at t = 0 so that the initial conditions are

() = x = o, o(, t) = o(,) t t= o.

3. THE INTEGRAL SOLUTION AND THE DISPERSION
RELATION.

We first transform the initial value problem (11)-(16) to a boundary value
problem by using the Laplace transformation with respect to t (see Myint-U
and Debnath, 1987). We then eliminate the transform functions fi, , z?,
and i5’ to derive a single equation for ; and the transformed free surface and
boundary conditions as

(17) 2,,+-2,+ 2 =0
r

(18)
s2 + 4Q2

s + N2
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(19)
82 82 ,S 2

+

(20) S --+ 0 as z --,-.

It is noted that (17) is Laplace’s equation in the coordinates r and
and z = Zo = r:/21 is a paraboloid of revolution. It is convenient to introduce
parabolic coordinates and in the (r,z/A)-space. We normalize these
coordinates such that = r and = 1 on the free surface z = zo(r), and
introduce the transformation in the form

(21)
1

(ee) z- z0- 5

0<_<oo, l_<’<c

0<_<oo, l_<’<oo.

The differential metric is given by

In view of these transformations, the system (17)-(19) reduces to

(24) (/)2--1(()( _}. --1()(
2

g

=0

It is noted that and are orthogonM coordinates in the (r,z/A) space
and has a dimension of length and is dimensionless. Both and are real
only for real values of A. Equation (24) is hyperbolic or elliptic according
to whether A < 0 or > 0.

We next assume : is bounded as --, 0, --+ cx3, and ( --+ oo and seek a
particular solution of the system (24)-(25) in the form

(26) . = Yo(k()Ko(Akl(), Re(A) > 0

where Jo(x) is the Bessel function of the first kind of order zero and I(o(X)
is the modified Bessel function of the second kind.

Introducing the joint Laplace and Hankel transform (see Myint-U and
Debnath, 1987)

(27) (k, s) = e-’tdt rJo(kr)l(r, t)dr
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we obtain the integral solutions of (24)-(25) with (3) so that g0(k) = a in
the form

kJo(kr)P(;kl+ N + ’(’A ii’dk

(29) r/(v, t)

(30)

where

Ko()

(32) () = K0(:) = Ho(1)(i) 1 4- -{-O as , --e oo

and Q is the limit of P as -- 1+ fter the double integral with respect to
s and k has been evaluated.

Te also note that

(33) exp[--n(- 1)] as I-* oo, > 0, >

A careful inspection of (30) reveals that the s-integral has three poles at
s = 0 and s = =t=iw, and the dispersion relation is obtained by replacing s
by =l=iw in the expression for A and then equating the denominator of (30)
to zero so that

(34)

In order to simplify this result, we observe that equilibrium between the
constant gravitational field and the centrifugal acceleration at z = z0 leads
to = g/2 so that a dimensionless parameter = 12I/g can be introduced.
Clearly a -+ oo (l --e oo) corresponds to the horizontal free surface of the
liquid. In this limit, the free-surface curvature of the liquid will be absent
and (32)is used to simplify (34)in the form

(36) (w: N):, = gk.
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This is the dispersion relation in a uniformly rotating stratified liquid. In
he absence of roaion (f = 0), he dispersion relation agrees wih Deb-
nh and Guh (1989). On he oher hnd, when here is no srificaion
(N = 0), (36) reduces to the corresponding dispersion relation for a rotating
liquid. Finally, in the limits 2f 0 and N --. 0, the dispersion relation is
approximately equal to

(37) w 1 N( + 4a2) + gk.

This reduces to the famous dispersion relation (w = gk) in deep water in a

non-rotating, non-stratified case.

4. ASYMPTOTIC REPRESENTATION OF THE FREE
SURFACE ELEVATION.

In order to determine the ultimate nature of the waves in a rotating
stratified liquid, the asymptotic behavior of the solution for sufficiently large
time is of special interest. We next introduce the non-dimensionM elevation

* = (r/a)(r, t) where (r,t) is given by (30), and write

+= ! eStds dk

(39) = + y
where and are made up of the polar and branch-point contributions
respectively.

Making the change of variable kr = u/ and introducing the non-dimensional
parameters = gt:/r, v = t, = r/l, 2r/g, fl8 = g2r/g, we rewrite
(38) and then apply the Cauchy theorem of residue to obtain the polar con-
tribution as

(40) (r, t) = r 1 cos(wt)Jo(kr)Qk dk

2
We next replace Jo(kr) by its asymptotic value for large kr, and then

apply the method of stationary phase to evaluate for large . It tur out
that
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Similarly, r/ can also be evaluated asymptotically to obtain

. 2Nr 4ftr
Jl(2ft) as Nt fit --. c

2f10

A simple combination of (41) and (42) gives an asymptotic solution for
(r, t) wch consists of three distinct terms representing waves. The term
(41) corresponds to suace waves which are qualitatively similar to those in
the classical Cauchy-Poisson waves in an inviscid, non-rotating, non-stratified
liquid. However, the amplitude of those waves is modified by both rotation
and stratification. But the main effect of rotation and stratification is the
phase shift by an amount 2+a/2 in the ympototic wavetrains. The terms
in (42) correspond to waves of frequency N and 2 and the amplitudes of
these waves decay to zero as Nt and t . These are not surface
waves and their existence is entirely due to rotation and density-stratification.
They have no ntecedents in a non-rotating and non-stratified inviscid liquid.
in the absence of rotation (2 = 0), this analysis is in perfect agreement with
that of Debnath and Guha (1989) in an inviscid stratified liquid.

(43)
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