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THE COMPUTATION OF STATIONARY DISTRIBUTIONS
OF MARKOV IAINS THROUGH PERTU]UIATIONSx

JEFFREY J. HUNTER2
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An algorithmic procedure for the determination of the stationary
distribution of a finite, m-state, irreducible Markov chain, that does not
require the use of methods for solving systems of linear equations, is presented.
The technique is based upon a succession of m, rank one, perturbations of the
trivial doubly stochastic matrix whose known steady state vector is updated at
each stage to yield the required stationary probability vector.
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I. INTRODUCTION

In recent years, widespread attention has been given to the computation of stationary

distributions of Markov chains. A variety of methods have been suggested and implemented.

Before considering an alternative way for finding such distributions, it is of interest to give a brief

survey of the techniques that have been employed.

Paige, Styan and Wachter (1975) presented a comprehensive survey of eight different

algorithms involving a variety of procedures including the use of generalized inverses, rank

reduction, least squares and power methods. Their recommendation was a direct method that

involved transforming the singular set of stationary equations into a non-singular system using a

rank one modification followed by Gaussian elimination with row pivoting. A further study by
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Harrod and Plemmons (1984) provided another direct approach based upon the LU factorization

using Gaussian elimination without pivoting.

Iterative techniques and approximation methods have been surveyed by Koury, McAllister

and Stewart (1984). When the transition matrix is large and exhibits nearly completely

decomposable structure it is shown that a method of "aggregation" can be combined with point and

block iterative techniques to produce methods which converge rapidly to the stationary probability

vector.

Sheskin (1985) presented a partitioning algorithm that used a matrix reduction routine that

partitions the transition matrix to create a sequence of smaller order transition matrices followed by

a vector enlargement routine that enables the components of the steady state vector to be

determined sequentially. A related procedure was developed by Grassmann, Taksar and Heyman

(1985) using the theory of regenerative processes. They derived relationships between the steady

state probabilities which are then used to develop a numerical algorithm to find these probabilities.

Both of these latter two techniques appear to be, in effect, modifications of Gaussian elimination.

More recently, Meyer (1987), has utilized the concept of %tochastic complementation"

whereby an irreducible chain is uncoupled into smaller irreducible chains whose stationary

distributions can be coupled back together to produce the stationary distribution of the original

chain.

In this paper, an entirely new approach involving the analysis of perturbed Markov chains is

considered. In Hunter (1986), techniques for updating the stationary distribution of a finite

irreducible Markov chain, following a rank one perturbation of its transition matrix, were presented.

In this current paper, these techniques are utilized, to construct a general procedure for determining

the stationary distribution of any finite irreducible Markov chain. A significant feature of the

proposed algorithm is that at no stage does a system of linear equations have to be solved and

consequently there is no reliance upon computer subroutines for matrix inversion or, the more

generally accepted method of solution, Gaussian elimination with or without pivoting.

The basic idea is very simple. Suppose the steady state probability vector of an m-state

irreducible Markov chain with given transition matrix P is required. Let P0 be the transition

matrix of another irreducible, m-state, Markov chain with known stationary probability vector 0"

By replacing, successively, the elements of each row of P0 with the corresponding row elements as

specified by P and recomputing the stationary probability vector of the resultant perturbed

transition matrix, the vector .Tr 0 can be transformed, in m stages, to , by a series of m updates.
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As the irreducibility of a Markov chain is governed by the location of the positive entries in

its transition matrix, to ensure the irreducibility of each perturbed Markov chain it is sufficient to

commence with P0 containing positive elements placed at least in the same position as those in P.

Consider starting with the trivial doubly stochastic matrix P0 with each dement having the

value l/m, so that P0 =ee [m, where e = (1,1,...,1) is a vector of ones. As can be easily

shown, 0 =e /m.

For i = 1,2,...,m, let e be the ith elementary (column) vector with a one in the th

position and zeros elsewhere. Let =ep(P be the th row of P and let

where

(i.i)

Let r be the stationary probability vector associated with the Markov chain with
m

transition matrix Pi, and, since P =i=eii=p,yl. is in fact the required vector ,." .
2. GENERAL THEORY

The construction of the algorithm is based upon the following results.

Theorem .1. Let Pi be the transition matrix of a finite irreducible Markov chain with

stationary probability vector r :.
(a) i Pi +L u is non.singular if and only if,.i i yO andr t 5kO.,i,.,,i

(b) Under the conditions of (a),

(2.1)

It +LOt i--- u

(1982).
Proof. For (a) see Theorem 3.3 in Hunter (1982) and for (b) see Corollary 4.1.2 in Hunter

Theorem 2.. If X is non-singular and ’X-ia # -1, then

(X+ ’)- = x -i X-la b ’X -i

l+ ,x
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Proof. This is the Sherman-Morrison formula. See Golub and Van Loan (1983), p. 3.

Suppose that following the th perturbation, the stationary probability vector r has been

found for the Markov chain with transition matrix Pi, as given by (1.1), by using the procedure

described by Theorem 2.1 (b) for suitable choices of and u i"

In Hunter (1986) it was shown that it is possible to find an expression for r + 1, associated

with Pi + t, using the same procedure outlined in Theorem 2.1 (b), by choosing the + 1 and u + 1

in such a way that [I-Pi+l+i+l -1
i+ 1] can be determined from the earlier deduced

expression [I- Pi + u ti]- 1, without performing an additional matrix inversion.

For the particular situation under consideration, for i = 0,1,..., m- 1, ift + 1 = + t and

u i+ 1 =u i+b i+ 1, where biis given by (1.2), then, from (1.1),

I-Pi+l+i+l u’ -I-Pi+i+1-- i+l Ui

I-Pi+Z u -t i) ui+(Zi+ ~r (2.4)

Now if [I Pi +t u i]- 1 exists, from the proof of Theorem 3.3 in Hunter (1982),

Thus, using (2.3), (2.4) and (2.5), if A - [I Pi+ i]- 1 exists,

Ai + t = Ai[I + Z i-L + l) ’t I.

Equation (2.6) is ideally suited for recursive operations once an initial inverse

A0 = [I- Po-t 0 u ]- 1 has been determined. However, because of the form of P0 that has been

selected, if o =e and u,E o = t/m, no matrix inverse has to be computed since, in this instance,

I- Po +Z o o = I- ’/m+ ’/m = I.

Furthermore, using (2.2),

’/,,,0 =u0 m,

and, from (2.1),

r /0 = m.
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The basic algorithmic procedure now follows:

Let t o =e ,u o =e ’/rn, Ao = I, o

For i = 1, 2, ., m, let t = i, and = ’i-1 + P - ’/m.

Compute Ai = Ai 1[I + 1 -L i) ti_ 1] ti- 1L i]"

Compute ,.,a = u,., ," (2.8)

Compute .=ar t/ e (2.9).,i i,.

Then r

matrix P = [Pij]"

is the stationary probability vector of the Markov chain with transition=m

andSince the elements of any stationary probability vector are always positive, t
i- 1 t are both positive. Further, by induction, for i = 0,1,..., m,

u e = 1, (2.10)

so that the conditions of Theorem 2.1 and 2.2 are satisfied.

3. REFINEMENTS TO THE ALGORITHM

Although the procedure suggested in Section 2 will lead to the required stationary

probability vector there are some modifications that, if employed, will lead to a more efficient

procedure.

3.1. MODIFICATION TO THE " : COMPUTATION
The ultimate aim of the algorithm is to determine Unless the stationary

distributions of the intermediate perturbed Markov chains are required, some simplification can be

effected by observing that (2.7) requires ’i- 1 through its scaled version ,,,Tr ’i_1/ ’i-li" The

scaling suggested by (2.9) is not required until the final step when i = m.

Thus, for = 0, 1,..., rn- 1, let

(3.1)

Then, v o =e and for = 1, 2,..., m 1,

v’ tiA /u .A,,,i =u ii+l" (3.2)
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If 7r is required then it can be recovered simply. For = 0,1,..., m- 1,

using (2.8) and (2.9).At the final step, compute E m

3.2. MODIFICATION TO THE A COMPUTATION

With the notation introduced in Section 3.1, it is easily seen that the early terms in the

{Ai} sequence are given, after simplification, as

A0= I,

AI=A0+( -1)v, (3.4)

A2 : A1 -I-(,f. 1-e 2)v I’ (3.5)

A3:A2-I-[(I-v13)e 1-1"v13e 2-e 3]v ,
A4 A3 + [{1 v4 (1 v13)v24} 1

-I" (t)14 V13t)24 ,e 2 -I" t)24 ,e 3--,e 4] , ’ (3.7)

where vii -= v j’ so that vi, + 1 =" 1 for = 1, 2,..., m- 1.

The above results provide motivation for the following theorem.

Theorem 3.1. For n = O, 1,..., m- 1,

An + 1 = An + Bn, (3.8)

where

Bn = An( e n- n + 1) v,E n n (3.9)

withe o =- e so that b = rn-1o e e and for n 1, 2,

n--bln1W’"+bnn n- n+l" (3.10)

Proof. The theorem is obviously true by inspection, from (3.4) to (3.7), for n = 0,1,2,3.

Assume that (3.9) and (3.10) hold for n = 0,1,...k so that
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A + 1 Ak + Bt: = Al- 1 + Bk- 1 + Bt,

k

=...=I+ EBn
Hence

Bk+ -- Ak+x( k+x-e }+2)v tk+l,

k---- (I + B0 + E Bn)( k + 1 - k + 2)v,Y., ’k + l,

implying that
k n

’.](z
n=l m=l

Since ’( k + 1 --,e k + 2) = 0,

n=l m=l

k k

m=l n=m

k+l

E (Vm- l,k + l Vm- l,k + 2)e m
rn=2

showing that b k + 1 is linear combination ofe 1," .,e k + 2 with k + 2 having coefficient 1. Thus

(3.10) is true for n = k + 1 and the theorem follows by induction.

Observe that

k+l

:+ = b,}+x,..- :+ , (3.12)
m=l

where
k

bl,k + 1 E bl, n(t)n,k + 1 Vn, k + 2)’ (3.13)

bk + 1, k + 1 = Vk, k + 2’ (since vk, k + 1 = 1),

and for m = 2,..., k,
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k

bin, k+ 1 =
n=m-1

bm, n(Vn, k+l--Vn, k+l)"

Note that

Bn=n vn--- bin
b2n

Vnl, un2, ...,

blnVnl blnVn2 blnVnm

b2nVnl b2nvn2 b2nvnm

bnnVnl bnnvn2 bnnvnm

3nl 1)n2

0 0 0

0 0 0

Thus, in the matrix Bn, all the entries in rows number n + 2,...,m are zero. Obviously, this has

considerable significance in the calculation of the matrices Ai(i = 2,...,m) as required in the

algorithm.
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The updating process, given by (2.7), can be replaced for i = 2,..., m, by

Ai = Ai- 1 + Bi- 1,

where

B 1-’Ai_l(ei l’-i) v i-1

is such that only the first i rows of B 1 are computed with the remaining entries set equal to zero.

Furthermore, from (3.16), some of the rows of Bn have a special form and do not require

computation. In particular, the (n + 1)th row is simply -v n while, from (3.14), the nth row is

Vn 1, n + 1 times ..v n"

Note also that the (n + 1)st column of Bn is b n since Vn, n + 1 = 1.

There are also some other checks that can be applied.

Theorem 3.2. For i = 1, 2,..., m,

A/ i=e, (3.19)

1 (.20)m e A =
e ’B = 0 ’. (3.21)

Proof. Since A = [I Pi +L i]- 1, equation (3.17) of Hunter (1982) implies that

yielding (3.19) with t = i"

Equation (3.20) is obviously true when = 1 since

e ’A1 = ’[I + (e -e 1)e

-~-e +(m- 1) ,

Thus, by induction, if (3.20) is true for i = 1,2,...,k, from (2.7) and (3.1),
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=e +( ’e ’e,,.- ~+)t: =e~
Thus (3.20) and hence also (3.21) follow.

A consequence of Theorem 3.2 is that the th column of A consists solely of unit elements

while the sum of elements of each column of B is zero.

3.3. MODIFICATION TO THE i COMPUTATION

Although the {Ai}(i = 0,1,...,m) sequence plays an integral role in the procedure, the

matrices A are required only to obtain the sequence of vectors ...i=iaA., and hence the vectors

v (. Thus is worth examining whether it is possible to dispense with explicit calculation of the A by

deriving the { i}(i = 1,2,...,m)sequence recursively.

Theorem 3.3. For = 0,1, 2,..., m- 1,

CZ, i+1 =v --e +,. A,-,.,i i+1 i+1" (3.22)

Proof. First observe that, from (2.8),

so that (3.22) holds for i = 0 since

In general, for = 1,2,...,m- 1, from (2.8),

a Aii+1= i+1 +1,

-’[ u,E ]A’Ira) +’i+1 +1" (3.23)

Now

’A. -_e Zui ,+l=i[Ai’4"Ai(i i+

=a,
_

i+i( ei i+ i’

"k" Ot Oti, + 1) li’ (3.24)

where aij = ...a’i j" But, from (3.19) and (2.10),
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tA.otii=i ,i=ie = 1,

and, since from (3.2) and (2.8), ...i=Zi/v’ai, + 1, (3.24) becomes

tA. = v,’,,i ’+1 ,’i"

Equation (3.22) now follows from (3.23) upon substitution of (3.26) and (3.20).

Theorem 3.3 shows that in updating from ,..ia to ...a ti+l the term .P i+ 1Ai +z must be

.,p and for a this isrequire, successively, p 1’computed. The calculations of x,a 2,"’, + 1

the first time ..P i+, the (i + 1)th row of P is involved.

Although, Pti+ 1Ai +1 can be expressed in terms of Ai, as can be seen from the next

theorem, very little advantage is gained since such terms are required for each i = 0,1,..., m- 1.

Theorem 3.4. For i = 0,1,..., m- 1,

P’ xA = i+ (P + i+ ..,i"i+ i+l pt 1Ai+t_ i 1Ai 1) v (3.27)

Proof. For i = 0,

= I[z+( -z)z’],PxA1 P

and the result follows, since p . = 1,v 0 = and A0 = I.

In general, for i= 1,2,...,m-1, from (2.7) and (3.1),

P ’i Ai ’i [Ai + Ai( -+x +x

Equation (3.27) follows since, from (3.19),

p Ai = i+1 = 1.i+1 i

As a consequence of Theorem 3.3, it is suggested that (2.8) in the algorithm be replace by

(3.22).
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3.4. MODIFICATION TO THE r m = r COMPUTATION

derived asAt the final step of the algorithm Am can be computed and consequently r"

a r"/.. e where a m =u mAm. However, Am need not be explicitly determined since, from

Theorem 3.3 and 3.4,

.._,m =v,E r"- + P mAr",

where p mAm = p mAm 1 + 2. r"- 1 "-( P mAre 1 r") rn .-1

4. RECOMMENDED PROCEDURE

As a consequence of the refinements discussed in Section 3, it is suggested that the algorithm

be constructed as follows:

1) LetAz=I+(e -t)e’.
tA1"2) Let 1 ’P 1

3) For i = 1, 2,...,m- 2 compute

.’ ,/
(b) Bi = Ai( e i- e,5 i+ 1) 2.
(c) A + = A + Bi,
(d) Ai+1-’ i-’,,e -t-P i+1 +1"

4) Let v m--1--, m-1 m--l,e m"

5) Let a. rn = 2v r" e + p mAr._ 1 ( P mAr. r"--I

6) Let .’t=a’.,., m=m
The order of the number of arithmetic operations (multiplication and division) required to

’A. have adetermine can be estimated as follows. The computation of the B and the

dominant effect on the number of operations required. Since Ai( e i-e + ) is effectively the

difference of two columns of Ai, only mi operations are required to determine Bi, taking into

consideration that B has only (i + 1) non-zero rows, and, as a consequence of (3.21), that the

elements of one row can be found from the other rows using the fact that each column sums to zero.

A. will require m2 operations, although thisOn the other hand, for a general transition matrix, Pi
,.Acan be reduced to re(m-l) since the ith element of this row vector, pi ,e i-Pie =1, (by

using (3.19)). Since the other calculations required are relatively insignificant in comparison, the

total number of operations is of the order of

m--1 rn

E mi + Z m(m- 1) = 3m2(m- 1)/2, i.e. of order 3m3/2.
i=1 s=l
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To solve for the stationary distribution directly using Gaussian elimination requires of the

order fo 4m3/3, while to solve directly using a matrix inversion routine requires of the order of 2m3

operations, (see Isaacson and Keller (1966)).

The procedure is, in effect, finding the stationary distribution of m different irreducible

Markov chains and consequently the routine that has been developed offers much more information

than other techniques currently available.

Although it has been suggested that the algorithm proceed row by row, there is no necessity

to adhere to a strict sequential ordering of the rows. The procedure as outlined by (2.7), (2.8) and

(2.9) can easily be adapted to such changes by altering the t and u (. A consequence of this is that

the effect of changing selected transition probabilities upon the stationary distribution can easily be

determined. (See also Hunter (1986)).

The procedure also offers the opportunity to utilize the structure of special transition

matrices. For example, if the transition matrix of the chain is banded with Pi:i = 0 for j < i-g and

j > i + h, which occurs in some queueing models, the calculation of p iAi will require at most

(g+h)m operations and the algorithm will require on the order of only m3/2 +(g+h)m2

operations.

5. STRUCUtL RESULTS

In Section 3.2 expressions for the first few terms of the {Ai) sequence were derived. By

using those terms and working through the first few steps of the algorithm it can be shown, that,

following simplification, for = 1, 2, 3,

= (oe +. + + )/,,
V = (lio + #il 1 + + #ii P i) / (#iO + #il Pl, + 1 + + #iiPi, + 1),

=( + +... + ) / (mo + +... + (5.3)

where/10 = I- Pll,

/II = I,

P20 = (1 Pll)(1 P22) P12P21,

#21 = 1 +/921--P22,

#22 1 Pll q- PI2,
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g30 = (1 Pll)(1 P22)(1 P33)- P12P23P31 P13P21P32

P13( 1 P22)Pal -(1 P11)P23P32 -t- P12P21(1 P33),

/31 " P21(1 P33 ’-I- P32) -I" (1 P22)(1 --/933 --I- P31) -I" 1923(/931 P32),

/’t32 = P31(P12 --/913) "1" P32(1 Pll -t" P13) -F (1 P33)(1 Pll -t-. P12),

/33 (1 1911)(1 P22 "b P23) -t- P12(P23 1921) -1" 1913( 1 1922 -I"/221 ).

The general structure exhibited by (5.1), and hence also by (5.2) and (5.3), holds for all

= 1,2,...,m. [A proof by induction shows that if (5.1) and (5.2) hold for = 1,...,n then, since

p 1A = n+ln+ n+l P’ [I+Bo+’"+Bn]"

=pt~, + [t +L o z o +... +L, z ’.],

,+ +( ,+0) +... + (’,+ ,),,’

using (3.22) with i=n,Z’n+ is a linear combination of ..v,’",n,P’n+, i.e. of

...e t,p 1,...,pt tn+t" Furthermore, the coefficient of ..P tn+ is unity whereby establishing the general

structure of n+l"

Note also that, from (5.1) and (3.25), ’iei= 1, for i= 1,..., m and thus

I.tiO + I.tilPli -+’....q- t.tiiPii i.tii. (5.4)

Further, for = 1, 2 it can be shown, by direct verification, that

I.tiO -t" I.tilPi, + 1 q- "+" IgiiPi, + 1 = tgi + 1,i + 1

which implies that

vii e I’tii/lti + 1,i + 1, (5.6)

and

Oi,i + 1 =O e + I-ti + ,i + 1/#ii,

results that it has not been possible to establish in general.

Let (I- P)i be the leading ith order principal submatrix of I- P formed by deleting all but

the first rows and columns then, for = 1, 2, 3

laio det(I- P)i" (5.8)
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For the special case when m = 3, with the notation used earlier in this section, it can be

verified that

where

: (lil’i2’li3)/i{’ (i = 1,2,3),

V (Pil’l’ti2’li3)/Pi + l,i+l’

(5.9)

71"! i3)/(/.til "1" ]2 "1-/.ti3),=" (Dil/’ti2

(i = 1,2), (5.10)

I = 1 Pll -I- PI2 =/22,

/13 = 1 Pll -l- P13,

P23 P33 3P30"

(i = 1,2, 3), (5.11)

and give, respectively, the stationary probability vectors of theObserve that ,
2 3

Markov chains whose transition matrices are

Pll P12 P13

1/3 1/3 1/3

1/3 1/3 1/3

Pll P12 P13

P21 P22 P23

1/3 1/3 1/3

and

Pll P12 P13

P21 P22 P23

P31 P32 P33

In examining (5.11), with i = 3, it can be shown that P3j = 3Dj,(j = 1,2,3), where Dj is

the determinant formed by striking out the jth row and jth column of I- P. This leads to an

expression for the stationary probability vector of a general irreducible, three state, Markov chain as

3

Z’ = (D1, D2, D3)/E Dj. (5.12)

The natural extension of (5.12) for a general finite irreducible Markov chain is also true,

such a result being attributed to Mihoc by Fr6chet (1950) and rediscovered by Singer (1964).

Although the full details of a proof of the generalization of (5.12) using the techniques of

this paper have not been worked out, it is conjectured that for an m-state chain Pmj = mDj, (
result that holds for m = 2,3), so that the procedures proposed in this paper appear to lead to an

effective algorithmic construction of Mihoc’s technique.
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6. EXAMPLE

As an illustration of the perturbation procedure, we compute the stationary probabilities for

the irreducible five-state Markov chain example used in Sheskin (1985) which was taken from

Kemeny and Snell (1960) p. 199. The (1,1) entry has been changed to ensure that P is in fact a

stochastic matrix, so that P is given by

0.831 0.033 0.013 0.028 0.095

0.046 0.788 0.016 0.038 0.112

0.038 0.034 0.785 0.036 0.107

0.054 0.045 0.017 0.728 0.156

0.082 0.065 0.023 0.071 0.759

The following calculations were performed on a Macintosh computer using the Microsoft

Excel software spreadsheet. Although the program yields expressions to 14 significant figures, the

results have been rounded to 3 decimal places.

1’ -- (1.000, 0.202, 0.182, 0.197, 0.264),

(4.950, 1.000, 0.901, 0.975, 1.307),

2 (1.277, 1.000, 0.202, 0.244, 0.403),

v 2’ -- (6.309, 4.939, l.O00, 1.203, 1.991),

3’ ---- (1.593, 1232,. 1000,. 0.302, 0.571),

V 3 (5.275, 4.079, 3.311, 1.000, 1.890),

,,,4 (1.717, 1.295, 0.935, 1.000, 0.705),

v 4’ ---- (2.434, 1.836, 1.326, 1.418, 1.000),

5’ ---- (0.841, 0.573, 0.237, 0.459, 1.000).

From the above calculations, the stationary probabilities for each successive perturbed
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transition matrix can easily be calculated, yielding the following results:

1’ -- (0.542, 0.109, 0.099, 0.107, 0.143),

2’ -- (0.409, 0.320, 0.065, 0.078, 0.129),

31 _- (0.339, 0.262, 0.213, 0.064, 0.122),

4’ ---- (0.304, 0.229, 0.165, 0.177, 0.125),

5’ ---- (0.270, 0.184, 0.076, 0.148, 0.322).

7. FINAL COMMENTS

The initial choice of Po as e I/m ensures that it is possible to start with an irreducible

Markov chain whose stationary distribution is easily found without having to compute a matrix

inverse or to solve a general set of linear equations. The fact that every element of P0 is non-zero

leads to a sequence of matrices A1, A2,... that are "dense". Is it possible to start with a different

Markov chain, say one that is relatively sparse, whose stationary distribution is well known and such

that, for the early recursions, the equivalent sequence A1, A2,... retains such a sparsity property?

The periodic Markov chain with entries pi+)l = 1,(i= 1,2, ..,m 1), and /)ml = 1 is a

potential candidate for Po, whose stationary probability vector is also o =e I/m. Even ift o and

u o can be specified so that A0 -[I- Po d- o u ]- has a simple structure much care would be

required in carrying out any sequential row modification with this Po. For example if, for the

specified P transition matrix, P12 = 0 then state 2 is never reached in the Markov chain with

transition matrix P violating the required irreducibility property of P1.
The major advantage in choosing Po=ee/m is that the irreducibility of each Pi

transition matrix is guaranteed at each step of the procedure.
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