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ABSTRACT
Based upon Biot’s [1965] theory of initial stresses of hydrostatic nature produced by

the effect of gravity, a study is made of surface waves in higher order visco-elasdc

media under the influence of gravity. The equation for the wave velocity of Stonely

waves in the presence of viscous and gravitational effects is obtained. This is followed

by particular cases of surface waves including Rayleigh waves and Love waves in the

presence of viscous and gravity effects. In all cases the wave-velocity equations are

found to be in perfect agreement with the corresponding classical results when the

effects of gravity and viscosity are neglected.
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1. INTRODUCTION

Love (1911) has studied the effects of gravity on various wave problems and shown

that the velocity of Rayleigh waves increases significantly due to the gravitational field

when the wavelength of the waves is large. Subsequently, Biot (1965) has developed a

mathematical theory of initial stresses to investigate the effects of gravity on Rayleigh

waves in an incompressible medium assuming that gravity generates an initial stress

hydrostatic in nature. Based upon Biot’s theory, Sengupta et al (1974-1987) has

investigated the effect of gravity on some problems of elastic waves and vibrations, and

on the propagation of waves in an elastic layer. The effect of viscosity was not

considered in these studies.

The main purpose of this paper is to study surface waves in higher order visco-elastic

solid under the influence of gravity. The equation for the wave velocity of Stonely waves

in the presence of viscous and gravitational effects is derived. This is followed by

particular cases of surface waves including Rayleigh waves and Love waves. It is shown

that in all cases the wave-velocity equations are in excellent agreement with the

corresponding classical results [Bulen (1965)] when the effects of viscosity and gravity

are neglected.

2. BASIC EQUATIONS OF MOTION IN A VISCO-ELASTIC MEDIUM.

We consider two homogeneous semi-infinite visco-elastic media, M and M2 in

contact with each other (M2 being above M1) along a common horizontal plane

boundary. We choose the rectangular Cartesian coordinate system with the origin at any

point on the plane boundary and the z-axis normal to M1. We assume the disturbance is

confined to the neighborhood of the common boundary and examine the possibility of a

kind of wave traveling in the positive x direction. We further assume that at any instant

of time all the particular in a line parallel to the y-axis have equal displacements, that is,

all partial derivatives with respect to y vanish.

Introducing the displacement vector u (u,v,w) at any point (x,y,z) at time t, it is

convenient to separate the purely dilatafional and purely rotational disturbances associated

with the components u and w by introducing the two displacement potentials and
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which are functions of x, z and t in the form

(2.1.ab) u = x z, w = tz + x

From these results, it follows that

(2.2ab) V2 = ux + Vy + wz-- A, VZ = wx uz

In standard notations (Bullen [1965]), the component v is associated with purely

distortional waves, and the quantities , xg and v are associated with P waves, SV

waves, and SH waves respectively. The dynamical equations of motion for

three-dimensional wave problem under the influence of gravity are

11 C12 )U13 )W 2U
aX + 0y + aZ +Pg"’x = POt2

0’21(2.4/ Ox + 30"22 00"23 )W 32V
Oy-+ gz +pg’" : p It2II

(2.5)
)0’31 )(3’32 (3’33 (U )V) ),2.W
0x + 0y + :Oz Pg "x + "" = p’’3t2

where ij are the stress components, p is the density of the medium and g is the

acceleration due to gravity.

According to Voigt’s definition, the stress-strain relations in a higher-order

visco-elastic medium are

(2.6) crij = iij %k--- A + 2 g eij
Otk

where 0, go and 1, gl, ,2, i.i.2, )tn, I.t", are respectively Lame’s elastic
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constants and the effect of viscosity constants, respectively.
We substitute (2.6) into equations (2.3) (2.5), and assume that all partial derivatives

with respect to y vanish. This leads us to obtai’n the following dynamical equations of

motion of a general visco-elastic solid under the influence of gravity.

(2.7) (.k + l.l.k) k A k W 2U
x + I.t V2u+pg = p"aTx

(2.8) k O2V
k=Ol.t V2v = 19 )t2

(2.9) (gvk+gk) 8k 8A

k--O

k V2 Ou w+ l.t w-pg-" = 9
dt

2
k=O

Finally, equations (2.7) (2.9) can be expressed in terms of the displacement

potentials and q in the form

(2.10) Ccj 7 V2j + g = ’at2

(2.11) k= Ok V2itj- g--- =

(2.12) Ik=0 k2 k I 2(v)j
=

where the suffixes j 1, 2 have been used to designate quantities for the media M and

M2 respectively and

ka ( + 2 ) k
z l.tj

(2.7ab) ctj =
PJ

and 13j =---,pj (k = 0,1,2, n)
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3. TIlE SOLUONOF THE PROBLEM.

In order to solve (2.10)-(2.12) for the medium Mx, we write down the solutions in

the form

(3.1) = F(z) exp {io(x ct)}

(3.2) xg = G(z) exp {io(x ct)}

(3.3) (v)t = H(z) exp {i0(x et)}

Substituting for and 11/1 into the relations (2.10) and (2.11) we obtain

(3.4) (d22 1 i gonG2
+h F+ =0

)k k
z

(-1 (icoc)k 1
k=O

(3.5) 23 i golF
+R1 G =0

I1

k=0

where
22 22

2 (0C 2 2 OC 2
hi= Co and Rx= -03

nn
k2E (-l)k (icOc)k OCl E (-l)k (iOc)k

k=O k=O

From equations (3.4) (3.5) we find that F and G satisfy the ordinary differential

equation

(3.7) + PlC + ql {F,G} = 0

where
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(3.8ab) Pl + o, = 2 Plql = 4-

with

2 2
2 cog

A solution for F from the equation (3.7) is

(3.10) F = A exp (icopz) + B 1 exp (ioxtz) + L1 exp (-ioz)

+ N1 exp (-icoqlz)
where A, B1, L1, and N are constants.

For surface wave solutions, F tends to zero at large distances from the boundary.
This requirement is fulfilled provided the real part of the argument of the exponential

function is negative. In view of this condition, the constants L1 andN in the solution

(3.10) for F must vanish in the lower medium M1. Then the solution for in M is

(3.11) = {A exp (icoPlZ) + B 1 exp (icoqlz)} exp {ico(x- ct)}

Similarly, we can find the solution for t and v

(3.12) /1 = {C1 exp (icoPlZ) + D exp (icoqlz)} exp {ico(x-ct)}

(3.13) (v) = exp {io (sz + x ct)}

where
2

c
1Sl = Pln

)k )k kZ(-1 (icoc g
k=O

1/2
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with a positive imaginary part, and C and D are constants.

It then follows from (3.4) that C andD are related to A and B1 through

C = nA and D rB where

(3.14)

(- l)k (ic0c)k 1
2 2 k=0

n1 = (C0 p h )
icog

)k k(-1 (ic0c)
k

2 2 h21) k 0
r = (CO q icog

A similar argument enables us to find the solutions in the upper medium M2.
We next formulate the two boundary conditions which must be satisfied for the

present problem:

I. The components of displacement at the boundary surface between the media M and

M2 must be continuous at all points and times.

II. The stress components 3, r32, and 33 must also be continuous at all points and

times across the boundary surface.

Using the boundary condition I, from the values of ( and gr in the two media, after

use of the relation (2.lab) in each case, we obtain

(3.16) AI(1 -nlPI) + B1(1 qql ) = A2(1 + n2P2) + B2(1 + r2q2)

(3.17) E = E2 and

(3.18) AI(P + n1) + Bl(q + rI) = A2(-P2 + n2) + B2(-q2 + r2)

The stress components in the visco-elastic media of Voigt’s type are given by
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(3.19)

(3.20) (32)j = I.t Oz and

(3.21) + 2 gj )Z2
+ 0x0z)

where, as before j = 1, 2 for the media M, M2.

Applying the second boundary condition to equation (3.19) (3.21), we obtain

(3.22) * 2 2l.t{Al(nlP 2p n) + Bl(rq 2ql r)}

* 2 2 2= {A2(n2Pe + 2P2- n2) + B2(r q2 + 2q2 r2)}

(3.23) SlktlE =-s2k2E2

(3.24) A {%1(1 + p ) + 2glPl(Pl + nl)} + B{t,l(1 + q) + 21.tql(ql + rl)}

= A2{)(1 + p22) + 2l.t2P2(p2 n2)} + B2{,2(1 + q)+ 213,2q2(q2 r2)}

where the asterisks indicate the complex quantifies as

(3.25) 0

n

= O + E (-l)k(icoc)kOk
k=O

It follows from equations (3.17) and (3.23) that both E and F vanish and hence

there is no displacement in the y direction, that is, the is no transverse component of

displacement. Thus no SH waves occur in this case.

By eliminating the constants A1, B1, A, and B= from equations (3.16), (3.18),
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(3.22), and (3.24), we obtain the equation for the wave velocity in determinant form

(3.26)
F l(P i, nl) F l(q i, nl) F:(pl, nl) Fl(qz

Hi(pt, hi) Hi(qi, hi) H(p2, n) H(q, p)

where

(3.27) * 2 *Fi(p,n) = gi(P n 2p n), F2(p,n) = 2(n np
2 2p),

* 2) * L(1 p2) 21a.2p(n p).(3.28) Hl(P,n) = -1,1(1 + p 2[.tlp(p + n) tg
2 = +

The roots of equation (3.26) determine the wave velocity of surface wave propagation

along the common boundary between two visco-elastic solid media of the

Voigt type in the presence of a gravitational field. In other words, this equation gives the

wave velocity of Stonely waves in the presence of viscous and gravity effects. In the

absence of these effects, equation (3.8) reduces to that for the classical Stonely waves

(Stonely, 1924). Finally, we can derive results for Rayleigh waves and Love waves as

special cases of this analysis.

4. RAYLEIGH WAVES.

In this case, the upper medium M2 is replaced by vacuum so that the plane boundary

now becomes a free surface of the lower medium M. Consequently,

A2 B2 0 in equations (3.22) and (3.24), and these equations assume the form

(4.1) 2 2
Al(niPi 2Pl nI) + Bl(riq 2ql r) = 0

(4.2) AI{,I(1 + p) + 2[.tlPl(Pl + nl) } + B1{t.1(1 + q) + 2].tlql(ql + rl)} = 0.
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Elimination of the constants A and B from equations (4.1) and (4.2) yields the

following result:

(4.3) 2 2 * *(nlP1 2Pl- n1) {(1 + ql)L1 + 2].tlql(ql + rl)}

2 * *-(rlq1 2ql- r1) {(1 + p) X + 2tlPx(Pl + nl)} = 0

This is the required wave velocity equation of Rayleigh waves in a higher order

visco-elastic solid medium under the influence of gravity. When the effects of gravity
and viscosity are ignored, this equation (4.3) reduces to the corresponding classical result

for the Rayleigh waves (Bullen (1965)).

5. LOVE WAVES.

For the existence of Love waves, we consider a layered semi-inf’mite medium in

which M2 is bounded by two horizontal plane surfaces at a finite distance H apart,

while the lower medium M remains infinite as before. We now have to determine only

the displacement component v in the direction of the y-axis.

For the medium M we proceed exactly as in the general case, and thus (v1) is

given by (3.1) with the imaginary part of s positive. However, for the medium M2

we must retain the full solution since the displacement no longer diminishes with

increasing distance from the common boundary of the two media. Consequently, we
have

(5.1) (v)2 = A’exp{ic.0(s2z + x ct)} B’exp{ieo(s:z + x + ct)}

where the imaginary part of the complex quantity sa is now not positive.

Since the displacement component (v)2 and stress component 3a must be

continuous across the plane of contact, we have

(5.2ab) (v) = (V)2 ((32)1 = (Cr3;Z) on z = 0
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It follows from (3.13) and (5.1) combined with (5.2ab) that

= A’ B’ = I.t2s2(A’- B’)(5.3ab) E + lSlE1

Elimination of E between equations (5.3ab) yields

(5.4) A’(s21.t2 $11) B’(s2g2 + $1.1.1)

Also making use of the boundary condition that there is no stress across the free surface

(5.5) ((32):z = 0 at z =-H

we have from equation (5.1)

(5.6) A’ exp(-e.0s2H) = B’ exp(ios2H)

Eliminating A’ and B’ between equations (5.4) and (5.6), we obtain the result

(5.7) s2g tan(0sH) + islg1 = 0

This is the required wave velocity for Love waves in a higher order visco-elastic

medium under the influence of gravity. It is seen from the equation that Love waves are

not affected by the presence of a gravitational field. For perfectly elastic media,

1k = [.l.2k = 0, (k 1,2, ..., n), equation (5.7) reduces to the corresponding

classical result (Bullen (1965)).

6. CLOSING REMARKS.

The present study reveals that effects of viscosity and gravity are reflected in the wave

velocity equations corresponding to the Stonely waves, Rayleigh waves, and Love

waves. So the results of this analysis seem to be useful in circumstances where these

effects cannot be neglected. Some special cases of this study have been discussed by
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several authors including Sengupta et al (1974- 1987).
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