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ABSTRACT

In this paper we consider an inverse problem that corresponds to an
abstract integrodifferential equation. First, we prove a local existence and
uniqueness theorem. We also show that every continuous solution can be
locally extended in a unique way. Finally, we give sufficient conditions for the
existence and a stability of the global solution.
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1. INTRODUCTION

Let X,Y be two Banach spaces, and let A:D(A) C X—X be a linear operator. Let
T>0,F,,F:[0,T]x X xY—X,L: X—Y,v:[0,T]-Y, and z € X be given data.

We consider the following problem: find (u, p):[0,T]—X xY such that

t
(1) u/(t) = Au(t) + Fy(t,u(?), p(t)) + /Fz(s, u(s),p(t—s))ds,0<t<T,
@  w0)== ’
(3) Lu(t) =v(t),0<t<T.

Such a problem has been considered previously by Prilepko, Orlovskii in [6,7], Lorenzi, Sinestrari in
[4], and the author in [1].

The local existence and uniqueness result is obtained by Prilepko, Orlovskii for the case
F, =0, and by Lorenzi, Sinestrari for the case Y is a subspace of L(X),F,(t,u,p)= pBz, and
Fy(t,u,p) = pBu, where B is some given linear operator in X. The stability problem has been

studied by Lorenzi and Sinestrari in [5].

In [1] the author treats the case of Y = C[0,T]*(n > 1), F,(t,8,(Pys.- 4 P,)) = f: Pi¥i ¥; in
1
X(1<i<n)and Fy; =0. Then a global existence and uniqueness theorem is obtained.
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The present work is concerned with a generalization of those results.

Throughout this paper we assume:
(H1) A is a closed linear operator with a dense domain generating a strongly continuous semi-

group et. Without loss of generality, we suppose that e“* is equibounded:

] et || <M,t>0 for some M > 1.

(H2) =z e D(A),

(H3) LeL(X,Y),

(H4) veCY([0,T}:Y), and v(0) = Lz.

(H5,1) F, and AF, are continuous in [0,T]x D(A)xY.

For each r > 0, there exist positive continuous real valued functions g; ,(r, -), i =0,1 such that
(#5,2) || Fy(tuy,p) |l D(a) = 91,0(mst)

(H5,3) || Fy(t,uy,p1) = Fy(tug, ) | pay < 91,1(m )y — w2 |l pray+ 21— P2l v)s

for each (u;,p;) € {(u,p) € D(A)XY, |lull pay+ llPlly <rhi=1,2, and t€ [0,T].

t t
(H6,1) /F2 and A/F2 are continuous in [0,T]x D(4)xY.
0 0

For each r > 0, there exist positive continuous real valued functions g, i(r, ), i=0,1, such that

t 1
(#6,2) || [ Falorus()pr(t-5)dsll pay < [ an ol e)ds,
0 0

t
(#6,3) || /(F2(s, uy(8), P1(t = 8)) = Fa(s,ug(s), po(t - 8)))ds || p(4)

0 t

< [ 22151405 = ug(o) | iy + 1l 2a(e) = P ),
0
for each (u;,7;) € {(w,2) € C(O,TED(A)x V) sup _ (11u(s) | pgay + 11 2(5) | y) 73, =1,2, and
te(0,T). -
There exist continuous function H,:[0,T}xY xY—Y with the following properties. For each r >0
there exist positive continuous real valued functions C(r, - ) such that
(H7,1) || Hy(tuy,p1) — Hy (899, P2) [l y S C(rit)( [l uy — w2 [l pray+ I Py — P2 |l y), for each
(w5 p) € {1 2) €Y XY, lully+ | p |y S}i = 1,2, and ¢ €[0,T)

K:p—H,(t,9(t),p) has an inverse ®(%,-) continuous map t—®(¢,w), and there exist positive

continuous real valued function k, such that
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(HT,2) (| ®(t,wy) - ®(t,wg) || yrt € [0, Tho; €Y,i=1,2.
(H7)3) LFl(ts U, p) = Hl(t’ LU,P),(‘U, P) € D(A) xY,and te [0,T]-

2. EXISTENCE OF THE LOCAL SOLUTION

In this section we prove that the local solution of our inverse problem is obtained by a fixed

point theorem. Let

a(t) = M|z || pgay+ | 8(E0) 1y + () | V(1) - Le Az |y, € 0T ro =2 sup__al),

9i(rorty8) = M(L+ k() | L1 )(91,i(ror5) + (t — 5)g5,i(r0, 8)) + k() | L || 92,i(r0n8), 0<s<t<T,
i=0,1, and let T € [0, T] be such that

r
T su ro,t,5) < <2, and T su ro,t,8)=7v<1.
° ogsgtgr‘%( whd) <3 0 o<ag¢5'_ryl( ohe) =1

Let Z(Ty) = C([0,Ty): D(A) x Y) equipped with the norm

1@y = 202, (1O o+ 1RO Ny

Then, we define the mapping
U:Z(Ty)—2Z(Ty): (u, p)—(U, P),
where

t
U(t) = etz + / eAlt- ’)Fl(s, u(s), p(s))ds
0
+ / At=2) ] Fyo,u(e), p(s — 0))derds,
P(t) = ¥(t,v'(t) — LeA* Az — / LF,(s,u(s), p(t — s))ds
/ LeAlt- ')AFI(s, u(s), p(t - s))ds

0
- / LeAt=2)4 / Fy(o,u(0), p(s — 0))dods),0 < t < T,

Proposition 1. There exists a unique (ug, pg) in B(rg, Ty) satisfying (ug, pg) = ¥(ug, o),
where B(ry, T'y) denotes the closed ball of Z(T) with the center 0 and radius r;.
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Proof. We claim that ¥ is a strict contraction from B(rg, T,) into itself. Hence, according
to the fixed point theorem, there is a unique (ugy, py) in B(rq, T) such that (uy, pg) = ¥(ug, pg)-
Let (u;,p;) in B(ro, Ty),(U;, P;) = ¥(u;, p;),i = 1,2, and t in [0,T).
We have then

WU I pay < Ml 2|l pay+ M/ | F1(3,u(s), (3)) || payds

+M/ l /Fz(a',“("),l’(s'“))d"' Il p(ayds-
Using (H5) and (H6) we obtain 0

T 1 ppay S MUz |l pay+ M / 91, 0(rgrs)ds + M / / 92,0(ror @)dods

<SM|z| D(A) + M/(gl olre: ) + (¢ "3)92 olror 8))ds.
From (H7,2) we deduce

I PL®) ly < I 2(t0) [l y +k(®) |v/(2) - LeA* Az

14 t
- / LF (s, u(s), p(t — s))ds — / LAt ')AFl(s, u(s), p(t — s))ds
0 0

t s
- / LeAt=94 j Fol,u(0), p(s — 0))dods) || y-

Hence

| Py 1y < 1| 8(2,0) [l y + k(2) | v/(t) = Le** Az || + || L || k(2) _/ 92,0(rg» 8)ds

+ MLk j (91,0(70r) + (£ = )03,y ))ds.
Thus

1T pgay+ 1 POy < 121 pgay + 11860) 1y + k@) | (1)~ LeA e |
+ LK) j o2,0{r8)ds

+ M+ | L] k) / (91,0(r009) + (8 = )3, orn ))ds

t
<a(t)+ /gl(ro,t,s)ds.
0
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This implies that

I WP z(ry) S 7o

On the other hand, in the same way as above, it is easily seen that

U= Ua() | pay+ I Pr() = P Il y
t
< [ 9xrarts )1l 12(5) = wa(6) | ogay + 11 22(6) = pole) [l )

0
<7 gup _ (llua()=s(6) | pgay + 1| 21(s) = 2ls) ).

It follows that
(U1 P1) = Us P ll 27y S 7 1l (81, 21) = (w2 P2) I Z(Ty)
Our claim is proven.

Proposition 2. (u,p) is a solution of the inverse problem (1)—(3) in [0,7"] iff
(u, p) = ¥(u, p).

Proof. 1t is well known that the solution of Cauchy problem (1) and (2) is given by
u(t) = U(t). Therefore, it suffices to show

t
Lu(t) = () iff p(t) = ¥(¢,'(¢) - / LF,(s,u(s), p(t — s))ds — LAu(t))
for each t in [0, T). 0
First, we differentiate Lu(t) = v(t) to obtain

t
Lu'(t) = L{Au(t) + Fy(t,u(t), p(t)) + / Fy(s,u(s), p(t - 8))ds} = v'(¢).
0

Hence

H,y(t,v(1), p(2)) = LF,(t, u(t), p(t))

t
= /(t)— / LF (s, u(s), p(t — 5))ds — LAu(t).
Using (H7,2) we get 0

i
p(t) = U(t,o'(2) / LF(s,u(s), p(t — s))ds — LAu(t)).
0

Conversely, this last equality implies that
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t
H,(t,0(), p(t)) = v'(t) — L{ / Fy(s,u(s), p(t — s))ds — Au(t)}
0

= v(t) = L{u'(t) - F(t, u(t), p(1))}
= v/(t) — Lu/(t) + H,(t, Lu(t), p(t)).
Thus
L(o()) = Hy(t,o(t), (1)) — Hy(t, Lu(t), p(t)).
Integrating and using the fact that v(0) = Lu(0) = Lz, we obtain

t
(1) — Lu(t) = / (Hy(3,9(s), p(5)) — H (s, Lu(s), p(s)))ds-

But, (H7,1) leads to 0 ;
| v(t) = Lu(®) || y = / C(R,s) || v(s) — Lu(s) || yds,
0

where

R=maz( sup (I 1y + 120y sp_ (N lly + 1120 1)

Hence, by using Gronwall’s inequality, it follows that

v(t)— Lu(t)=0, 0<t<T.

Now, we combine propositions 1 and 2 to deduce the following local existence and

uniqueness theorem for the inverse problem (1) —(3).

Theorem 1. Under the assumptions (H1)— (HT), there ezist Ty in [0,T] and (ug, py) in
C([0,Ty): D(A) xY') which is the unique solution of the inverse problem (1) — (3) in [0,T,).

Remark. Theorem 1 is still valued if we add to the right side of equality (1) a function
f:[0,T)—X such that f and Af are continuous.

3. GLOBAL SOLUTION

We begin this section by showing that any solution (ug, py) in C([0,T): D(A)xY) of the
inverse problem (1) —(3) in [0,T] can be uniquely extended to a solution in [0,T+ T,] for some
T, >0, whenever 0 < Ty < T.

If T is in [0, min(Ty, T - T,)], we consider the following inverse problem:
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t
(4) w'(t) = Au(t) + Ky (2, u(2), p()) + / Ky(s,u(s), p(t—s))ds + f(t), 0<t<T

(5) u(0) =z, = uy(T) 0
(6) Lu(t) =w(t), 0<t<T
where

Ky(t,u(®), (1)) = Fy(t+ Toyu(t), p(1)), 0< < T,

Kg(s, u(s): p(t - S)) = F2(39 “o(s)v P(t - 3)) + Fz(s + T01 u(s)v po(t - 3))’ 0t T ’

TO
() = / Fas,u(s), polt + To—8))ds, 0< t < T, and
t

w(t)=v(t+Ty),0<t<T.

Proposition 3. If (uy,py) in C([0,T): D(A)xY) denotes any solution of the inverse
problem (1)—(3) in [0,Ty], then there exist T, in [0,min(Ty,T —Ty)] and (u,p) in
C([0,Ty+T,]: D(A)xY) such that (u,p)=(uppy) in [0,T,], and (u,p) satisfies (1)—(3) in
[0,Ty+ T4l

Proof. 1t is not difficult to see that K, K,, w have the same properties as F;,F,, and v,
and that f and Af are continuous. It follows from Theorem 1 that there exist T'; € 10,T] and
(uy, py) € C([0,T4): D(A) xY'), which is the unique solution of the inverse problem (4) — (6) given by

i i
uy(t) = etz + / A=K (5, u(s), p(s))ds + / A =9 f()ds
0
t

+ / LAl =) / Ky(o,u(o), p(s — 0))dods, 0 <t < T},
0 0

14
py(2) = U(t + Ty w'(t) — LAuy(t) - / LK (5,u,(s), py(t — 8))ds — LF(2)), 0 < t < Ty,
0

We have

P1(0) = ¥(Ty,w'(0) — LAuy(0) - L£(0))
Ty
= Y(T,v'(Ty) — LAu(T,) - / LF,(s,uq(s), po(T o — 8))ds
0

= P(To)-
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One can easily check that

(uo(t): Po(t))’ 0<t< To’
o) =

(ul(t)’ pl(t))’ TO <t< Tl,
belongs to C([0,T¢+T,]: D(A)xY). It remains to show that (u,p) is a solution of the inverse

problem (1) —(3) in [0,T'y + T,]. Since u, satisfies (4), we can deduce that

u'(t +T))= u{(t)
i
= Auy () + Fy(t+ T, uy (1), P (1) + sz(sy ug(s), py(t —s))ds
0

t T,
+ / Fyls +Tguy(s), polt — 5))ds + / Fyls,u5(s), polt + T — 8))ds
t

t
= Au(t + To) + F1(t + To,u(t + To)s p(t + Tp)) + / Fa(syu(s), p(t+ T — 5))ds
0

t+7T, T,
+ / Fo(s,u(s),p(t+Ty—s))ds + / Fy(s,u(s),p(t+Ty—5))ds
T, t

= Au(t + Tg) + Fy(t + To, u(t + To), p(t + T))

t+T,
+ / Fys,u(s), p(t + Ty — 5))ds,0 < t < T
0
On the other hand
Lu(t+Ty) = Luy(t) = w(t) = v(t +T,),0 <t < Ty
Therefore we may conclude that (u, p) is a solution of the inverse problem (1) - (3) in [0, Ty + T ].

Proposition 4. Let (u,p) € C([0,T,,,[: D(A)xY) be the maximal solution of the inverse

problem (1) — (3), where 0 < T, < T. If
@) S SN O PR ECTPRERY

then T .. =T.

Proof. Clearly, from Proposition 2 (u,p) can be continuously extended to a solution in
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[0,T ozl If T oy < T, then, following the previous proposition, the solution in [0,T,,,,] can be
extended to a solution in [0, T, + €], for some € > 0. This contradicts the maximality of T'

maz*

Now, we will give a sufficient conditions to realize (7). For this purpose, we recall the

following comparison theorem.

Theorem 2 [2). Let I be a real interval, and let G:IxIxR+*—R* be continuous such
that G(t,s,r) is monotone nondecreasing in r for each (t,s) in IxI. Let b in C(I), and let [ in

C(I) denote the mazimal solution of the integral equation

t
£(2) = b(t) + / G(t,5, F(s))ds,t > 1.
%
If g € C(I) is such that

t
o0 <)+ [ Glt,s,9(0)dsit 2 o
to
then g(t) < f(1),t > .

Here, by a maximal solution we mean that any other solution h € C(I) must satisfy
B(t) < F(8),t > by

Before stating a global existence and uniqueness result for our inverse problem, we need to

modify some assumptions on F,, and F,.

Instead of (H5,2) and (H6,2) we suppose that there exist G,(,r):[0,T]xR*—R*
continuous and monotone nondecreasing in r for each ¢ in [0,T),7 = 1,2, such that

(H5,2') Il Fl(t, u,p) || D(A) < Gl(t, full D(A) +lpll Y)’

t 14

(#6,2) Il [ Fas,u(s), (= )ds Il pay S [ Galos 15(5) ll piay + 11 P6) Il ).
0 0

Set

G(tys,r) =M1+ k() || L|| Gy(s,7)+ (t—35)Gy(s,7)) + k() | L]| Go(s,7),0 < s <t < T,i=0,1.
Clearly, G(¢,s,r) is monotone nondecreasing in r,0 < s <t < T.

Theorem 3. Assume that (H1)— (HT) are satisfied, where (H5,2) and (H6,2) are changed
by (H5,2') and (H6,2'). If the nonlinear Volterra integral equation:
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t
(8) r(t) = a(t) + /G(t, 3,7(s))ds,0<t<T,

0
has a continuous mazimal solution in [0,T), then the inverse problem (1) —(3) has a unique solution
in [0,T].

Proof. Let r denote the continuous maximal solution of the integral equation (8).

Proceeding in the manner of the proof of Proposition 1, we obtain

t
16l pgay+ 12Oy Sa®+ [ Gty 1u(6) Il ey + 11 26) ), 0 St T.
0

Thus, the condition (7) is satisfied.

The uniqueness of the global solution is just a consequence of the fact that the unique local

solution allows a unique extension.

4. STABILITY RESULT
First of all, we give the exact assumptions under which the stability result will hold.

We assume that (H1)-(HS5,1),(H6,1),(H7) are satisfied, and there exist
G;(t,r):[0,T]x Rt =R ™ continuous and monotone nondecreasing in r for each ¢ in [0,T],i = 1,2,

such that

(H8,1) || Fy(tyuy,p1) = F1(tyug, py) |l D(A) S Gyt [[uy =gl D(a)t | . = Py |l y), for each
(u;p;) in D(A)xY,i=1,2, and 0<t < T.

t
(H8,2) || / (Fa(s,u1(8), p1(t = 8)) = Fa(s,uy(s), po(t - 5)))ds || p(4 <
0

i
[ Gatos 14(6) = 3(5) | pay + 11 24(5) = o) ll )
0

for each (u;,p;) in C([0,T):D(A)xY),i=1,2, and 0 <t < T.
(v(t), Hq(t,v(t), p))—®(t, K(p)) has the following property:
there exist continuous g:[0,T]x Rt —R *, such that

| @1(t, 1) = @o(t, ) | y < 9(O)( U 02(1) = v2() | v + 1wy = || ),

for each v; in C([0,T]:Y),w;€Y,i=1,2, and 0 <t < T.
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Here, ®,(t, - ) denotes the inverse of the mapping K;: p—H,(t,v,(t), p)), (i = 1,2). We set

G(tys,m) = M1+ g(t) | LI| XGy(s,r) + (t = 8)Ga(s,7)) + 9(t) || L || Go(s, ),

0<s<t<T, i=0,1

Theorem 4. Suppose that the assumptions listed below are satisfied for z==z;, v=1v,
i=1,2. Let (u;,p;) in C([0,T:D(A)xY) denote any solution of the inverse problem (1)—(3)

corresponding to x =z, v=v;, i = 1,2, and let

ro(t) = M(1+g() | LI Il 21 = 25 | pay + 9@ (N v1 () = v2()) | v + (01 (&) = v3(D) Il y)-

If the mazimal continuous solution, given ils ezistence, of the Volterra integral equation
3

9) m(t) = ro(t) + / G(t,s,m(s))ds, 0<t<T,
0

satisfies the condition that there ezists a constant C > 0, not depending on m, such that

(10) m(t) < C‘I‘o(t), 0 <t< T’
then
(11) luy(8) = o) l| pay + 1 P2(1) | y S Cro(t), 0< < T.

Proof. Let m denote the maximal solution of the integral equation (9), and let

r(t) = llu(®) =00 | pay + | 1O =25 1y, 0SS T.

It is easy to see that
t
r(t) <ro(t)+ /G(t, s,r(s))ds, 0<t<T.
0

Using the comparison Theorem 2, we deduce that r(t) < m(t). Hence, (11) follows from (10).

Remark. We have G(t,s,r)<G(T,s,r). Then if G(T,s,r) takes the form
G(T,s,r) = G(s)r, the conclusion of Theorem 4.1 follows from Gronwall’s inequality.
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