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ABSTRACT

This paper is concerned with the generalization, numerical
implementation and testing of the non-parameter penalty function algorithm
which was initially developed for solving n-dimensional optimization problems.
It uses this method to transform a constrained optimal control problem into a
sequence of unconstrained optimal control problems. It is shown that the
solutions to the original constrained problem. Convergence results are proved
both theoretically and numerically.
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1. Introduction

Penalty function methods were initiated and developed in the area of nonlinear
programming ( cf. [1] ). These methods solve a constrained optimization problem via
a sequence of unconstrained optimization problems. In recent years, these method
have been widely used to solve infinite dimensional optimization problems. Applica-
tions of interior and exterior penalty function methods can be found in [3] and [4].
The combination of these two methods forms the so-called mixed penalty function
method which has been used by Chen (2] to solve constrained optimal control prob-
lems. One difficulty in using these methods is the adjustment of the penalty parame-
ters. In this paper, we apply the non-parameter penalty function method to solve the
following constrained optimal control problem:

T

min J ((¢)) = min [ { Folx(®), (), )dt + L (x(T)) 6))
subject to
@) =f @@, u@),t), xO0=x, )
gx(), u(t), )20 3)
h(x(e), u(),t)=0 4)

where T is a fixed positive number and, for each ¢ € [0, T],
x(@)=@t), - L xa (@))€ R u(@) =), -+ ,u()ER",
FO=0, - . faNerR ., g0=60, - .gn() eR™,

and 20 =00, - m)eR'. fr(k=0, - ,n) g(i=1,---,m) and
hj (j=1, ---,1) are assumed to be continuously differentiable functions on R**"*.
L() is a continuously differentiable function on R*. A vector is said to be zero or
non-negative if each of its components is.

u(t) is the control of the system and is assumed to be a piece-wise continuous
vector-valued function. Its norm can be defined as follows ( cf. [5] ):
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where x(t) is the response corresponding to the control «(t). Then, the constrained
optimal control problem is to find a control u"(t) € Q such that

Jw @)= min Ju@).

This is a standard optimal control problem with state variable constraints ( cf. [6] ).
The modified maximum principle gives necessary conditions for a control to be
optimal ( cf. [6] ). In this paper, let us assume that there exists at least one optimal
solution «*(t) and a lower bound w* of the minimum performance measure
J* =J (" (t)) can be obtained; i. e. a real number w, is known a priori such that

whk Tt =T (@t)).
For any control u = u(t) € R", let
P, w*) = Wk = J@)’Gw* - Jw)) + 11 (u),
where
m T ] T
L =Y [ @G u, 07G@M + 3 [ (hx,u,0)fdr,
i=l 0 j=1 0
and G(g)=0 if g 20 and 1 if g <0. Then, we consider the following unconstrained
optimal control problem:
min P (u, w¥) &)
subject to (2).
It will be shown how a sequence {w*} of real numbers can be generated automati-
cally by the non-parameter penalty function method. For each w*, solve (5) to get a

sequence {u*(¢)} of unconstrained solutions which converges to a solution to the origi-
nal constrained optimal control problem (1) - (4).

2. Theoretical Results

Since f; (i =1, --- ,n ) are continuously differentiable functions on R***!, it can
be proved, by the continuous dependence of solutions on parameters, that J(x) is a
continuous functional of u. Let u* = u*(¢) denote the solution of problem (5). Then
we have

Theorem 1: Assume that J,(u) satisfies the condition of a "distance function",
that is, for any @ = @(t) € R", J (&) >0, and for any ¢ > 0, one can always find a control
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u = u(t) such that
N -zllse, Ji@)<J@).
Then
wk Tk <" .
Proof: First, it will be proved that J(u*)<J*. Suppose, on the contrary, that
J*)>J". Then, since w* <J*,
P’ wk)=w* —J@")? < w* = J@*)? < P, wh).
This is a contradiction since u* is an optimal solution to problem (5). Hence
JurysJst.

Now, if w* >J(u*), then P (u*, w*) = J,(u*). Since J(u) is a continuous functional, there
exists an € > 0 such that J(u) < w* for all u satisfying llu - u*ll <e. By the assumption
of the theorem, an 7 = (x) may be found such that |7 - u*ll <e and J,@) < J,(u*).
Thus,

P (7, w*) =J @) < J,(u*).
This contradicts the fact that «* is an optimal solution to problem (5). Therefore,

J Wk = wk .

Theorem 2: Let the assumptions in Theorem 1 hold. If w* < w**' <J", then
J k) < Tk

where u**!' = 4**(¢) is an optimal solution of (5) with w* replaced by w**.

Proof: By the definition of u* and u**!,

Pu*, wh) S P, wh), P, wh) <Pk, wh).
Summing the two inequalities gives
Wr =T @G Wr - T @) + W = T @G wh - T @)
< W = TG WE - J @) + W - T @))PG (WH - T b)) (6)

From Theorem 1 it follows that

Jsy 2wk, Tt 2wkt @
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If J (u*) < w**!, there is nothing to prove. If J(u*) = w**!, by (6) and (7) it follows that
Wr =T+ W - T @) < wh - TR + R - T Wk
That is,
@) = J @)Wt -wk) <0
and, therefore,

J@*) < Ju*h.

Theorem 3: If w* =J", then u* is also a solution to the original problem (1) -
4).
Proof: By the assumption,
Pk, w¥y<sPw', whH=0,

where u" =u"(¢) is the optimal solution to problem (1) - (4). Since P (u, w*)20 for
any u =u(t), P(u*, w*) =0 and this implies

W* = JWHPGw* -Jw*) =0, Ju*)=0.

By the definitions of J,(u) and G(g), and by our assumptions on g(.) and A;(.), J;(u*) =0
implies that u* satisfies the constraints (2) - (4). Therefore,

Juh=2J" .
From this and the fact that (w* - J @*))®’G (w* - J (u*)) = 0, it follows that
w* I =0,

which means J(u*) =J". Therefore, u* is an optimal solution to problem (1) - (4).

Theorem 4: Let u* = u*(t) be a solution of problem (5). Then

wkH iwk + [Pt wk)]% <J.
Furthermore, if w**! = w* for some k, then u* is also a solution to problem (1) - (4).
Proof: By the assumption,
P, whysPw', wh)=wt-J")?,

and, therefore,
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1
whH = Wk o [Pk, wh2 ST .
If w**! = w*, then, by the definition of w**!,
Pw*, w5 =0.

Therefore, u* is an optimal solution to problem (1) - (4) by the proof of Theorem 3.

Theorem 5: If there exists a subsequence of (x*} which converges to some
u™=u"(t), then u~ is a solution to the original constrained optimal control problem (1)
- (4).

Proof: Assume that there exists a subsequence {u‘} of (u*} such that

limu® =u™.
i =00

Since {w*} is increasing and bounded above (w* <J* by Theorem 4),

limw* =w> or limw*" -wk)?=0.
k—>00 ko0

Therefore,
imP (u*, wk) = lim(w**! - w¥)2 = 0.
k =00 k=300
In particular,
imP (u’, w') = 0.
§ =00
Since P (u, w*) is a continuous functional of u and w*, it follows that
P>, wo)=0.

Therefore, u= is an optimal solution to problem (1) - (4) by the proof of Theorem 3.

Theorem 4 implies that if w* =J° we can solve the constrained optimal control
problem (1) - (4) by solving one single unconstrained problem (5). In general, it is
difficult to know the exact value of J*. But, if we can obtain a lower bound w® of J*
then we can construct a sequence of unconstrained optimal control problems and solve
problem (1) - (4) by solving the sequence. The computing procedure is summarized as
follows:

(1) Start from w® <J* and set k = 0.
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(ii) Solve (5) by some algorithm and get the solution u*.
(iii) Calculate w**! by the formula given in Theorem 4.

(iv) If w*'-w*k <3, stop and print u*. u* is an approximate solution. If
wk*l — w* > § then replace w* by w**! and go to (ii). &> 0 is a prescribed tolerance.

3. A Numerical Example

Consider the brachistochrone problem with an inequality constraint on the state
space:

min J(u) = min [- x(T)]

subject to
%1 = xacos (u), x(0)=0, 8)
%o = xasin (), x2(0) = 0, €))
%3 = sin(u), x5(0) = 0.07195, (10)

and the inequality constraint
Ly, X2 ,x3) =02+ 0.4x1 - X2 20,
where T = 1.8.

This problem was solved in [4] by the exterior penalty function method and the
minimum value of J(u) is J* =-1.0794. Here we solve this problem by the non-
parameter penalty function method by minimizing

T

P, wh) = Wk + xyMPGW* + TN + [ (8(x1, %2, 29)°G (g)dt
0

subject to (8) - (10). The Hamiltonian for this problem is
H =g>G(g) + Mxscos (u) + Ayxasin (u) + Aasin (u) ,
the adjoint system is
A =-08gG(g), M(T)=2w* +xT)GW* +x(T)),
ha=28G(g),  MT)=0,
A3 == Mcos(u) = Aosin(u), Ay =0,

and the gradient is
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-gHT = —Mix3sin () + Ayxscos () + Aycos (u).

A Fortran program was written to solve this problem by the gradient method.
The numerical integrations are carried out using the fourth-order Runge-Kutta-Gill

method and Simpson’s composite rule with double precision arithmetic. The integra-
tion interval is 0.1 unit.

Numerical results were obtained for w®=- 1.1, - 1.2, - 1.3 with convergence index
§ = 0.00001. The results show that when w® gets closer to J* the convergence gets fas-
ter. For w®=- 13 it takes 7 steps in order to get a constrained solution. While, for
w®=- 1.1 only 4 steps are needed. Each step solves an unconstrained optimal control
problem and the iteration stops when either the change of the cost function
IP® - pi+D] < 107 or the norm of the gradient lI9H/3 ull <1072, At the first step, the
initial guess of the control is u(t) = w6. After that, each of the following steps uses the
solution obtained at the last step. The trajectories at the steps 1, 2 and 7 are shown
below. It can be seen that the trajectory at step 7 lies above the constraint line and is
almost indistinguishable from the optimal trajectory.

— Sstep?
< step 2

< step !

Xa= 0.2 + 0.4%,

Trajectories at steps 1, 2, and 7
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4. Summary

In this paper, we applied the non-parameter penalty function method to solve a

constrained optimal control problem via a sequence of unconstrained optimal control
problems. Convergence results were obtained. A numerical example was presented to
illustrate the findings. The assumption made in Theorem 5 is still an open question
and further research will be discussed in other papers.
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