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A class of linear difference equations with variable coefficients is
considered. Sufficient conditions and necessary conditions for the oscillation of
the solutions are established. In the special cases where the coefficients are
constant or periodic the conditions become both necessary and sufficient.
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1_. TPODUON

Recently there has been a great deal of work on the oscillation of solutions of difference

equations (see, for example, [2]-[5], [7]-[10], [14]-[16], [18], [19], and [21]).

Within the past two decades, the study of difference equations has acquired a new

significance. This comes about, in large part, from the fact that difference equations appear as

natural descriptions of observed evolution phenomena as well as in the study of discretization

methods for differential equations. Furthermore, the theory of difference equations is rapidly gaining

attention because of its use in such fields as numerical analysis, control theory, finite mathematics

and computer science; in particular, because of the successful use in recent years of computers to

solve difficult problems arising in applications, the connection between the theory of difference

equations and computer science has become more important.

For a systematic treatment of the theory of difference equations and its applications to

numerical analysis, the reader is referred to the recent book by Lakshmikantham and Trigiante [12].
Chapter 7 of this book is devoted to some applications of difference equations to many fields such as

economics, chemistry, population dynamics and queueing theory. Some discrete models in

1Received: December, 1990. Revised: February, 1991.

Printed in the U.S.A. (C) 1991 The Society of Applied Mathematics, Modeling and Simulation 241



242 CH.G. PHILOS AND I.K. PURNARAS

population dynamics have appeared in [6].

Consider the linear difference equation

A. A. "- = O,

where m is a positive integer, (pk(n))n > o (k = 0,1,...,m) are sequences of nonnegative numbers,

and ek(k = 0,1,..., m) are integers such that 0 = eo < el < < em.The sequences

(pk(n))n > 0(k = 1,...,m) are (supposed to be) not identically zero.

Let no be a nonnegative integer and set

N.o = {n0, no + 1,...}.

By a solution on Nn0 of the difference equation (E) we mean a sequence (An)n > no_rn which

satisfies (E) for all n >_ n0. As usual, a solution of (E) is said to be nonoscillatory if it is either

eventually positive or eventually negative. Otherwise, the solution is said to be oscillatory. A

solution (An)n > no_ era on Nn0 of (E) is called positive if An > 0 for all n > no em.

Let us consider the linear difference equation with constant coefficients

m

An + 1 An + PkAn- ek = 0, (E0)
k=0

where Pl(k = 0, 1,..., m) are real numbers with Po > 0, P1 > 0,..., Pm > 0. This equation is a

special ease of the difference equation (E). For the autonomous difference equation (E0) the

following "if and only if" oscillation criterion is known (see [4], [9], [14]), which is the discrete

analogue of a result due to Tramov [22] (see also [1], [11]) concerning the oscillation of first order

linear delay differential equations with constant coefficients.

Theorem A: A necessary and sufficient condition for the oscillation of all solutions of the

difference equation (Eo) is that its characteristic equation

F0() = X- + E e = 0 (*)0
k=0

has no roots in (0,1).

Next, let us consider another special case (which includes the previous one), i.e., the case

where the coefficients in (E) are periodic sequences with a common period and the integers

ek(k = 1,...,m) are multiples of this period. In this case, the oscillation of the solutions of the

difference equation (E) is described by the following result due to Philos [18], which is the discrete

analogue of an oscillation criterion of the same author [17] for first order linear delay differential
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equations with periodic coefficients.

Theorem B: Assume that (pl(n))n>o(k=O, 1,...,m) are periodic sequences with a

common period L (where L is a positive integer) and that there ezist positive integers vl,... vm such

that

Introduce the equation

which is associated with (E).
(i)

’1 = VlL..., ’m vmL"

L-1 m -’k)(I= = O,

Then we have:

A necessary condition for the oscillation of all solutions of (E) is that there is no root

in (0,1) of (,) with the property: If L > 1, then

m -kE Pk(r)Ao < 1 (r = 1,..., L 1).
k=O

(ii) A sufficient condition for the oscillation of all solutions of (E) is that (,) has no roots in

(0,

It is easy to see that Theorem A can be obtained from Theorem B for L = 1.

Our purpose in this paper is to examine the oscillation of the solutions of the general

difference equation (E) in which the coefficients are variable (and not necessarily periodic). More

precisely, our aim is to establish sufficient conditions for the oscillation of all solutions of (E) and

also conditions under which (E) has at least one nonoscillatory solution. In the special case of the

difference equation (E0) in which the coefficients are constant, our results lead to Theorem A. Also,

Theorem B can be obtained from the results of this paper by applying them to the special case

where the coefficients are periodic with a common period and .k(k = 1,...,m) are multiples of this

period. The application of our results to the above special cases of constant or periodic coefficients

will be presented in Section 5. The results of the present paper are motivated by Theorems A and B

as well as by the recent results of Philos [20] concerning the oscillation of first order delay

differential equations with variable coefficients (see also [13] for similar results).

STATEMENT O__F THE MAIN RESUL,TS

Our main results are Theorems 1 and 2 below. Theorem 1 provides sufficient conditions for
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the oscillation of all solutions of the difference equation (E).
least one nonoscillatory solution are established by Theorem 2.

Conditions under which (E) has at

Theorem 1: Let L and vk(k = 1,...,m) be positive integers such that

Suppose that

1 m
lim infE E pk(i + n- e) > O.
n -.,oo i=0 k=l

(H1)

Suppose also that, for some integer vo >_ era

sup max max
n>_vo x <_k<_m

sL-1 m

I:
r = (s-1)L j=O

Moreover, assume that, for every )t (0, 1), there exists an integer u >_ em such that
sL-1 mL sup max max H (1-- Pj(r+n--e’k)A

n>Uo l <k<m l<s<vk r=(s-1)L j=O

(c0)

(c)

Then all solutions of the difference equation (E) are oscillatory.

Theorem ,: Assume that there exists a (0,1) and an integer no > 1 + em such that

m -kE pk(n) < t for every n >_ O,
k=O

(H)

and

’1 1 m

E E pk(n+i)>Oforalln>no
i=0 k=l

k-1
sup E pk(n) - ek + 1--E pj(r + n- gk)A ej l- : 0.
nn0 k=O j=O

(Hz)

(c)

Then the difference equation (E) has a positive solution (An)n>_nO_em on N.o with

lrnooAn = 0 and such that

n- 1 m

An <-rl"Io(1= -k o
Pk(r)A ) for every n >_ no -dm.

N0: In condition (C2), we have used the convention rI = 1 when < p. This convention
p

will also be used in the proof of Theorem 2.
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- ROOF .O/F TrIEO__M !

Assume, for the sake of contradiction, that the difference equation (E) has a nonoscillatory

solution (An)n _> no-ern on Nn0 where no is a nonnegative integer. As the negative of a solution of

(E) is also a solution of the same equation, we may (and do) assume that (A)>%_e is

eventually positive. Furthermore, without loss of generality, we can suppose that An > 0 for all

n _> no-em. Then from (E) it follows that An+I-An <_ 0 for n >_ no and so the sequence

(An)n >_ nO is decreasing.

For any A E (0,1), we define

,n _tkcA(n) = 1- E Pt(n)A for n >_ 0.

Furthermore, we consider the set

A = { (O, 1):an+,-ex(n)An <_ 0 for all large n}.

The set A is nonempty. In fact, by taking into account the decreasing character of the sequence

(An)n > no from (E) we obtain for n > no + era

and consequently

0 An + 1 An "t" E pj(n)An ej >- a, + An + Eopj(n)Anj=O j=

An +, 1 (n An <_ 0 for every n >_ no + era.
This in particular implies that

Set

m
1 pj(n) > 0 for every n >_ n0 -I- lm.
j=O

sup maz
n> o <<_m

$L-I m
maz H L(I-- pj(r’k n--’k)) I/L"
1 <s< vk = (,-x) j=o

(1)

(2)

Because of (2) and assumption (Co) we have 0 < a < 1. If i {1, 2, ., m}, then from (1) we obtain

for every integer n with n >_ maz{o,no + 2era}
i-an-’i n-1

(5opj)) 0( " ))An 1 (r 1 : 1 E pj(r + -- e 1

r=n_i

vi sL- 1

:tII Ii
s=l r= (s-1)L

(1 pj(r "t" n- ’i 1-1
j=O
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maz H 1 E Pi(r + n e v>-[
r (s-1)L

>_[ sup maz maz
n>_vo l <<m l <_s<_vk H 1-E pj(r+n-.k ’i

r=(-x) j=o

---- (OrL) vi ----Or viL = C el.
Therefore,

An_el >_ a- eiAn for n > maz{vo, no + 2era} (i = 0,1,..., m).

(The last inequality is obvious when i = 0.) Thus, (E) gives for every n > maz{v0, no + 21m}

0 = An + An + pi(n)An ei >_ An + 1 1 pi(n)a n
i=0 i=0

= An + x -ca(n)An"

This means that a E A and so A $. We can immediately see that, if At E A, then every number

with At < A2 < 1 also belongs to A. So, A is a subinterval of the interval (0,1) and suph = 1.

Next, we will establish that infh > 0. By assumption (H1), there exist a constant fl > 0

and an integer nt >_ ex so that

n m el mE E PI(i) = E E Pt(i+n-l)>-/frn>-n1.
i=n_,1

k=l i=0 k=l

Hence, for any n >_ nt, we can choose an integer n* =_ n*(n) with n- ex < n* < n such that

E E Pk(i)>_ and E Pk(i)>-
k=l * k--1i=n-.1 i=n

(3)

Since the sequence (An)n >_ no is decreasing, from (E) it follows that

An-An+x>[ E PI(n) ]A for all n > no + em.
k=l n--l

Thus, by using again the fact that (An)n>_n0
n >_ no + gm + el

is a decreasing sequence, we obtain for
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An. > An.- An.,. ,__ -- E .(Ai- Ai + I)

E Pk(i)]Ai_d >-[ E E Pk(i)]An_gl.k=l i=n*k=l

Therefore, in view of (3), we derive

An* > An-el for every n >_ maz{nl,n0 + em+ el}- (4)

Furthermore, consider an arbitrary element A of A. Then there exists an integer nx >_ no such that

An+- I- pk(n)A An<Oforn>_nx.
k=O

This gives

An An +, > pk(n)]A eXAn for all n >_ nA.
k=l

we obtain for n > nA + 1Hence, by the decreasing nature of the sequence (An)" > no,

A > A An.n 1 n 1 + 1
i=n--1

. ,.
}E E Pk(i)lAi

i=n_l k=l
E E Pk(i)lAn

i=n_l k=l

So, by (3), we have

An- ex > A- elAn. for all n > maz{nx, nx + Cx}" (5)

Combining (4) and (5), we conclude that

1 > ()2-’I or A >()2/’1.

Thus, as is an arbitrary element of A, we see that the positive number --(2/e is a lower bound of

A and so infA > O.

Now, we set infA0 = Ao 6 (0,1) and we consider an arbitrary integer v >_ din" Moreover, we

consider an arbitrary number 0 in the interval (Ao, 1 and we put 7 = Ao]O. Then Ao < 7 < 1 and

consequently 7 6 A. Hence, there exists an integer n. > no so that

An + 1 c’r(n)An < 0 for all n >

An+x- 1- pj(n)7 An < O for n >_ n.r.
j=0
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This in particular implies that

Define

m
1- E pj(n)’y

q = sup maz
n>l/ 1

-ej > 0 for every n > n.r.

sL-1 m
maz H (1- Z PJ(" + n-’k)7
I <s<vk r=(s-l)L

By taking into account (7), we can see that q is a positive number. Furthermore, if i E {1, 2, ., m},
then from (6) it follows that for every n >_ maT,{v,

H 1- E pj(r)7 =
r=n_i j=O

i-1
1

r=O j=O

vi sL-1

:tII H
s=l r=(s-1)L

( " )1- E Pj(r+n-ei)7 ej ]--1
j=0

sL-1
maT, H1 <s< v

r=(s-1)L j=0

)_[ sup maz maT,

n>_u l <_k<m l <_s<_vk

sL-1 m

H (1- ]: pj(r /n--ek)7 ’J) vi

r=.(s-1)L j--O

--_ (qL) Vi --_ q -niL q ’i.
So, we have

An i >_ q ’iAn for n >_ maT,{v, n. + m} (i = O, 1, ..., m).

(For i = 0 the last inequality is obvious.) We now claim that

(8)

q >- (9)

If q >_ 1, then (9) is obvious. So, let us assume that 0 < q < 1. By using (8), from (E) we obtain for

n > maz{v, n. +

0 = An + 1 An + Pi(n)An_ e. > An + 1
1 E Pi(n)q n

i=0 i=0

An + 1 -(1 -. pi(n)q’i)An
--0

: An + 1 Cq(n)An,
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which means that q E A and consequently q >_ Ao. Thus, (9) is true. Finally, (9) gives

sup max max
sL-1 mrI

r=(,-) j=o

namely

sup ma maz
sL- 1 m ejo,jH (1-- Pj(rq’n--k)’O ) >--Lo"

r=(s-1)L j=O

Therefore, as 0--.1- 0, we obtain
sL-1 m _jsup max maz H (1 E pj(r + n ek)Ao } > AoL. (10)

n> 1 <k<m 1 <s<vk L"={_) j=o

We have thus proved that there exists a number "0 E (0,1) such that, for every integer >_ era, (10)
holds. This contradicts the assumption that, for every , (0,1), there exists an integer >_ em so

that (C1) is satisfied. The proof of Theorem 1 is complete.

4. PROOF THEOM 2_

right.

To prove Theorem 2 we will make use of the following result, which is interesting in its own

I,emma: Let (B.)n >_.o_em be a positive solution on N.o where no is a nonnegative

integer, of the difference inequality

Moreover, assume that condition (H2) is satisfied.

Then there exists a positive solution (An)n >_ no-ern on Nno of the difference equation (E)
with ldrnooAn = 0 and such that

An <_ Bn for every n >_ no -em.

Note: If no is a nonnegative integer, by a solution on Nn0 of the difference inequality (I) we

mean a sequence (Bn)n >_ no_ ’m which satisfies (I) for all n > no. A solution (Bn)n >_ no_ ’m on

Nn0 of (I) is said to be positive if Bn > 0 for every n >_ no em.
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Proof of the gemma: The method of proof is similar to that of Theorem 3 in [10]
concerning a special case (see also Lemma in Section 3 of [16]).

From (I) we obtain for v >_ n >_ nO

Bn > -(3v+l-’Bn): (j + l j) >- Pl(J)3J kj=n j=n k=O

and consequently
OO m

Bn >- -’ -" Pte(j)Bj- e: for all n > no.
j=n k=O

(11)

Consider the space A of all sequences (An)n > no_ em satisfying

An = Bn for no-em_< n < no, and 0_< An < Bn for n >_ no

For any sequence (An)n >_ no-em in t, we define

Bn, if no -ern < n < no
m

E E Pk(j)Aj if n > no
j=n k=O -k

and, by using (11), we see that (SAn)n >_ no-em is a sequence in the space l.. Thus, the above

formula defines an operator S:.A.--,t. We can easily see that this operator is monotonic in the

following sense: If (An)n > no_ em and (An)n > no_ em are two sequences in A such that

AXn < An for every n >_ no

then we also have

SAWn < SA2n for all n >_ no -era-
Now, we introduce the sequence (n)n >_ no m r >_ 0 of points in .A which is defined by

and

It follows easily that

An = Bn for n > nO-

A = SA-1 for n _> no -em (r = 1,2,...).

An >_ Aln >_ A2n >_... for n >_ no -/m

and so we can define
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An=lim Arnforn>no-

Then we observe that

0 < An < Bn for all n >_ no-din.

Moreover, we can obtain

This gives

oo m

j=n k=O

/./ooA. = 0

and
m

An + x An = Pk(n)An_ gt for all n >_ no.
k=o

The last equation means that the sequence (An)n > no-em is a solution on Nno of the difference

equation (E). We see that An = Bn > 0 for no -dr, _< n < no. It remains to show that An is also

positive for n >_ no. Assume, for the sake of contradiction, that N >_ no is the first zero of

(A.). >_ "o- ern" That is,

An > 0 for nO- gm <- n < N, and AN = O.

Then, by using the hypothesis (H2) we obtain

0 <_ AN+el = AN+el-AN (A + Ap)

m

<-( min minA )N _< / <_ N-i- el -1 1<_k<_m tS-ek t=N k=l

< --( rain
N_.m <_P<_N_ 1

1-- 1 m) E E Pt(N+i) <0.hp
i=0 k=l

This is a contradiction and hence the proof of our lemma is complete.

We are now ready to give the proof of Theorem 2. Define
n-1

B. = H cx(r)for n >_ 1,
r--’O
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where
m

cA(n) = 1- E p/(n)A for n > O.
k=0

By assumption (H), we can see that

Bn > 0 for every n >_ 1.

Next, by using condition (C2), we obtain for every n >_ no

m

Bn + a Bn + Pk(n)B =
k=0 n-k

n-1 m n-’k-1
= [cA(n) 1] H cA(r) + ’ Pk(n) H cA(r)

r=O k=O r=O

m n-1 n--1

{ " _,, - .-,( :f:= iI-E () + E (n)[ :- () B.
=0 k=0 r=n_k j=0

=Bn

.k-1- {-,, ( -) }E Pl(n A +[ 1 pj(r + n e/c)A gj 1- x
k=O r=O j=O

<_ Bn sup
n>_n0

.k-1" { -" n( " -) }’E Pk(n "-A +[ 1-E pj(r/n-dk)A dj l-
k=O r=O j=O

Thus, the sequence (Bn)n _> "0-dm is a positive solution on Nn0 of the difference inequality (I). So,

it suffices to apply our lemma to complete the proof of Theorem 2.

5... hPPLICATION O_..F TH._._.EMSIJL THE, .,SCIAL CES O__.F

CONSTANT _OK PEOD!C COEFFIN

In this section, we shall apply our results to the special cases where the coefficients in the

difference equation (E) are constant or periodic. More precisely, we will show that Theorems A and
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B can be obtained from Theorems 1 and 2.

The case of constant coefficients: Consider the special case where the coefficients are

constant, i.e., the case of the autonomous difference equation (E0).

Assume first that the characteristic equation (*)0 of (E0) has no roots in (0,1). Since

Fo(1) = Pk > 0, we must have
kmO _

+ p-t > o to e (o, ). ()
k=O

In order to apply here Theorem 1, we choose L = 1, vk = d/(/ = 1,...,m), and u0 = P = gin" Then

we can immediately see that conditions (H1) and (Co) hold by themselves. Moreover, one can

verify that, for every A (0,1), condition (C1) is satisfied because of (12). Thus, Theorem 1 can be

applied to guarantee the oscillation of all solutions of (E0).

Suppose, conversely, that (*)0 has a root A (0,1). Then PkA = 1 A < 1 and so
k=o

(H) is true. Choose no = 1 + dra" We can see that (H2) holds by itself. Furthermore, assumption

(H2) takes the form

This inequality is satisfied, since A E (0,1) is a root of (*)0- So, Theorem 2 ensures that (g0) has a

nonoscillatory solution.

The case of peodic coefficients: Assume that the sequences (p/(n))n > o (/ = 0,1,..., rn) are

periodic with a common period L (where L is a positive integer) and that there exist positive

integers vk (k = l, ., m) such that

’1 : VlL"’"m : vmL"

Let there exist a root A E (0,1) of the equation (,) with the property: If L > I, then

] p/(r)A < 1 (r = 1,..., L 1).
k=O

Then from (.) it follows that

Z p() < 1 fo 1 {0,1,...,-1}.
=0

This means that (H) holds, since the sequenc (p(n))n >0 ( = 0,1,. ., m) are riodic. We now

choose no : 1 + em. Since the sequences (p(n))n > o ( : 1,...,m) are periodic and not

identically zero and 1 =1L, we can eily verify that condition (H2) is also satisfied.
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Furthermore, by taking into account the fact that (pj(n))n>_o (j = 0,1,...,m) are L-periodic

sequences and that/k = vkL (h 1,..., m), we obtain for any k (5 {1,..., m} and for every n >_ no

j=O r=n_k

gk-1

-iI (
j=0 r=0 j=0

Thus, condition (C2) becomes
L-1

sup pk(n (AL) k /[ 1 pj(r)A O,
nn0 k=O jmO

which is true since A E (0,1) is a root of (.). So, by Theorem 2, the difference equation (E) admits

a nonoscillatory solution.

Now, let us suppose that the equation (,) has no roots in the interval (0,1). Moreover,

assume for the sake of contradiction that (E) has at least one nonoscillatory solution. Then, as in

the proof of Theorem 1 (cf. inequality (2)), we can verify that

m
1- pk(n) > 0 for all large n.

This means that

1--- pk(r) > 0 for r = O, 1,...,L- 1.

Furthermore, since the sequences (pk(n))n > 0 (k = 1,...,m) are L-periodic and not identically zero,

we can see that

L-1 rn

II0(1--.= pk(r)) < 1. (13)

This gives F(1) > 0 and so, as F(A) = 0 has no roots in (0, 1), we always have

L-1 rn

AL--rl"io(l= -k=OPk(r)A-ek)>Ofr alI AE (0,1). (14)

We will apply Theorem 1. Since the sequences (pk(n))n > 0 (k = 1,...,m) are L-periodic and not

identically zero, we have for every n >_

1 rn 1 1 rn 1 1 rn

i=O k=l i=O k=l l=O k=l
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and hence (H) is fulfilled. Next, we choose o = u = era" By using again the L-periodicity of the

sequences (pj(n))n>_o (j =0,1,...,m) and the fact that ’k =vkL, we obtain for all n>_ o,
k E {1,..., m} and s E {1,..., vk}

sL-1 m L-1 m

r= -1)L y=O = j=O

So, assumption (Co) holds because of (13). In a similar way, we can see that for every A E (0,1)

for n >_ v, k e {1,...,m} and s e {1,...,vk}. Thus, in view of (14), condition (el) is satisfied for

each A E (0, 1). So, we can apply Theorem 1 to conclude that (E) has no nonoscillatory solutions, a

contradiction.

BRIEF DISCUSSION

Concerning Theorem 1 it remains an open question to the authors if an analogous oscillation

result can be obtained without the restriction that there exist positive integers L and vk

(k = 1,...,m) so that e.i = viL,...,e.m= vmL. Furthermore, it is an open problem to extend the

results of this paper to the more general case of difference equations of the form

Ao o,

where eo(n) = 0 for n >_ 0, and (ek(n))n > o (k = 1,..., m) are sequences of positive integers such that

lira (n- d/(n)) = oo (k = 1,..., m).

Equation (E) is also called a delay difference equation. It will be the subject of a future

work to present an analogous investigation with that of this paper for the advanced difference

equation

An + 1 An Pk(n)An + e, = 0

(see [15] for the case of advanced difference equations with constant coefficients).
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