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ABSTRAC

In this paper, we first extend results on the existence of maximal
solutions for nonlinear Volterra integral equations in Banach spaces to
impulsive Volterra integral equations. Then, we give some applications
to initial value problems for first order impulsive differential equations in
Banach spaces. The results are demonstrated by means of an example of
an infinite system for impulsive differential equations.
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I. INTRODUCTION

Vaughn established an existence theorem of local maximal solutions for nonlinear

Volterra integral equations in Banach spaces (see [3] or [2] Theorem 5.5.3). In this paper, we

first extend Vaughn’s result to nonlinear impulsive Volterra integral equations and obtain

existence theorem of global maximal solutions and minimal solutions. And then, we offer some

applications to initial value problems for first order impulsive differential equations in Banach

spaces. Finally, we give an example of infinite system for impulsive differential equations.

Let the real Banach space E be partially ordered by a cone P of E, i.e. x_< y iff

y-x E P. Recall that cone P is said to be solid if its interior int(P) is not empty. In this

case, we write x<<y iff y-xEint(P) (see [1]). Let g=[t0,T], t0<tl<...<tk<...<
tm < T and PC[J,E] = {z: z is a continuous map from J into E such that x(t) is continuous

at t tk, left continuous at t- tk and its right limit at t = tk (denoted by z(tk+ )) e.xists,

k = 1,2,..., m}. Evidently, PC[J,E] is a Banach space with norm II il p sp II ()II.
tEJ
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Consider the nonlinear impulsive Volterra integral equation in E:

z(t) = zo(t + / II(t,s,z(s))ds + ak(t)I(z(t)), (1)

to o < k <

where zoPC[,E], HC[FxE, E], F={(t,s)xJ:t>s}, IC[E,E] and

ak E C[J,R1], = Irk, T] (k = 1,2,...,m). z PC[J,E] is called a solution of Equation (1)
if it satisfies (1) for all t J.

2. MAIN THEOREMS

In the following, let
t.J

Br = {x PC[J,E]: 11 z II p > 0), Jo -[t0,h], = "",Jm-1 = (tm-l, tm]’
Jm = (tin, T] and a denotes the Kuratowski meure of noncompactness (see [2] Section 1.4).
For S C PC[J,E], we write S(t) = {z(t)’z
CE.

Consider the operator A defined by
t

Ax(t) = xo(t d- / H(t,s,x(s))ds + E ak(t)Ik(x(tk))"
to o < k <

Lemma 1" Suppose that, for any r > O, H is uniformly continuous on F xTr, Ik is

bounded on Tr, and there exists nonnegative constants Lr and Mk) with

such that

m

2(T- to)Lr + E a’M!k) < 1 (3)
k=l

a(H(t,s,D)) < Lrc(D), (t,s) F, D C Tr,

a(Ik(D)) <_ Mk)a(D), D C Tr, k = 1,2,...,m.

(4)

Then, for any r > O, A is a strict set contraction from Br into PC[J,E], i.e. A is continuous

and bounded and there exists a constant 0 < kr < 1 such that a(A(S))< kra(S for any

SCBr.

Proof: It is easy to see that the uniform continuity of H on F x Tr implies the

boundedness of H on F x Tr, and so A is a bounded and continuous operator from Br into

PC[J,E]. By the uniform continuity of H and (4) and using Lemma 1.4.1 in [2], we have

= max ((H(t,s,D)) < Lra(D), D C Tr.a(H(F x D))
(t,s) . F

(6)
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Now, let S C Br be arbitrarily given. By virtue of (2), it is easy to show that the elements of

A(S) are equicontinuous on each Jk(k = O, 1,..., m), and so, by Lemma 1.4.1 in [2],

a(A(S)) = sup a(A(S(t))). (7)
tEJ

Using (6), (5)and the obvious formula

t

y(s)ds (5 (t- to)’5"5{y(s): to: to < s <_ t}, y (5 PC[J, El, t (5 J,
to

we find

a(A(S(t))) <_ (- to)a(’6"6{H(t,s,z(s)): (5 S, to <_ s <_ t})

+ a*ka({Ik(z(tk)):z (5

to<tk<t
m

< (T to)a(H(F x S(J))) + aa(Ik(S(tk)))
k=l

m

<_ (T- to)/,rc(S(J))+ aMk)((S(tk)).
k=l

(8)

p
For any given e > 0, there exists a partition S = (J Sj such that

=1

diam(Sj) < a(S) + e, (j 1,2,..., p).
p

Since S(tk)--.J Sj(tk) and diam(Sj(tk) <_ diam(Sj), we have
3=1

a(S(tk) <_ a(S) + e, (k = 1,2,..., m).

On the other hand, choosing

(k = 0, 1,..., m) such that

(j = l, 2, ., p) and a

(9)
nk

partition Jk= [..J ji)
i=1

II =(t) =1(t’) II < e, j = 1,2,..., p; t, t’ (5 3i) (k = O, 1,..., m; i = 1, 2,..., nk), (10)

we have

S(J) = [.J{Sj(Ji)): i= 1, 2,. nk; k = 0,1,...,m; j = 1, 2,. ., p}.

For a:(t),(t’)(5 Sj(Ji)) (i.e. z, (5 Sj, t,t’ (5 ji)), we find by (10)

II (t) (e)II < II (t) (t)II + II 1(t) y(t’)II + II zy(e) (t’)II

< Ii y II p / e / II y II p < 2diam(Sj) + e < 2c(S) +

which implies
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_< (Ii)

Since e is arbitrary, it follows from (9) and (11) that

a(S(tk) _< (S), (k = 1,2,...,m) (12)

a(S(J)) _< 2a(S). (13)

Finally, (7), (8), (12) and (13) imply a(A(S)) _< kra(S), where
m

k, = 2(T- to)Lr + E aM(,’’)"
k=l

By (3), kr < 1, and the lemma is proved.

Remark 1: The conditions of Lemma 1 are automatically satisfied if E is finite

dimensional.

Lemma 2: Let cone P be solid, H(t,s,z) be nondecreasing in x (i.e. xx < x2 implies

H(t,s, zx) <_ H(t,s, z2) for (t,s) F), 1 be strongly increasing (i.e. zI <<z2 implies

Ik(Zl) << Ik(z2), k = 1,2,...,m}, ak(t >_ 0 for E J and ak(tk) > 0 (k = 1,2,...,m). If
Xo, u, v e PC[J, E] satisfy

t

u(t) < Zo(t + / H(t,s,u(s))ds + E ak(t)Ik(U(tk)),t E J, (14)
to o < k <

and

t

v(t) Zo(t + /H(t,s,v(s))ds + E ak(t)Ik(v(tk)),t E J,

tO o < k <

then u(to) << v(to) implies u(t) << v(t) for E J.

(15)

Proof: Suppose that the conclusion of the lemma is not true. Then the set

Z = {t E J: u(t) << v(t) does not hold} is not empty. Let t* = infZ. From the continuity of

u,v at to and u(to) << V(to) we know that t0<t*_<T. So u(t)<<v(t) for to<t<t*. It

follows from the left continuous property of u,v at t = t* that u(t*)< v(t*). Hence, by virtue

of (14), (15) and the nondecreasing property of H and strongly increasing property of Ik,

u(t*) <_ :c0(t* + / H(t*,s, u(s))ds + E a(t*)Ik(u(tk))
tO o < k < t*

_< Xo(t* + / H(t*,s, v(s))ds + E ak(t*)Ik(v(tk)) <<
tO o <_ k < t*

(16)
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There are two cases:

(a) t* tk(k- 1,2,..., m). In this case, u and v are continuous at t = t’, and so (16)
implies that there exists 6>0 such that u(t)<<v(t) for t*< t < t*+$, which

contradicts the definition of t".

t -- k for some k. In this case, .we have by (14) and (15),

and

k

u(t: <_ Zo(t + : H(tk, s u(s))ds + . aj(tk)Ij(u(tj)
to 1=1

(17)

v(t > O(tk+ )+ /H(tk, s,v(s))ds q- Z aJ(tk)Ij(v(tJ))’ (18)
tO 3=1

where u(tk+ ), v(tk+ ), z0(tk+) denote the right limits of u, v,z0 at t = tk, respectively. It

follows from (16), (17), (18) and the strongly increasing property of Ik that

u(t-) << v(tk+), and therefore, there exists 6" > 0 such that u(t) << v(t) for

t* . tk < t < tk + 6", which contradicts the definition of t* too.

The proof is complete.

and

Remark 2: Lemma 2 is also true if (14) and (15) are replaced by

u(t) <<:: :c0(t + : H(t,s, u(s))ds + Z ak(t)Ik(u(tk)), t E J

to o < k <

v(t) >_ Zo(t + /H(t,s,v(s))ds + Z ak(t)Ik(V(tk)), t g.

to o < k <

Theorem 1: Let the conditions of [,emma I be satisfied. Suppose that
m

(T- to)C / Z ack < 1,
k=l

and

C lim
II II .--,o,:, (t,,)eF I1 il

Ck= li’--’ Ii Ik( ) II
II = I1- II z II

Then, Equation (1) has a solution in PC[J, E].

(k = 1, 2, ., m).

(19)

(20)

(21)
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Proof: Choose c’ > c and c > ck (k = 1, 2,..., m) such that

m

b = (T- tO)d+ E a*kc < 1.
k--1

By virtue of (20) and (21), there exists r > 0 such that

(22)

II H(t,s,t‘)Ii < c’ II II, II II >_ ,, (t,) e F

and

II Ik()II < e II II, II II , ( ,2,...,m),

SO

II H(t,s,t‘)il <_ c’ II II / N, t‘ E E, (t,s) e F (23)

and

II k()II <_ c, II II / N, e E, (24)

where

N ma{ sup II H(t,s,t‘)II, sup
(t,s) . F,x . Tr x . Tr

Let

n=N’(1-b) -1,
m

where b is defined by (22) and N’ = II 0 I! + (T- to + , a)N.
k=l

II II p < ), we have by (2), (23), and (24),

(25)

For any t‘ 6 BR (i.e.

t

II At‘(t)II < II =o(t)II + (c’ II =()II + N)ds + E a*k(C’k II =(t)II + N), E J

tO k

and so

m

II At, II <_ II =o II + (T- to)(C’ II = II + N) + E a(c’k II = II + N)
k=l

= b II = II +N’ <bR+N’- R.

Consequently, A:BRBR. On the other hand, by Lemma 1, A is a strict set contraction.

Hence, the Darbo fixed point theorem (see [2] theorem 5.3.1) implies that A has a fixed point

in BR. The proof is complete.

Theorem 2: Let the assumptions of Theorem 1 hold. Suppose that cone P is

solid, H(t,s,z) is nondecreasing in t‘ and Ik are strongly increasing (k = 1,2,...,m). Then

Equation (1) has maximal solution v and minimal solution u in PC[J,E], i.e.
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u(t) <_ x(t) <_ v(t) (t E J) for any solution of Equation (1) in PC[J,E].

Proof: Choose y int(P), !1Y II = and let

(26)

By Theorem 1 and (25), An has a fixed point zn in PC[J,E] such that II xn II R. =
m

g(1 b)- 1, where Yn = II Zo + n- ly [I p + (T o + , a)Y. So,
k=l

II xn II p <- R*, (n = 1, 2, 3,...), (27)

where
m

R" = (1 b)- { II =0 II + II Y il + (T to + a)N} const.
k--1

and

.(t) 3.() +ln
XO(t -I’y "t" / H(t,s, xn(s))ds -I" Z ak(t)lk(Zn(tkl), (n = 1,2,3,...1.

tO o < k <
(28)

Let S = (zn: n- 1,2,3,...}. By virtue of (27) and Lemma 1, there exists 0 < k* < 1 such that

a(A(S)) <_ k’a(S). On the other hand, (28) implies

a(S) <_ a(A(S)) + a({y: n 1,2,3,...}) = a(A(S)).

So, we have ((S)=0, and hence, there are {zni} C {zn} and v6 PC[J,E} such that

[1Xni--v II p---O (i-.cx). Observing the uniform continuity of H on F x TR. and taking limit

in (28) along hi, we get
t

v(t) Xo(t + f H(t,s,v(s))ds + ak(t)lk(v(tk)), t e J,

o to<tk(t

i.e. v is a solution of Equation (1).

Now, let x be any solution of Equation (1) in PC[J, El, i.e.

x(t) = Xo(t h- / H(t,s,x(s))ds q- Z ak(t)Ik(x(tk)), t . J.

to o < k <
By (28), we have

(29)

t

Xn(t) " xo(t) + /H(t’S’Xn(S))ds + Z ak(t)Ik(xn(tk) t e J.

to o < k <
(30)
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In addition,

x,(to) = x0(to)+ lny > Xo(to) = (to).

So, (29), (30), (31) and Lemma 2 imply

,(t) >> (t), t e J, = t,2,z,

Taking the limit in (32) along ni, we obtain v(t)> x(t) for t E J.

maximal solution of Equation (1) in PC[J, E].

Similarly, considering sequence of operators

Consequently, v is the

()

following conclusions hold:

instead of sequence (26), we can get the minimal solution u of Equation (1) in PC[J,E]. The

proof is complete.

Theorem 3: Let the assumptions of Theorem 2 hold. Let m PC[J,E] and u

and v be the minimal and maximal solutions of Equation (1) in PC[J,E] respectively.

re(t) < xo(t + / H(t,s,m(s))ds + E
to o < k <

then re(t) < v(t) for J.

atc(t)Itc(m(tt)) t J,

t

m(t) > Xo(t + /H(t,s,m(s))ds + E ak(t)Ik(m(tk)), t J,

to o < k <

then m(t) >_ u(t) for u J.

of Theorem 2, (30) holds, and, by (33),

x,(t0)- Xo(to)+ > x0(t0) > ,(to).

It follows from (30), (33), (34) and Lemma 2 that

(33)

Proofi We need only to prove (a) since the proof of (b) is similar. As in the proof

(34)

(31)

(32)

Az(t) = Az(t)- ly
t

= Xo(t -y + f H(t,s,x(s))ds + E ak(t)lk(x(tk) (n 1,2,3,...)

tO o < k <
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zn(t > m(t), E J, n = 1,2,3,...,

which implies by taking limit along n that v(t) >_ re(t) for E J. The proof is complete.

3. APPLICATIONS

This section applies Theorem 2 to the IVP of the nonlinear impulsive differential

equation in E:

= #

z(O)=zo,

(k = 1, 2,..., m),

(k = 1, 2,..., m), (35)

where f C[J x E, E], J=[0,T] (T > O), a:o e E, Ik C[E,E], O < tl < < tlc < < tm

< T. Let J’= J\{tl,...,tm}. a: PC[J,Z]f3 CI[J’,E] is called a solution of IVP (35) if it

satisfies (35).

Lemma 3: Let y,z PC[J,E] and M be a constant.

impulsive differential equation

Then, the IVP of linear

z’ + Mz y(t), # k

z(O)-zo

(36)

has a unique solution in PC[J,E] f’l CI[J,E] which is given by

x(t) oe Mt q. f M(t- S)y(s)ds + Z e

0 O<tk<t

M(t- tk)Ik(Z(tk)). (37)

Proof: Let z(t) be defined by (37). Evidently, z PC[J,E], z(O)- zo and

Az It k
= Ik(z(tk))" By (37), we have

t

z(t)eMt z0 + f eMsy(s)ds + eMtkIk(z(tk)),
0 O<tk<t

so, direct differentiation implies, for -7/: tic,

(X’(t) A" Mx(t))eMt eMty(t).

Hence, z e Ca[J’, E] and it is a solution of (36).

It remains to show the uniqueness of solution. Let x,x2 PC[J,E]f3CI[J’,E] be
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two solutions of (36) and let = zx z2. Then 5’ +M = 61 for t :/: tk, where denotes the

zero element of E, and so

(’ eMt) (’ +M )eMt O, tk (k 1,2,...,m). (38)

Since 5 (0) = O, it follows that

"(t)--’(O)e-Mt--o for 0 < < 1.

On the other hand,

hence

/Xz It = 1
II(Z(tl)) - mzzlt 1,

;gl(tl"1" l(tl) "4"1 It I
= x2(tl)-F z;g21 t tl =/r2(;tl"1" ).

It follows from (38) and (39) that

(t) = (ta+ )e M(t t) = 0 for t < t _< t.

(39)

Similarly, we can show (t) = 0 for t2 < t _< T, i.e. z = z2, and the lemma is proved.

Now, consider the impulsive Volterra integral equation
t

X(t) XOe- Mt -I- / e- M(t- s)[f(s,x(s) q_ Mx(s)]ds
0

+ E e.- M(t- tk)i,(z(t))"
O<tk<t

Lemma 4: zPC[J,E]fCI[j’,E] is a solution of IVP (35) if and only if
PC[J, E] is a solution of Equation (40).

(40)

Proof: For z E PC[J, El, Lemma 3 implies that the linear problem

z’ = f(t,z)- M(z- z),t = tk (k 1,2,...,m),
Az It t Ik(z(tk)), (k = 1,2,..., m),

z(o)-zo
has a unique solution of PC[J,E] C[J’, E] which is given by

(41)

Let z = Bz, i.e.

;(t) = o
t

Mt + / e- M(t- s)[f(s, z(s)) + Mz(s)lds
0

-M(t+ e -’’)I,(z(tk)).
O<_tk<t

(42)
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Bz(t) = zoe Mt "i" / e- M(t- s)[f(s, z(s)) + Mz(s)]ds
0

"+" Z e
M(t tk)ik(Z(tk)).

O<tk<t
It is easy to see from (41) that z is a solution of IVP (35) if and only if z = Bz = z, that is, x

is a solution of Equation (40). The lemma is proved.

Theorem 4: Let cone P be solid and It: be strongly increasing (k = 1,2,...,).
Assume that, for any r > O, f is uniformly continuous on j x Tr and there exist nonnegative

constants Lr and M!k) with

m

2T(Lr +M)+ ZMk)<l (43)
k=l

such that

a(f(t,D)) <_ Lra(D), t E J, D C Tr (44)

and

a(Ik(D)) <- M(k)a(D),r D C Tr (k = 1, 2,..., m), (45)

where M is a nonnegative constant independent of r. Assume further that,
m

T(c + M)+ Z ck < 1,
k=l

where

c = ti--- sp II f(t,)II II Ik()II
II II--.oo J !1 z II )’ ck = tim (k = 1, 2,..., m),

and

(46)

f(t,x)- f(t,y) > M(x- y) for x > y (x, y e E). (47)

Then IVP (35) has maximal solution v and minimal solution u in PC[J, ElfqCI[J’,E], i.e.

u(t) < x(t) < v(t) (t J) for any solution x of IVP (35) in PC[J,E]fqCI[J’,E].

Proof: By Lemma 4, x c= PC[J,E]CIC[J’,E] is a solution of IVP (35) iff

x . PC[J,E] is a solution of Equation (40). Evidently, (40) is an integral equation of type (1),
where to = 0,

XO(t = XOe Mt, H(t,s,x) e- M(t- s)[f(s,x) q_ Mx],
M(t- tk) (k 1, 2,. m).ak(t e ..,

Since

a(H(t,s,D)) < c(f(s,D)) + Ms(D) <_ (Lr + M)a(D), (t,s) e F, D C Tr,
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ak(t > 0 for fi I},a}(t}) a = I,

sup !1 (t,,)I] II f(,)II / M II il
(t,s) F ii -[i <

[I ztimll--(sups J 11 II = c + M,

and, by virtue of (47), H(t,s,z) is nondecreasing in z, all conditions of Theorem 2 are satisfied,

and so, Theorem 2 implies that Equation (40) has maximal solution v and minimal solution u

in PC[J, El. The proof is complete.

Example: Consider the IVP in terms of the infinite system of impulsive differential

equations:

_tzn= + (2t .)=3 zn+x 1
n 3 n + ln(l+etZ2n), O<t<l,

1 1 (48)

xn(O cos n, (n 1,2, 3,...).

A solution z = (Zl,...,zn,...) of IVP (48) is called bounded if SUnPlZn(t) < o0 for 0 < t < 1.

Conclusion: IVP (48) has maximal bounded solution v = (Vl,...,yn,...) and minimal

bounded solution u = (u,...,un,...), i.e. for any bounded solution z = (zl,...,zn,...) of (48),

u(t) < z(t) <_ v(t) (t E [0, 1]) holds.

Proof: Let E = {x- (zx,...,Zn,...):SUnP[Zn < } with norm

z,, l, P-{z-(zl,...,zn,...} fi E; z, > 0, n = 1,2,3,...}. It is well known that E is a

Banach space and P is a solid cone in E with Jut(P)= {z = (z,...,z,,...) E;infz, > 0}.
Evidently, the bounded solution z = (z,...,zn,...) of IVP (48) is equivalent to the solution

z PC[J,E] Cx[J’, E] of the following IVP in E:

z’- f(t,z), 0 < t < 1,t # 1/2;

(o)= o,
where o - (cos 1,..., cos n,...) @ E, f = (ft,..., fn,...), in which

n + In(1 + etz2,), (n 1, 2, 3,...),

T- 1, J = [0,1], rn- 1, x = 1/2 and
II(Z) : 1/4x.

(50)

(51)

Obviously, (49) is of the form (35). It is clear that f C[J x E,E] and, for any r > 0, f is
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uniformly continuous on J x Tr, 11 E C[E, El, 11 is strongly increasing and

c(Ii(D)) = 1/4c(D)for bounded D C E.

We now show

In fact, let

(52)

c(f(t, D)) = 0 for E J and bounded D C E. (53)

x(P)= (xP),...,X(nP),...)
_
D and y(P)= f(t,x(P)),y(P) = (yP),...,y(nP),...)

(p = 1,2, 3,...). Then there exists positive constant d such that

z(nP) < d n,(p = 1,2,3,...).

Since, by (50),

Y) = fn(t’z(v)) n+ 3(2t-
"+ 1 tz(v)an + ln( l + e 2n ,

we have

y(np) -n3+<2+d 3/i’+nd+n21n(l+ed), (n,p = 1,2,3,...). (54)

Hence {y(np)} is bounded, so, by the diagonal method, we can select a subsequence {Pi} of {p}

such that

lim y(nvi)_y, (n=l 2,3,...). (55)

It follows from (54) that

2+d 3v[l+d 8_Yn <_ n / 3 + + ln(1 + ed), (, = 1,2, 3,...). (56)

Consequently, y = (Yl,’",Yn,’")e E. For any given e > 0, (54) and (56) imply that there

exists a positive integer N such that

e for n > N, i- 1,2,3 (57)Ii) <, I.1 <
On the other hand, (55) implies that there exists 0 such that

Yi)-yn < for i> io, , = 1,2,...,N. (58)

It follows from (57) and (58) that

II y il splypi)- Yn < e for > io,

i.e. II y II 0. Hence, f(t,D) is relatively compact and (53) holds. For

x = (x,...,Zn,...) q E, y = (Yx,’" ", Yn,’" ") E, z y (i.e. zn Yn, n = 1,2, 3,...) and t J, we

have by (50),
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+ 8_(.( + ,t=2.) t.( + ,t2.))

>- -1/4(zn-Yn), n = 1,2,3,...,

so, (47) is satisfied for M = 1/4 and (43) is also satisfied since, by (52) and (53), Lr = 0,

M1)- 1/4 and 2T(Lr + M)+ MI)= 1/2 + 1/4 < 1.

Now, we check (46). By virtue of (50), we have

and so

c "-li-’-’ (sup

< lira =3II {l ((2 + II : If) + :V/1 "+" l{ x {l -{" -in(1 -+- e {{ x {{)) .
On the other hand, (51) implies

C1 li---’ l{ I1(x) {I 1_.
II =11-*o Ilxll --4"

Hence T(c + M) + c1

_
< 1, i.e. (46) holds. Finally, our conclusion follows from Theorem 4.
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