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ABSTILCT

The method of generalized quasilinearization [4] is applied to
study semilinear parabolic equation ut-Lu = f(t,z,u) with nonlocal

boundary conditions u(t, x) = f (x, y)u(t, y)dy in this paper. The

convexity of f in u is relaxed by requiring f(t,x, u)+ Mu2 to be convex
for some M > 0. The quadratic convergence of monotone sequence is
obtained.
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1. INTRODUCTION

In this paper, we consider the nonlocal boundary value problem (NBVP for short):

ut-Lu=f(t,z,u in DT=(O,T]xfl (I.I)

u(O,.) = w n,

u(t,z)- /(z,y)u(t,y)dy V(t,z) e rT,

where fl is a bounded domain in Rn, 0f2 E C2, rT = (0, T) x Off,

L = aij(t,z)-_2+ bi(t,z aij, b C’a, 0 < a < 1.
i,j=l i=1

(1.2)

(1.3)

Uo( C(2 ), f C[DT x R,R] and satisfies Lipschitz condition in u. C[Ofl x 2,R]
satisfies (z, y) >_ 0, f (x, y)dy # 0, V z E 0fl and f (z, y)dy < p < 1, Vx E Off.
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It is shown in [5] that, if v, w are lower and upper solutions of NBVP such that v < w,

then there exist monotone sequences which converge uniformly to the unique solution of

NBVP. The method of upper and lower solutions and monotone iterative techniques played

most important roles in constructing monotone sequences.

Consider the following ordinary differential equation with initial condition"

u’ = g(t, u), u(0) = u0, E J = [0,T]. (1.4)

It is well known [1, 2] that the method of quasilinearization provides not only the

monotone sequence but also quadratic convergence of the sequence for (1.4) if requiring more

on g(t, u), namely, g(t, u) to be convex in u for t J. The result is of computational interest.

In [4], this method has been extended to more general cases, namely, without demanding the

convexity of g(t, u), by requiring g(t, u)+ Mu2 to be convex for some M > 0 and the same

results have been obtained [4].

Our purpose, in this paper, is to apply the method used in [4] to study nonlocal

problem (1.1) (1.3).

2. PRELIMINARIES

Consider NBVP (1.1)-(1.3). A function vo E C"2(DT)fC()T) is called a lower

solution of NBVP if

(Vo) Lvo < f(t, , Vo) in DT,

< w E

Vo(t,z _< /(z,y)vo(t,y)dy on rr.
An upper solution wo is defined analogously by reversing the above inequalities with

respect to wo. It is shown[5] that vo < wo on .
We first state two lemmas which we need in the proof of the main result. Define

QT = {(t,,u):vo< u < w0,(t,)E DT}. If the existence of upper and lower solutions of

NBVP is known, then we can prove the existence of solutions of NBVP in the closed set QT
which is the statement of Lemma 2.1. For proof, see [5].

Lemma 2.1: Consider

ut- Lu = G(t,x,,rl(t,:),u(t,)) in DT,



Quasilineadzation for Some Nonlocal Problems 119

(i) Vo, Wo are lower solutions of (2.1), (1.2) and (1.3),
(ii) G(t,z,O,u) satisfies Lipschilz condition in u, i.e., N > 0 such that

--N(I--U2) --( V(t, z, t/, 1) V(, , , u2) -( N(Ul-2),

whenever u >_ u2, for (t, z, ua), (t, z, u2) 07". Then there ezists a niq,,e solution u of NBVP
such that u E GI’2(DT)f3 C(T) and vo <_ u <_ wo on

2.2: Assume that p CI’2(DT) f’l C(DT) satisfies

pt(Lp + Kp + C) <_ O in DT,

p(o,z) < o w f,
f

p(t,z) <_ I(z,y)p(t,y)dy v(t,z) e rT,

where K > O, C > 0 are constants. Then, p(t,z) <_ Ce(K + 1)t on DT.

Proof: Let 9 = Ce(K + 1)t then verifies

t (Lq +K + C) = C(e(K + 1)t 1) > 0 in DT,

(O,z)>O Vz6f,

qt(t,z) > f (x,y)(t,y)dy on rT.

By Theorem 2.1 of [5], p(t, z) <_ on DT. This completes the proof of the lemma.

3. MAIN RESULTS

In this section, we shall apply the method of quasilinearization generalized in [3] to

NBVP in order to obtain the monotone sequence and quadratic convergence of the sequence.

Suppose now, f C2 in u and f+Mu2 is uniformly convex for (t,z,u) QT" Define

F(t,z,u) = f(t,z,u)+ Mu2, then

Fuu = fuu + 2M > 0. (3.1)

If ul >_ u2, it follows

Fu(t, x, U1) : fu(t’ X, Ul) + 2Mu1 >_ Fu(t, x, u2) + 2Mu2;

F(t,X, Ul)- Fu(t,x, u2)u1 >_ F(t,x, u2)- F,(t,x, u2)u:.
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We also assume that there exist constants K1 > 0, C1 > 0 such that

[Fu _< K and Fuu < C1, for (t, z, u) E T"

Now, we are in the position to prove the main results.

Theorem 3.1: Suppose that

(i) Vo, w0 are lower and upper solutions of NBVP such that v0 < w0 on DT;
(ii) F(t,z, u) f(t,z, u) + Mu2 is uniformly convex in QT"

Then, there exists a monotone sequence {vn} which converges uniformly to the unique solution

of NBVP and moreover, the convergence is quadratic.

Proof: Consider the modified nonlocal problem (P*):

u Lu = f(t, z, r/) + (fu(t,z, ) + 2Mq)(u- r/)- M(u2 r/2)

=_ F(t,z, rl) + Fu(t,z,q)(u- )- Mu2, (3.3)

with (1.2) and (1.3), where r/E C’2(DT)fq ([gT)is such that

Vo(t,x < r/(t,x) _< Wo(t,z on DT.

Define

G(t,z,q,u) =_ F(t,x, r/) + Fu(t,z,)(u-q)-Mu2. (3.4)

Since vo is a lower solution of NBVP and if r/= Vo, because of (3.4), we have

(Vo) Lv0 < f(t,z, Vo) =_ G(t,x, Vo, Vo) in DT,

From (3.3)and (3.4),

u Lu = G(t,x, Vo, u) in DT. (3.6)

Similarly,

(Wo) Lw0 > f(t, z, Wo)

> F(t,a:,Vo)+ Fu(t,Z, Vo)(W0 Vo)- Mw2o = G(t,X, Vo, Wo) in DT. (3.7)

From (3.5), (3.6) and (3.7) together with the initial and boundary conditions, we conclude that

vo(t,z and Wo(t,z are lower and upper solutions of (P*) with r/= vo. It is easy to see that

G(t,z, Vo, u) satisfies Lipschitz condition (2.2) for (t,z, u) QT since r(t,z, u) is convex in u

and Vo(t,z is a given function. Therefore, by Lemma 2.1, there exists a unique solution u of
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(P*) with r/= vo such that u CI’2(DT)fl C(DT) and vo < u < w0 on )T"

Now, we construct the sequence {vn} by

(Vn + 1)t- LVn + 1 = f(t,x, Vn) + (fu(t,z, Vn) + 2Mvn)(Vn + 1 Vn) M(v2n + 1 V2n)

F(t,z, Vn) + Fu(t,z Vn)(Vn + 1 Vn) Mv2n + 1 in DT, (3.8)

for n = 0,1, 2,

Vn + 1(0, X) = ttO(X VX E ,
vn + l(t, x) = / (z,y)vn + l(t,y)dy on FT,

Clearly, from the above discussion, we obtain that (P*) has a unique solution v1 with

r/-- v0 and v0 _< v1 _< wo on DT.

Assume that for some n, (P*) has a unique solution vn with =Vn_ 1 and

Vn- 1 <-- vn <-- Wo on )T, by (3.2) and (3.8)

(Vn) Lvn F(t, z, vn 1) + Fu(t’z, Vn 1)(n Vn- 1) Mv2n
< F(t,z, Vn) Mv2n = f(t,z, Vn) in DT. (3.9)

On the other hand,

2(V. 4- 1)t Lv, + 1 = F(t,x, Vn) + Fu(t,x vn)(vn + Vn) My, + 1

G(t, z, Vn, vn 4-1) in DT. (3.10)

Now, (3.9) becomes

(Vn) Lvn <_ f(t, x, Vn) =_ G(t, x, vn, Vn) in DT. (3.11)

Similarly,

(Wo) Lwo >_ f(t,x, Wo) =_ G(t,z, vn, Wo) in DT. (3.12)

Applying the same arguments as above, we claim that (3.10), (3.11) and (3.12) together with

the initial and boundary conditions yield the unique solution vn + 1 of (P*) with rl = vn and

Vn < Vn + 1 <-- Wo on DT. Thus, by induction, we conclude that for all n,

Vn < V1 <"" < Vn <"" on DT,

and {Vn} is bounded above by w0 on DT. Therefore, we obtain a sequence {Vn} which is

monotone increasing and uniformly bounded in CI’2(DT)CIC(T). By standard arguments

[3, 5], {vn} converges uniformly to the unique solution of NBVP.
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It remains to show that convergence of {vn} to the solution u of NBVP is quadratic.

Observe that, for all n >_ O, vn <_ u. Set Pn = u(t,)-Vn(t, on DT. Define

]1 Pn]l = sup u(t, z)- Vn(t z) l. Then,
(t,x) EDT

(Pn)t LPn y(t,z, u) -[F(t,z, v._ ) + F.(t,z, v. )(v. v._ ) Mv]

= Fu(t,a:,O)(u Vn- 1) Fu(t,z, Vn- 1)(z Vn- 1) "+" Fu(t,z, Vn- 1)(tt Vn) q- M(vZn u2)

= Fuu(t,x,)(U-Vn_l)(O-Vn_l)+ Fu(t,X, Vn_a)(U-Vn)+ M(v2n-U2) in DT,

where vn 1 < 0 it for (t, a:) E DT.

Since 0 < Fuu _< C1, IF,, < K1 on QT and v0 < Vn, u <_ w0, we have

)2(Pn)t- LPn <- C(u- vn 1 + KPn- M(vn + U)Pn

< (K1 2Mvo)Pn + C1 II p._ 1 II 2 < Kpn + C in DT,

where K = K1 + 2MV and vol _< v on bT, C C1 II p_ a II . Therefore, by Lemma 2.2,

we get

Pn(t,z < Ce(K + 1)t < Cle(K + 1)T II p- 1 [I 2 = Cle(K + 1)Tsup
(t,x) EDT

which yields

[u-vn_ 12 on }T,

sup u- vn <-- tsup u- vn- l
2 c=Cle(K + I)T.

(t,x) . DT (t,z) . DT
The proof of Theorem 3.1 is therefore complete.
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