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The well-known Krasnoselskii twin fixed point theorem is used to investigate the exis-
tence of mild solutions for first- and second-order impulsive semilinear functional and
neutral functional differential equations in Hilbert spaces.

1. Introduction

This paper is concerned with the existence of mild solutions of some classes of initial
value problem for first- and second-order impulsive semilinear functional and neutral
functional differential equations. Initially, we will consider initial value problems for first-
order impulsive semilinear functional differential equations

y′(t)−Ay(t)= f
(
t, yt

)
, a.e. t ∈ J := [0,b], t �= tk, k = 1, . . . ,m,

∆y|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(t)= φ(t), t ∈ [−r,0],

(1.1)

where f : J ×D → H is a given function, D = {ψ : [−r,0] → H|ψ is continuous every-
where except for a finite number of points t̄ at which ψ(t̄) and ψ(t̄+) exist and ψ(t̄−) =
ψ(t̄)}, φ ∈ D, 0 < r <∞, A is a densely defined operator generating a semigroup {T(t) :
t ≥ 0} of bounded linear operators from H into H , 0 = t0 < t1 < ··· < tm < tm+1 = b,
Ik ∈ C(H ,H)(k = 1,2, . . . ,m), ∆y|t=tk = y(t+k )− y(t−k ), y(t−k ) and y(t+k ) represent the left
and right limits of y(t) at t = tk, respectively, and H is a real Hilbert space with norm
‖ · ‖ inherited from the scalar product 〈·,·〉. For any continuous function y defined
on [−r,b]−{t1, . . . , tm} and any t ∈ [0,b], we denote by yt the element of D defined by
yt(θ)= y(t+ θ), θ ∈ [−r,0]. Here yt(·) represents the history of the state from time t− r
up to the present time t.

Later, we study the second-order impulsive semilinear functional differential equations
of the form

y′′(t)−Ay(t)= f
(
t, yt

)
, a.e. t ∈ J = [0,b], t �= tk, k = 1, . . . ,m,

∆y|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

∆y′|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(t)= φ(t), t ∈ [−r,0], y′(0)= η,

(1.2)
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where f , Ik, and φ are as in problem (1.1), Ik ∈ C(H ,H), η ∈ H , and A is an operator
generating a family of linear bounded cosine operators C(t), t ≥ 0.

Sections 5 and 6 are devoted to the existence of solutions for initial value problems for
first- and second-order impulsive semilinear neutral functional differential equations. In
Section 5, we consider first-order impulsive semilinear neutral functional equations of
the form

d

dt

[
y(t)− g(t, yt)]−Ay(t)= f

(
t, yt

)
, a.e. t ∈ J = [0,b] t �= tk, k = 1, . . . ,m,

∆y|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

y(t)= φ(t), t ∈ [−r,0],

(1.3)

where f , Ik, A, and φ are as in problem (1.1). In Section 6, we study the second-order
problem

d

dt

[
y′(t)− g(t, yt)]−Ay(t)= f

(
t, yt

)
, a.e. t ∈ [0,b] t �= tk, k = 1, . . . ,m,

∆y|t=tk = Ik
(
y
(
t−k
))

, k = 1, . . . ,m,

∆y′|t=tk = Īk
(
y
(
t−k
))

, k = 1, . . . ,m,

y(t)= φ(t), t ∈ [−r,0], y′(0)= η,

(1.4)

where f , Ik, Ik, A, η, and φ are as in problems (1.1) and (1.2).
Differential and partial differential equations with impulses are a basic tool to study

evolution processes that are subjected to abrupt changes in their state. Such equations
arise naturally from a wide variety of applications, such as space-craft control, inspection
processes in operations research, drug administration, and threshold theory in biology.
There has been a significant development in the last few years; see the monographs by
Bainov and Simeonov [2], Lakshmikantham et al. [11], and Samoilenko and Perestyuk
[16], the papers by Ahmed [1], Liu and Zhang [13], Liu [12], Erbe et al. [7] and the
survey paper by Rogovchenko [15]. A natural generalization of impulsive ordinary and
partial differential equations is impulsive functional differential and functional partial
differential equations. In spite of the great possibilities for applications, the theory of
these equations is developing rather slowly due to a series of difficulties of technical and
theoretical character.

The impulsive neutral and semilinear neutral differential equations were studied by
Benchohra et al. in [3, 4, 5, 6]. The goal of this paper is to prove the existence of multiple
solutions for impulsive functional semilinear and neutral semilinear functional differen-
tial equations. Our approach here is based on the Krasnoselskii twin fixed point theorem
(see [10]).

This paper will be divided into six sections. In Section 2, we will recall briefly some
basic definitions and preliminary facts which will be used throughout the following sec-
tions. In Section 3, we establish an existence theorem for (1.1). In Section 4, we will es-
tablish an existence theorem for (1.2). In Sections 5 and 6, we study the existence of mild
solutions for first and second impulsive semilinear neutral functional differential equa-
tions, respectively.
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2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used
throughout this paper.
D is the Banach space with the norm

‖φ‖D := sup
{∥∥φ(θ)

∥∥ :−r ≤ θ ≤ 0
}
. (2.1)

B(H) is the Banach space of all linear bounded operators from H into H with norm

‖N‖B(H) := sup
{∥∥N(y)

∥∥ : ‖y‖ = 1
}
. (2.2)

A measurable function y : J → H is Bochner integrable if and only if ‖y‖ is Lebesgue
integrable. (For properties of the Bochner integral, see, e.g., Yosida [19].)
L1(J ,H) denotes the Banach space of functions y : J →H which are Bochner integrable

normed by

‖y‖L1 =
∫ b

0

∣∣y(t)
∣∣dt. (2.3)

We say that a family {C(t) : t ∈R} of operators in B(H) is a strongly continuous cosine
family if:

(1) C(0)= I (I is the identity operator in H),
(2) C(t+ s) +C(t− s)= 2C(t)C(s) for all s, t ∈R,
(3) the map t �→ C(t)y is strongly continuous for each y ∈H .

The strongly continuous sine family {S(t) : t ∈ R}, associated with the given strongly
continuous cosine family {C(t) : t ∈R}, is defined by

S(t)y =
∫ t

0
C(s)yds, y ∈H , t ∈R. (2.4)

The infinitesimal generator A :H →H of a cosine family {C(t) : t ∈R} is defined by

Ay = d2

dt2
C(t)y|t=0. (2.5)

For more details on strongly continuous cosine and sine families, we refer the reader to
the books of Goldstein [9], Fattorini [8], and to the papers of Travis and Webb [17, 18].
For properties of semigroup theory, we refer the interested reader to the book of Pazy
[14].

Definition 2.1. A map f : J ×D→H is said to be L1-Carathéodory if
(i) t �→ f (t,u) is measurable for each u∈D;

(ii) u �→ f (t,u) is continuous for almost all t ∈ J ;
(iii) for each q > 0, there exists hq ∈ L1(J ,R+) such that

∥∥ f (t,u)
∥∥≤ hq(t) ∀‖u‖ ≤ q and for almost all t ∈ J. (2.6)

Our consideration is based on the following twin fixed point theorem given by Kras-
noselskii (see Guo and Lakshmikantham [10]).
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Theorem 2.2. Let E be a Banach space, C ⊂ E a cone of E, and R > 0 a constant. Let CR =
{y ∈ C : ‖y‖ < R} and let N : CR→ C be a completely continuous operator where 0 < r < R.
If

(A1) ‖N(y)‖ < ‖y‖ for all y ∈ ∂Cr ,
(A2) ‖N(y)‖ > ‖y‖ for all y ∈ ∂CR,

then N has at least two fixed points y1, y2 in CR. Furthermore,
∥∥y1
∥∥ < r, r <

∥∥y2
∥∥≤ R. (2.7)

In what follows we will assume that f is an L1-Carathéodory function. In order to
define its mild solution we will consider the space

PC = {y : [0,b]−→H : yk ∈ C
(
Jk,H

)
, k = 0, . . . ,m

and ∃y(t−k ), y
(
t+k
)
, k = 1, . . . ,m with y

(
t−k
)= y

(
tk
)}

,
(2.8)

which is a Banach space with the norm

‖y‖PC =max
{∥∥yk∥∥Jk , k = 0, . . . ,m

}
, (2.9)

where yk is the restriction of y to Jk = (tk, tk+1], k = 0, . . . ,m. Set Ω :=D∪PC. Then Ω is
a Banach space with norm

‖y‖Ω = sup
{∥∥y(t)

∥∥ : t ∈ [−r,b]
}
. (2.10)

3. First-order impulsive functional differential inclusions

The main result of this section is devoted to the IVP (1.1). Before stating and proving the
main result, we give the definition of a mild solution of the IVP (1.1).

Definition 3.1. A function y ∈ Ω is said to be a mild solution of (1.1) if y(t) = φ(t),
t ∈ [−r,0] and y is a solution of impulsive integral equation

y(t)= T(t)φ(0) +
∫ t

0
T(t− s) f (s, ys)ds+

∑
0<tk<t

T
(
t− tk

)
Ik
(
y
(
t−k
))
. (3.1)

The following hypotheses are assumed hereafter.
(H1) A : D(A) ⊂H →H is the infinitesimal generator of a strongly continuous semi-

group {T(t)}, t ≥ 0, which is compact for t > 0 and there is a constantM ≥ 1 such
that

∥∥T(t)
∥∥
B(H) ≤M for each t ≥ 0. (3.2)

(H2) There exist constants ck such that
∥∥Ik(y)

∥∥≤ ck, k = 1, . . . ,m for each y ∈H. (3.3)

(H3) There exist a continuous nondecreasing function

ψ : [0,∞)−→ (0,∞), p ∈ L1([0,b],R+
)
, (3.4)
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and a nonnegative number r > 0 such that

M‖φ‖+M
m∑
k=1

ck +Mψ(r)‖p‖L1 < r. (3.5)

(H4) There exists R > r, such that for any z ∈Ω with ‖z‖Ω ≤ R and t ∈ [0,b] and for
all (x,u)∈H ×D we have

〈
z(t),T(t)φ(0) +

∫ t
0
T(t− s) f (s,u)ds+

∑
0<tk<t

T
(
t− tk

)
Ik(x)

〉
≥ 0, (3.6)

and for each y ∈Ω such that ‖y‖Ω = R,

∣∣∣∣∣
〈
y(t),T(t)φ(0) +

∫ t
0
T(t− s) f (s, ys)ds+

∑
0<tk<t

T
(
t− tk

)
Ik
(
y
(
t−k
))〉∣∣∣∣∣≥ R2. (3.7)

Theorem 3.2. Suppose that hypotheses (H1)–(H4) are satisfied. Then the impulsive initial
value problem (1.1) has at least two solutions.

Proof. Transform the problem (1.1) into a fixed point problem. Consider the operator
N : Ω→Ω defined by

N(y)(t)=




φ(t), if t ∈ [−r,0],

T(t)φ(0) +
∫ t

0
T(t− s) f (s, ys)ds

+
∑

0<tk<t

T
(
t− tk

)
Ik
(
y
(
t−k
))

, if t ∈ [0,b].

(3.8)

We will show that N is completely continuous. The proof will be given in several steps.
Step 1. N sends bounded sets into bounded sets in Ω.

Indeed, it is enough to show that for any q > 0 there exists a positive constant l such
that for each y ∈ Bq := {y ∈ Ω : ‖y‖Ω ≤ q} one has ‖N(y)‖Ω ≤ l. So choose y ∈ Bq.
Then, for each t ∈ [0,b],

N(y)(t)= T(t)φ(0) +
∫ t

0
T(t− s) f (s, ys)ds+

∑
0<tk<t

T
(
t− tk

)
Ik
(
y
(
t−k
))
. (3.9)

By (H1)-(H2) we have, for each t ∈ [0,b],

∥∥N(y)(t)
∥∥≤M∥∥φ(0)

∥∥+M
∫ t

0

∥∥ f (s, ys)∥∥ds+M
m∑
k=1

ck

≤M‖φ‖+M
∥∥ϕq∥∥L1 +M

m∑
k=1

ck := l.
(3.10)
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Step 2. N sends bounded sets in Ω into equicontinuous sets.
Let u1,u2 ∈ J and ε > 0 with 0 < ε < u1 < u2, let Bq := {y ∈Ω : ‖y‖Ω ≤ q} be a bounded

set in Ω and let y ∈ Bq. Then we have

∥∥N(y)
(
u2
)−N(y)

(
u1
)∥∥≤ ∥∥T(u2

)
φ(0)−T(u1

)
φ(0)

∥∥
+M

∫ u2

u1

ϕq(s)ds

+
∫ u1−ε

0

∥∥[T(u1− s
)−T(u2− s

)]
ϕq(s)

∥∥ds
+
∫ u1

u1−ε

∥∥[T(u1− s
)−T(u2− s

)]
ϕq(s)

∥∥ds
+M

∑
0<tk<τ2−τ1

ck +
∑

0<tk<τ1

ck
∥∥T(τ2− tk

)−T(τ1− tk
)∥∥.

(3.11)

As u2 → u1, the right-hand side of the above inequality tends to zero, since T(t) is a
strongly continuous operator, and the compactness of T(t) for t > 0 implies the conti-
nuity in the uniform operator topology. As a consequence of the Arzelá-Ascoli theorem,
it suffices to show that N maps Bq into a precompact set in H . Let 0 < t ≤ b be fixed and
let ε be a real number satisfying 0 < ε < t. For y ∈ Bq, we define

Nε(y)(t)= T(t)y0 +T(ε)
∫ t−ε

0
T(t− s− ε) f

(
s, ys

)
ds

+T(ε)
∑

0<tk<t

T
(
t− tk − ε

)
Ik
(
y
(
t−k
))
.

(3.12)

Since T(t) is a compact operator, the set {Nε(y)(t); y ∈ Bq} is precompact in H for every
ε, 0 < ε < t. Moreover, we have

∣∣Nε(y)(t)−N(y)(t)
∣∣≤M

∫ t
t−ε

ϕq(s)ds+
∑

t−ε<tk<t
Mck. (3.13)

Therefore there are precompact sets arbitrarily close to the set {N(y)(t) : y ∈ Bq}. Hence
the set {N(y)(t) : y ∈ Bq} is precompact inH . The equicontinuity for the cases u1 < u2 ≤
0 and u1 ≤ 0≤ u2 is obvious.
Step 3. N is continuous.

Let {yn} be a sequence such that yn→ y in Ω. Then

∥∥N(yn)(t)−N(y)(t)
∥∥≤M

∫ t
0

∥∥ f (s, yn,s
)− f

(
s, ys

)∥∥ds
+M

∑
0<tk<t

∥∥Ik(yn(tk))− Ik(y(t−k ))∥∥

≤M
∫ b

0

∥∥ f (s, yn,s
)− f

(
s, ys

)∥∥ds
+M

∑
0<tk<t

∥∥Ik(yn(tk))− Ik(y(t−k ))∥∥.

(3.14)
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Since the functions Ik, k = 1, . . . ,m, are continuous and f is L1-Carathéodory, then

∥∥N(yn)−N(y)
∥∥
Ω ≤M

∥∥ f (·, yn)− f (·, y)
∥∥
L1

+M
m∑
k=1

∥∥Ik(yn(t−k ))− Ik(y(t−k ))∥∥−→ 0
(3.15)

as n→∞. As a consequence of steps 1 to 3 together with the Arzelá-Ascoli theorem, we
can conclude that N : Ω→Ω is completely continuous.

Let

C = {y ∈Ω :
〈
y(t),z(t)

〉≥ 0 for t ∈ [0,b], ∀z ∈Ω with ‖z‖Ω ≤ R
}
. (3.16)

Then C is a cone in Ω. Let y,z ∈ CR. Then, by (H4), we have

〈
z(t),T(t)φ(0) +

∫ t
0
T(t− s) f (s, ys)ds+

∑
0<tk<t

T
(
t− tk

)
Ik
(
y
(
tk
))〉≥ 0. (3.17)

Thus N maps CR into C and it is a completely continuous map. Now it remains to
show that the hypotheses of Theorem 2.2 are satisfied. First notice that condition (A1)
of Theorem 2.2 holds since for y ∈ ∂Cr , we have from (H1)–(H3)

∥∥N(y)(t)
∥∥≤M∥∥φ(0)

∥∥+
∫ t

0
M
∥∥ f (s, ys)∥∥ds+M

∑
0<tk<t

∣∣Ik(y(tk))∣∣

≤M‖φ‖+M
m∑
k=1

ck +Mψ(r)‖p‖L1 < r.

(3.18)

Finally to see that (A2) of Theorem 2.2 holds, let y ∈ ∂CR, that is, ‖y‖Ω = R. Then from
(H4) we have

∣∣∣∣∣
〈
y(t),T(t)φ(0) +

∫ t
0
T(t− s) f (s, ys)ds+

∑
0<tk<t

T
(
t− tk

)
Ik
(
y
(
t−k
))〉∣∣∣∣∣≥ R2. (3.19)

By the Schwarz inequality we have

∣∣∣∣∣
〈
y,T(t)φ(0) +

∫ t
0
T(t− s) f (s, ys)ds+

∑
0<tk<t

T
(
t− tk

)
Ik
(
y
(
t−k
))〉∣∣∣∣∣

≤ ∥∥y(t)
∥∥∥∥N(y)(t)

∥∥
≤ ‖y‖Ω

∥∥N(y)
∥∥
Ω

= R∥∥N(y)
∥∥
Ω.

(3.20)

Hence

∥∥N(y)
∥∥
Ω ≥ R := ‖y‖Ω. (3.21)
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Thus condition (A2) of Theorem 2.2 holds. The Krasnoselskii twin fixed point theorem
implies that N has at least two fixed points y1, y2 which are mild solutions to problem
(1.1). Furthermore, we have

y1 ∈ Cr , y2 ∈ CR−Cr. (3.22)
�

4. Second-order impulsive functional differential inclusions

In this section, we give an existence result for the IVP (1.2).

Definition 4.1. A function y ∈ Ω is said to be a mild solution of (1.2) if y(t) = φ(t),
t ∈ [−r,0], y′(0)= η, and satisfies the following impulsive integral equation:

y(t)= C(t)φ(0) + S(t)η+
∫ t

0
S(t− s) f (s, ys)ds

+
∑

0<tk<t

[
C
(
t− tk

)
Ik
(
y(t−k

))
+ S
(
t− tk

)
Ik
(
y
(
t−k
))]

.
(4.1)

Theorem 4.2. Assume that (H2) and the following conditions are satisfied.
(H5) There exists nonnegative constants dk such that∥∥Ik(y)

∥∥≤ dk for each y ∈H , k = 1, . . . ,m. (4.2)

(H6) A :D(A)⊂H →H is the infinitesimal generator of a strongly continuous cosine fam-
ily {C(t) : t ∈ J} which is compact for t > 0, and there exists a constant M1 > 0 such
that ‖C(t)‖B(H) <M1 for all t ∈R.

(H7) There exist a continuous nondecreasing function ψ : [0,∞)→ (0,∞), p ∈ L1([0,b],
R+), and nonnegative number r∗ > 0 such that

M1‖φ‖+ bM1‖η‖+ bM1ψ
(
r∗
)‖p‖L1 +

m∑
k=1

M1
[
ck + bdk

]
< r∗. (4.3)

(H8) There exist R∗ > r∗, such that for each z ∈Ω with ‖z‖Ω ≤ R∗, t ∈ [0,b] and for all
(x,u)∈H ×D,〈

z(t),C(t)φ(0) + S(t)η+
∫ t

0
S(t− s) f (s,u)ds

+
∑

0<tk<t

[
C
(
t− tk

)
Ik(x) + S

(
t− tk

)
Ik(x)

]〉≥ 0,

(4.4)

and for any y ∈Ω such that ‖y‖Ω = R∗,∣∣∣∣∣
〈
y(t),C(t)φ(0) + S(t)η+

∫ t
0
S(t− s) f (s, ys)ds

+
∑

0<tk<t

[
C
(
t− tk

)
Ik
(
y
(
t−k
))

+ S
(
t− tk

)
Ik
(
y
(
tk
))]〉∣∣∣∣∣≥ R∗2.

(4.5)

Then the IVP (1.2) has at least two mild solutions.
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Proof. Transform the problem (1.2) into a fixed point problem. Consider the operator
N1 : Ω→Ω defined by

N1(y)(t)=




φ(t), if t ∈ [−r,0],

C(t)φ(0) + S(t)η+
∫ t

0
S
(
t− s) f (s, ys)ds

+
∑

0<tk<t

[
C
(
t− tk

)
Ik
(
y
(
t−k
))

+ S
(
t− tk

)
Ik
(
y
(
t−k
))]

, if t ∈ [0,b].

(4.6)

As in Theorem 3.2 we can show that N1 is completely continuous.
Let

C = {y ∈Ω :
〈
y(t),z(t)

〉≥ 0 for t ∈ [0,b], ∀z ∈Ω with ‖z‖Ω ≤ R∗
}

(4.7)

be a cone in Ω. Let y,z ∈ CR∗ , then by (H8) we have

〈
z(t),C(t)φ(0) + S(t)η+

∫ t
0
S(t− s) f (s, ys)ds

+
∑

0<tk<t

[
C
(
t− tk

)
Ik
(
y
(
tk
))

+ S
(
t− tk

)
Ik
(
y
(
tk
))]〉≥ 0.

(4.8)

Thus N(CR∗) ⊂ C and N : CR∗ → C is a completely continuous map. Now it remains to
show that the hypotheses of Theorem 2.2 are satisfied. First notice that condition (A1) of
Theorem 2.2 holds since for y ∈ ∂Cr∗ , we have from (H2), (H5), (H6), and (H7)

∥∥N1(y)(t)
∥∥≤M1‖φ‖+ bM1‖η‖+ bM2ψ

(
r∗
)‖p‖L1

+
m∑
k=1

M1
[
ck + bdk

]≤ r∗. (4.9)

Finally, to see that Theorem 2.2 (A2) holds, let y ∈ ∂CR∗ , ‖y‖Ω = R∗. Then from (H8) we
have ∣∣∣∣∣

〈
y(t),C(t)φ(0) + S(t)η+

∫ t
0
S(t− s) f (s, ys)ds

+
∑

0<tk<t

[
C
(
t− tk

)
Ik
(
y
(
t−k
))

+ S
(
t− tk

)
Ik
(
y
(
tk
))]〉∣∣∣∣∣≥ R∗2.

(4.10)

By the Schwarz inequality we have
∣∣∣∣∣
〈
y(t),C(t)φ(0) + S(t)η+

∫ t
0
S(t− s) f (s, ys)ds

+
∑

0<tk<t

[
C
(
t− tk

)
Ik
(
y
(
t−k
))

+ S
(
t− tk

)
Ik
(
y
(
tk
))]〉∣∣∣∣∣

≤ ‖y‖Ω
∥∥N1(y)

∥∥
Ω = R∗

∥∥N1(y)
∥∥
Ω.

(4.11)
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Thus

∥∥N1(y)
∥∥
Ω ≥ R∗. (4.12)

Hence condition (A2) of Theorem 2.2 holds. Then Krasnoselskii’s twin fixed point theo-
rem implies thatN has at least two fixed points y1, y2 which are mild solutions to problem
(1.2). Furthermore, we have

y1 ∈ Cr∗ , y2 ∈ CR∗ −Cr∗ . (4.13)
�

5. First-order impulsive neutral functional differential inclusions

We start by defining what we mean by a solution of IVP (1.3).

Definition 5.1. A function y ∈Ω is said to be a mild solution of (1.3) if y(t)= φ(t), t ∈
[−r,0], the restriction of y(·) to the interval [0,b) is continuous, and for each 0 ≤ t < b,
the functionAT(t− s)g(s, ys), s∈ [0, t), is integrable and y is the solution of the impulsive
integral equation

y(t)= T(t)
[
φ(0)− g(0,φ)

]
+ g
(
t, yt

)
+
∫ t

0
AT(t− s)g(s, ys)ds

+
∫ t

0
T(t− s) f (s, ys)ds+

∑
0<tk<t

T
(
t− tk

)
Ik
(
y
(
t−k
))
.

(5.1)

The following hypotheses are assumed hereafter.
(B1) (i) There exist constants c1,c2 > 0 such that

∥∥g(t,u)
∥∥≤ c1‖u‖+ c2, (t,u)∈ [0,b]×D. (5.2)

(ii) The function g is completely continuous such that the operator

G : C
(
[−r,b],H

)−→ C
(
[0,b],H

)
(5.3)

defined by (Gy)(t)= g(t, yt) is compact.
(B2) A :D(A)⊂H →H is the infinititesimal generator of a compact semigroup {T(t)},

t > 0, such that

∥∥AT(t)
∥∥
B(H) ≤M2, for some M2 > 0. (5.4)

(B3) There exist a continuous nondecreasing function ψ : [0,∞)→(0,∞), p∈L1([0,b],
R+), and nonnegative numbers r1 > 0 such that

M‖φ‖+
(
M + 1 + bM2

)(
c1r1 + c2

)
+Mψ

(
r1
)‖p‖L1 +M

m∑
k=1

ck < r1. (5.5)
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(B4) There exists R1 > r1, such that for each z ∈ Ω with ‖z‖Ω ≤ R1, t ∈ [0,b], and
(x,u)∈H ×D, we have

〈
z(t),T(t)

[
φ(0)− g(0,φ(0)

)]
+
∫ t

0
AT(t− s)g(s,u)ds

+ g(t,u) +
∫ t

0
T(t− s) f (s,u)ds+

∑
0<tk<t

T
(
t− tk

)
Ik(x)

〉
≥ 0,

(5.6)

and for all y ∈Ω such that ‖y‖Ω = R1,

∣∣∣∣∣
〈
y(t),T(t)

[
φ(0)− g(0,φ(0)

)]
+
∫ t

0
AT(t− s)g(s, ys)ds

+ g
(
t, yt

)
+
∫ t

0
T(t− s) f (s, ys)ds+

∑
0<tk<t

T
(
t− tk

)
Ik
(
y
(
t−k
))〉∣∣∣∣∣≥ R2

1.

(5.7)

Theorem 5.2. Assume that hypotheses (H1), (H2), and (B1)–(B4) hold. Then the problem
(1.3) has least two mild solutions.

Proof. Consider the operator N2 : Ω→Ω defined by

N2(y)(t)=




φ(t), if t ∈ [−r,0],

T(t)
[
φ(0)− g(0,φ)

]
+ g
(
t, yt

)
+
∫ t

0
AT(t− s)g(s, ys)ds

+
∫ t

0
T(t− s) f (s, ys)ds+

∑
0<tk<t

T
(
t− tk

)
Ik
(
y
(
t−k
))

, if t ∈ [0,b].

(5.8)

We will show that N2 is completely continuous. The proof will be given in several steps.
Step 1. N2 sends bounded sets into bounded sets in Ω.

Indeed, it is enough to show that for any q > 0 there exists a positive constant l such
that for each y ∈ Bq := {y ∈Ω : ‖y‖Ω ≤ q} one has ‖N2(y)‖Ω ≤ l. Let y ∈ Bq, then

N2(y)(t)= T(t)
[
φ(0)− g(0,φ(0)

)]
+ g
(
t, yt

)
+
∫ t

0
AT(t− s)g(s, ys)ds

+
∫ t

0
T(t− s) f (s, ys)ds+

∑
0<tk<t

T
(
t− tk

)
Ik
(
y
(
t−k
))
.

(5.9)
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From (H1), (H2), (B1), (B2), and (B3) we have for each t ∈ [0,b],

∥∥N2(y)(t)
∥∥≤ ∥∥T(t)

∥∥[‖φ‖+
∥∥g(0,φ(0)

)∥∥]+
∥∥g(t, yt)∥∥+

∫ t
0

∥∥AT(t− s)∥∥∥∥g(s, ys)∥∥ds
+
∫ t

0

∥∥T(t− s)∥∥∥∥ f (s, ys)∥∥ds+
∑

0<tk<t

∥∥T(t− tk)∥∥∥∥Ik(y(t−k ))∥∥

≤M‖φ‖+
(
M + 1 + bM2

)(
c1q+ c2

)
+M

∥∥ϕq∥∥L1 +M
m∑
k=1

ck := l.
(5.10)

Step 2. N2 sends bounded sets in Ω into equicontinuous sets.
Using (B2), it suffices to show that the operator N2 : Ω→Ω defined by

N2(y)(t)=




φ(t), if t ∈ [−r,0],

T(t)φ(0) +
∫ t

0
AT(t− s)g(s, ys)ds

+
∫ t

0
T(t− s) f (s, ys)ds+

∑
0<tk<t

T
(
t− tk

)
Ik
(
y
(
t−k
))

, if t ∈ [0,b],

(5.11)

maps bounded sets into equicontinuous sets of Ω. Let u1,u2 ∈ J and ε > 0 with 0 < ε <
u1 < u2, Bq := {y ∈Ω : ‖y‖Ω ≤ q} be a bounded set in Ω and y ∈ Bq. Then we have

∥∥N2(y)
(
u2
)−N2(y)

(
u1
)∥∥≤ ∥∥T(u1

)
φ(0)−T(u2

)
φ(0)

∥∥
+
(
c1q+ c2

)∫ u1−ε

0

∥∥AT(u1− s
)−AT(u2− s

)∥∥ds
+
(
c1q+ c2

)∫ u1

u1−ε

∥∥AT(u1− s
)−AT(u2− s

)∥∥ds
+M2

(
c1q+ c2

)(
u2−u1

)

+
∫ u1−ε

0

∥∥T(u1− s
)−T(u2− s

)∥∥ϕq(s)ds

+
∫ u1−ε

u1

∥∥T(u1− s
)−T(u2− s

)∥∥ϕq(s)ds

+M1

∫ u2

u1

ϕq(s)ds+M
∑

0<tk<τ2−τ1

ck

+
∑

0<tk<τ1

ck
∥∥T(u2− tk

)−T(u1− tk
)∥∥.

(5.12)

As u2 → u1 the right-hand side of the above inequality tends to zero, since T(t) is a
strongly continuous operator, and the compactness of T(t) for t > 0 implies the conti-
nuity in the uniform operator topology. As a consequence of the Arzelá-Ascoli theorem,
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it suffices to show that N2 multivalued maps Bq into a precompact set in H . Let 0 < t ≤ b
be fixed and let ε be a real number satisfying 0 < ε < t. For y ∈ Bq we define

N
ε
2(y)(t)= T(t)φ(0) +

∫ t−ε
0

AT(t− s)g(s, ys)ds
+
∫ t−ε

0
T(t− s− ε) f

(
s, ys

)
ds+T(t− ε)

∑
0<tk<t−ε

T
(
t− tk − ε

)
Ik
(
y
(
t−k
))
.

(5.13)

Since T(t) is a compact operator, the set {Nε
2(y)(t) : y ∈ Bq} is precompact inH for every

0 < ε < t. Moreover, we have

∥∥Nε
2(y)(t)−N2(y)(t)

∥∥≤
∫ t
t−ε

∥∥AT(t− s)g(s, ys)∥∥ds
+
∫ t
t−ε

∥∥T(t− s)∥∥ϕq(s)ds

+
∑

t−ε<tk<t

∥∥T(t− tk)
∥∥ck.

(5.14)

Therefore there are precompact sets arbitrarily close to the set {Nε
2(y)(t) : y ∈ Bq}. Hence

the set {N2(y)(t) : y ∈ Bq} is precompact in E. The equicontinuity for the cases u1 < u2 ≤
0 and u1 ≤ 0≤ u2 is obvious.
Step 3. N2 is continuous.

Let {yn} be a sequence such that yn→ y in Ω. Then

∥∥N2
(
yn
)
(t)−N2(y)(t)

∥∥≤M2

∫ t
0

∥∥g(s, yn,s
)− g(s, ys)∥∥ds

+M
∫ b

0

∥∥ f (s, yn,s
)− f

(
s, ys

)∥∥ds
+M

∑
0<tk<t

M
∥∥Ik(yn(t−k ))− Ik(y(t−k ))∥∥.

(5.15)

Since the functions Ik, k = 1, . . . ,m, are continuous, g completely continuous, then

∥∥N2
(
yn
)−N2(y)

∥∥
Ω

≤M3 sup
t∈J

∫ t
0

∣∣g(s, yns)− g(s, ys)∣∣ds
+M

∥∥ f (·, yn)− f (·, y)
∥∥
L1 +M

m∑
k=1

∥∥Ik(yn(t−k ))− Ik(y(t−k ))∥∥−→ 0.

(5.16)

As a consequence of steps 1 to 3 together with the Arzelá-Ascoli theorem, we can conclude
that N2 : Ω→Ω is completely continuous.



202 Multiple solutions for impulsive differential equations

Let C = {y ∈Ω : 〈y(t),z(t)〉 ≥ 0 for t ∈ [0,b], for all z ∈Ω,‖z‖Ω ≤ R1} be a cone in
Ω. Let y,z ∈ CR1 . From (B4) we have

〈
y(t),T(t)

[
φ(0)− g(0,φ(0)

)]
+
∫ t

0
AT(t− s)g(s,u)ds

+ g(t,u) +
∫ t

0
T(t− s) f (s,u)ds+

∑
0<tk<t

T
(
t− tk

)
Ik(x)

〉
≥ 0.

(5.17)

Thus N(CR1 ) ⊂ C and N : CR1 → C is a completely continuous map. Now it remains to
show that the hypotheses of Theorem 2.2 are satisfied. First notice that Theorem 2.2(A1)
holds since for y ∈ ∂Cr1 , we have from (H1), (H2), and (B1)–(B3)

∥∥N2(y)(t)
∥∥≤ ∥∥T(t)

∥∥[‖φ‖+
∥∥g(0,φ(0)

)∥∥]+
∥∥g(t, yt)∥∥+

∫ t
0

∥∥AT(t− s)∥∥∥∥g(s, ys)∥∥ds
+
∫ t

0

∥∥T(t− s)∥∥∥∥ f (s, ys)∥∥ds+
∑

0<tk<t

∥∥T(t− tk)∥∥∥∥Ik(y(t−k ))∥∥

≤M‖φ‖+
(
M + 1 + bM2

)(
c1r1 + c2

)
+Mψ

(
r1
)‖p‖L1 +M

m∑
k=1

ck

< r1.
(5.18)

Let y ∈ ∂CR1 , that is, ‖y‖Ω = R1. Then from (B4) and the Schwarz inequality we get as
in the previous Theorems that ‖N2(y)‖Ω ≥ R1 and hence condition (A2) of Theorem 2.2
holds. The Krasnoselskii twin fixed point theorem implies that N2 has at least two fixed
points y1, y2 which are solutions to problem (1.3). Furthermore, we have

y1 ∈ Cr1 , y2 ∈ CR1 −Cr1 . (5.19)
�

6. Second-order impulsive neutral functional differential inclusions

In this section, we study the initial value problem (1.4). We give first the definition of a
mild solution of the IVP (1.4).

Definition 6.1. A function y ∈ Ω is said to be a mild solution of (1.4) if y(t) = φ(t),
t ∈ [−r,0], y′(0)= η, and y is the solution of impulsive integral equation

y(t)= C(t)φ(0) + S(t)
[
η− g(0,φ(0)

)]
+
∫ t

0
C(t− s)g(s, ys)ds

+
∫ t

0
S(t− s) f (s, ys)ds+

∑
0<tk<t

[
C
(
t− tk

)
Ik
(
y
(
t−k
))

+ S
(
t− tk

)
Ik
(
y
(
t−k
))]

.
(6.1)
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Theorem 6.2. Assume that hypotheses (H2), (H5), (H6), (B1), and the following hypotheses
are satisfied.

(B5) There exist a continuous nondecreasing function ψ : [0,∞)→ (0,∞), p ∈ L1([0,b],
R+), and nonegative numbers r2 > 0 such that

M1‖φ‖+ 2bM1
(
c1r2 + c2

)
+ bM1‖η‖+ bM1ψ

(
r2
)‖p‖L1 +

m∑
k=1

M1
[
ck + bdk

]
< r2. (6.2)

(B6) There exists R2 > r2 such that for each z ∈Ω with ‖z‖Ω ≤ R2, t ∈ [0,b] and for all
(x,u)∈H ×D,〈
z(t),C(t)φ(0) + S(t)

[
η− g(0,φ(0)

)]
+
∫ t

0
C(t− s)g(s,u)ds

+
∫ t

0
S(t− s) f (s,u)ds+

∑
0<tk<t

[
C
(
t− tk

)
Ik(x) + S

(
t− tk

)
Ik(x)

]〉≥ 0,

(6.3)

and for all y ∈Ω such that ‖y‖Ω = R2,∣∣∣∣∣
〈
y(t),C(t)φ(0) + S(t)

[
η− g(0,φ(0)

)]
+
∫ t

0
C(t− s)g(s, ys)ds

+
∫ t

0
S(t− s) f (s, ys)ds+

∑
0<tk<t

[
C
(
t− tk

)
Ik
(
y
(
t−k
))

+ S
(
t− tk

)
Ik
(
y
(
tk
))]〉∣∣∣∣∣≥ R2

2.

(6.4)

Then the IVP (1.4) has two mild solutions.

Proof. Transform the problem (1.4) into a fixed point problem. Consider the operator
N3 : Ω→Ω defined by

N3(y)(t)=




φ(t), if t ∈ [−r,0] ,

C(t)φ(0) + S(t)
[
η− g(0,φ(0)

)]

+
∫ t

0
C(t− s)g(s, ys)ds+

∫ t
0
S(t− s) f (s, ys)ds

+
∑

0<tk<t

[
Ik
(
y
(
t−k
))

+
(
t− tk

)
Ik
(
y
(
t−k
))]

, if t ∈ [0,b].

(6.5)

As in Theorem 5.2 we can show that N3 is completely continuous.
Let C = {y ∈Ω : 〈y(t),z(t)〉 ≥ 0 for t ∈ [0,b], for all z ∈Ω,‖z‖Ω ≤ R2} be a cone in

Ω. Let y,z ∈ CR2 . Then by (B6) we have
〈
y(t),C(t)φ(0) + S(t)

[
η− g(0,φ(0)

)]
+
∫ t

0
C(t− s)g(s, ys)ds

+
∫ t

0
S(t− s) f (s, ys)ds+

∑
0<tk<t

[
C
(
t− tk

)
Ik
(
y
(
t−k
))

+ S
(
t− tk

)
Ik
(
y
(
tk
))]〉≥ 0.

(6.6)
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Thus N(CR2 ) ⊂ C and N : CR2 → C is a completely continuous map. Now it remains to
show that the hypotheses of Theorem 2.2 are satisfied. First notice that condition (A1) of
Theorem 2.2 holds since for y ∈ ∂Cr2 , we have from (H2), (H5), and (B5)

∥∥N3(y)(t)
∥∥≤M1‖φ‖+ 2bM1

(
c1r2 + c2

)
+ bM1‖η‖+ bM1ψ

(
r2
)‖p‖L1

+
m∑
k=1

M1
[
ck + bdk

]≤ r2.
(6.7)

Let y ∈ ∂CR2 , then

N3(y)(t)= C(t)φ(0) + S(t)
[
η− g(0,φ(0)

)]
+
∫ t

0
C(t− s)g(s, ys)ds

+
∫ t

0
S(t− s) f (s, ys)ds+

∑
0<tk<t

[
C
(
t− tk

)
Ik
(
y
(
t−k
))

+ S
(
t− tk

)
Ik
(
y
(
tk
))]

.

(6.8)

Similarly to the previous argument, we can show that condition (A2) of Theorem 2.2
holds.

The Krasnoselskii twin fixed point theorem implies that N has at least two fixed points
y1, y2 which are solutions to problem (1.4). Furthermore, we have

y1 ∈ Cr2 , y2 ∈ CR2 −Cr2 . (6.9)
�

References

[1] N. U. Ahmed, Optimal impulse control for impulsive systems in Banach spaces, Int. J. Differ. Equ.
Appl. 1 (2000), no. 1, 37–52.

[2] D. D. Bainov and P. S. Simeonov, Systems with Impulse Effect, Ellis Horwood Series: Mathemat-
ics and Its Applications, Ellis Horwood Limited, Chichester, 1989.

[3] M. Benchohra, J. Henderson, and S. K. Ntouyas, Impulsive neutral functional differential equa-
tions in Banach spaces, Appl. Anal. 80 (2001), no. 3-4, 353–365.

[4] , Existence results for impulsive semilinear neutral functional differential equations in Ba-
nach spaces, Mem. Differential Equations Math. Phys. 25 (2002), 105–120.

[5] M. Benchohra, S. K. Ntouyas, and A. Ouahabi, Existence results for impulsive seminlinear
damped differential equations, Int. J. Appl. Math. 11 (2002), no. 1, 77–93.

[6] M. Benchohra and A. Ouahabi, Some uniqueness results for impulsive semilinear neutral func-
tional differential equations, Georgian Math. J. 9 (2002), no. 3, 423–430.

[7] L. H. Erbe, H. I. Freedman, X. Liu, and J. H. Wu, Comparison principles for impulsive parabolic
equations with applications to models of single species growth, J. Austral. Math. Soc. Ser. B 32
(1991), no. 4, 382–400.

[8] H. O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, North-Holland
Mathematics Studies, vol. 108, North-Holland Publishing, Amsterdam, 1985.

[9] J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Mathematical Mono-
graphs, The Clarendon Press Oxford University Press, New York, 1985.

[10] D. J. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Notes and Reports in
Mathematics in Science and Engineering, vol. 5, Academic Press, Massachusetts, 1988.



M. Benchohra et al. 205

[11] V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov, Theory of Impulsive Differential Equa-
tions, Series in Modern Applied Mathematics, vol. 6, World Scientific Publishing, New
Jersey, 1989.

[12] J. H. Liu, Nonlinear impulsive evolution equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A
Math. Anal. 6 (1999), no. 1, 77–85.

[13] X. Liu and S. Zhang, A cell population model described by impulsive PDEs—existence and nu-
merical approximation, Comput. Math. Appl. 36 (1998), no. 8, 1–11.

[14] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Ap-
plied Mathematical Sciences, vol. 44, Springer, New York, 1983.

[15] Y. V. Rogovchenko, Impulsive evolution systems: main results and new trends, Dynam. Contin.
Discrete Impuls. Systems 3 (1997), no. 1, 57–88.

[16] A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific Se-
ries on Nonlinear Science. Series A: Monographs and Treatises, vol. 14, World Scientific
Publishing, New Jersey, 1995.

[17] C. C. Travis and G. F. Webb, Cosine families and abstract nonlinear second order differential
equations, Acta Math. Acad. Sci. Hungar. 32 (1978), no. 1-2, 75–96.

[18] , Second order differential equations in Banach space, Nonlinear Equations in Abstract
Spaces (Proc. Internat. Sympos., Univ. Texas, Arlington, Tex., 1977), Academic Press, New
York, 1978, pp. 331–361.

[19] K. Yosida, Functional Analysis, Fundamental Principles of Mathematical Sciences, vol. 123,
Springer, Berlin, 1980.
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