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We introduce and study a new class of generalized nonlinear variational-like inequalities,
which includes these variational inequalities and variational-like inequalities due to Bose,
Cubiotti, Dien, Ding, Ding and Tarafdar, Noor, Parida, Sahoo, and Kumar, and Yao, and
others as special cases. By applying Kirk’s fixed-point theorem and Ding-Tan minimax
inequality, we establish the existence theorems of solutions for the generalized nonlinear
variational-like inequalities in reflexive Banach spaces.

1. Introduction and preliminaries

In what follows, let R = (−∞,+∞), let B be a Banach space with norm ‖ · ‖, let B∗ be
the topological dual space of B, and let 〈u,v〉 be the pairing between u ∈ B∗ and v ∈ B.
Let D be a nonempty closed convex subset of B and a,b : D×D→R satisfy the following
conditions:

a is a continuous function which is linear in both arguments; (1.1)

there exist constants α > 0, β > 0 satisfying a(x,x)≥ α‖x‖2

and a(x, y)≤ β‖x‖‖y‖, ∀x, y ∈D;
(1.2)

b(x, y) is linear in the first argument and is convex

in the second argument, respectively;
(1.3)

there exists a constant γ > 0 satisfying b(x, y)≤ γ‖x‖‖y‖, ∀x, y ∈D; (1.4)

b(x, y)− b(x,z)≤ b(x, y− z), ∀x, y,z ∈D. (1.5)

Ding and Tarafdar [7] and Ding [4] introduced and studied the following general non-
linear variational inequality problem and general nonlinear variational-like inequality
problem, respectively.

Find u∈D such that

a(u,x−u) + b(u,x)− b(u,u)≥ 〈Tu,g(x)− g(u)
〉

, ∀x ∈D. (1.6)
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Find u∈D such that

〈
Tu−Au,η(x,u)

〉
+ b(u,x)− b(u,u)≥ 0, ∀x ∈D. (1.7)

They obtained the existence uniqueness theorems of solutions for problems (1.6) and
(1.7) in nonempty closed convex subsets of reflexive Banach spaces. Cubiotti [2] estab-
lished the existence of solution for problem (1.6) in nonempty convex and weakly com-
pact subsets of reflexive Banach spaces. It is well known in the literature that problems
(1.6) and (1.7) can characterize a wide class of problems arising in control and optimiza-
tion, mathematical programming, mechanics, engineering, economics equilibrium, and
free boundary-valued problems, and so forth On the other hand, Bose [1], Dien [3], Ding
[5], Fang et al. [8], Liu et al. [10], Noor [11], Parida et al. [12], and Yao [13] investigated
some special cases of problems (1.6) and (1.7) or a few similar problems in Euclidean
spaces, Hilbert spaces, and Banach spaces, respectively. In 1965, Kirk [9] showed the fol-
lowing nice result.

Lemma 1.1 (see [9]). Let D be a nonempty bounded closed convex subset of a reflexive
Banach space B, and suppose that D has normal structure. If T : D → D is nonexpansive,
that is,

‖Tx−Ty‖ ≤ ‖x− y‖, ∀x ∈D, (1.8)

then T has a fixed point in D.

Although the result due to Kirk has various applications in different fields, to our
knowledge, it never has any applications in variational inequality theory. The main pur-
pose of this paper is to provide a few new applications of Kirk’s fixed-point theorem in
variational-like inequalities. That is, by applying Kirk’s fixed-point theorem, we study the
existence of solutions for the following generalized nonlinear variational-like inequality
problem.

Find u∈D such that

a(u,x−u) + b(u,x)− b(u,u)≥ 〈N(Tu,Au),η(x,u)
〉

, ∀x ∈D, (1.9)

where a and b satisfy (1.1)–(1.5) and b is not necessarily differentiable, T ,A : D → B,
N : B×B→ B∗, and η : D×D→ B are four nonlinear mappings.

The results proved in this paper represent a significant improvement and refinement
of the previously known results in this field.

Remark 1.2. For suitable and appropriate choices of the mappings T , A, N , η, a and b,
one can obtain various new and previously known variational inequality problems and
variational-like inequality problems in [1, 2, 3, 4, 7, 11, 12, 13] as special cases of the
generalized nonlinear variational-like inequality problem (1.9).

Remark 1.3. It follows from (1.5) that

b(x,z)− b(x, y)≤ b(x,z− y), ∀x, y,z ∈D. (1.10)
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By virtue of (1.4), (1.5), and (1.10), we derive that

∣∣b(x, y)− b(x,z)
∣∣≤ γ‖x‖‖y− z‖, ∀x, y,z ∈D, (1.11)

which implies that b(x, y) is continuous with respect to the second argument.

Definition 1.4. Let D be a nonempty convex subset of a Banach space B with the dual
space B∗. Let T ,A : D→ B, N : B×B→ B∗, and η : D×D→ B be mappings. The map-
pings T , A, N , and η are said to have 0-diagonally concave relation on D if the function
φ : D×D→R∪{+∞} defined by φ(x, y)= 〈N(Tx,Ax),η(y,x)〉 is 0-diagonally concave
in y. That is, for any finite set {y1, y2, . . . , ym} ⊆ D and for any x =∑m

i=1 ti yi with ti ≥ 0
and

∑m
i=1 ti = 1,

m∑
i=1

tiφ
(
x, yi

)≤ 0. (1.12)

Definition 1.5. Let D be a nonempty convex subset of a Banach space B with the dual
space B∗. Let T : D→ B, N : B×B→ B∗, and η : D×D→ B be mappings.

(i) T is said to be t-strongly η-antimonotone with respect to the first argument of N if
there exists a constant t > 0 such that

〈
N(Tx,u),η(y,x)

〉
+
〈
N(Ty,u),η(x, y)

〉≥ t‖x− y‖2, ∀x, y ∈D, u∈ B. (1.13)

(ii) T is said to be t-weakly η-antimonotone with respect to the first argument of N if
there exists a constant t > 0 such that

〈
N(Tx,u),η(y,x)

〉
+
〈
N(Ty,u),η(x, y)

〉≥−t‖x− y‖2, ∀x, y ∈D, u∈ B. (1.14)

(iii) If t = 0 in (1.13), then T is called η-antimonotone with respect to the first argu-
ment of N .

(iv) T is said to be t-Lipschitz continuous if there exists a constant t > 0 such that

‖Tx−Ty‖ ≤ t‖x− y‖, ∀x, y ∈D. (1.15)

(v) η is said to satisfy the Lipschitz-type condition if there exists a constant t > 0 such
that

∥∥η(x, y)
∥∥≤ t‖x− y‖, ∀x, y ∈D. (1.16)

(vi) N is said to be t-Lipschitz continuous with respect to the first argument if there
exists a constant t > 0 such that

∥∥N(x,u)−N(y,u)
∥∥≤ t‖x− y‖, ∀x, y,u∈ B. (1.17)

In a similar way, we can define that T is η-antimonotone, t-strongly η-antimonotone,
t-weakly η-antimonotone with respect to the second argument of N , respectively, and N
is t-Lipschitz continuous with respect to the second argument.
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Remark 1.6. From Definition 1.5, we immediately have the following implications. The t-
strong η-antimonotonicity⇒ the η-antimonotonicity⇒ the t-weak η-antimonotonicity.

But the converses are not true, see Examples 1.7 and 1.8 below.

Example 1.7. Let B = R, D = [0,+∞), T : D→ R, N : R×R→ R, and η : R×R→ R be
defined by Tx = sin3x, for all x ∈D, N(x, y)= x, for all x, y ∈R, and

η(x, y)=



x− y if xy < 1, (x, y)∈D×D,

x2y2(x− y) if 1≤ xy < 2, (x, y)∈D×D,

2(x− y) if 2≤ xy, (x, y)∈D×D,

(1.18)

respectively. It is clear that η(x, y) = −η(y,x) for all x, y ∈ D, and T is 12-weakly η-
antimonotone with respect to the first argument of N . But it is not η-antimonotone with
respect to the first argument of N because

〈
N
(
T
π

6
,1
)

,η
(

0,
π

6

)�
+
〈
N(T0,1),η

(
π

6
,0
)�

=−π

6
< 0. (1.19)

Example 1.8. Let B, D, and N be as in Example 1.7, and define T : D→R and η : D×D→
R by

Tx = 1− x, ∀x ∈D,

η(x, y)=



x− y if xy < 1, (x, y)∈D×D,

xy(x− y) if 1≤ xy < 2, (x, y)∈D×D,

(n+ 1)−1(x− y) if n≤ xy < n+ 1, (x, y)∈D×D,

(1.20)

where n≥ 2 is any positive integer. It is easy to verify that η(x, y)=−η(y,x) for all x, y ∈
D, and T is η-antimonotone with respect to the first argument of N . We claim that T is
not t-strongly η-antimonotone with respect to the first argument of N . Otherwise, there
exists some t > 0 satisfying (1.13). For any positive integer n≥ 2, we select xn = n, yn = 1,
and un = 0. Then (1.13) yields that

t
(
xn− yn

)2 ≤ 〈N(Txn,un
)
,η
(
yn,xn

)〉
+
〈
N
(
Tyn,un

)
,η
(
xn, yn

)〉
= 〈xn− yn,η

(
xn, yn

)〉= (n+ 1)−1(xn− yn
)2

,
(1.21)

which implies that

t ≤ (n+ 1)−1, ∀n≥ 2. (1.22)

Letting n→∞ in the above inequality, we infer that t ≤ 0, which is a contradiction.
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Lemma 1.9 (see [6]). Let D be a nonempty convex subset of a topological vector space and
let φ : D×D→R∪{±∞} such that

(i) for each x ∈D, φ(x,·) is lower semicontinuous on each nonempty compact subset of
D;

(ii) for each nonempty finite set {x1,x2, . . . ,xm} ⊆D and for each y =∑m
i=1 tixi with ti ≥ 0

and
∑m

i=1 ti = 1,

min
1≤i≤m

φ
(
xi, y

)≤ 0; (1.23)

(iii) there exist a nonempty compact convex subsetX of D and a nonempty compact subset
K of D such that for each y ∈D−K , there is an x ∈ co(X ∪{y}) with φ(x, y) > 0.

Then there exists an u∈ K satisfying φ(x,u)≤ 0 for all x ∈D.

2. Existence theorems

Now we use Kirk’s fixed-point theorem and Ding-Tan minimax inequality to study the
existence of solutions of the generalized nonlinear variational-like inequality problem
(1.9).

Theorem 2.1. Let D be a nonempty bounded closed convex subset of a reflexive Banach
space B with the dual space B∗, and suppose that D has normal structure. Assume that
a : D×D → R and b : D×D → R∪ {±∞} satisfy (1.1)–(1.5). Let T ,A : D → B, N : B×
B→ B∗, and η : D×D→ B satisfy that

T , A, N , and η have 0-diagonally concave relation on D; (2.1)

T , A, N , and η are continuous; (2.2)

η satisfies the Lipschitz-type condition with constant δ > 0 and

η(x, y)=−η(y,x), ∀x, y ∈D;
(2.3)

T is ξ-strongly η-antimonotone with respect to the first argument of N ; (2.4)

A is ζ-weakly η-antimonotone with respect to the second argument of N ; (2.5)

α+ ξ = ζ + γ. (2.6)

Then the generalized nonlinear variational-like inequality problem (1.9) has a solution
u∈D.

Proof. First of all, we show that the following problem (2.7) has a unique solution, that
is, for each fixed u∈D, there exists a unique v ∈D satisfying

a(v,w− v) + b(u,w)− b(u,v)≥ 〈N(Tv,Av),η(w,v)
〉

, ∀w ∈D. (2.7)

Define a function φ : D×D→R by

φ(w,x)= 〈N(Tx,Ax),η(w,x)
〉

+ b(u,x)− b(u,w)− a(x,w− x), ∀w,x ∈D, (2.8)

where u is fixed in D. Making use of (1.1), (1.3), (2.2), and Remark 1.3, we infer that
for each w ∈ D, the function x → φ(w,x) is weakly lower semicontinuous on D. Now
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we claim that φ(w,x) satisfies the condition (ii) of Lemma 1.9. Otherwise, there exists
a finite set {w1,w2, . . . ,wm} ⊆ D and x =∑m

i=1 tiwi with ti ≥ 0, and
∑m

i=1 ti = 1 such that
φ(wi,x) > 0 for i= 1,2, . . . ,m. From (1.1), (1.3), (2.1), and (2.3), we conclude that

0≥
〈
N(Tx,Ax),

m∑
i=1

tiη
(
wi,x

)〉
>

m∑
i=1

tib
(
u,wi

)− b(u,x) + a

(
x,

m∑
i=1

tiwi− x

)
≥ 0,

(2.9)

which is a contradiction. Therefore, the condition (ii) of Lemma 1.9 is satisfied. Putting
X = {u},

ρ= 1 + γ−1[(β+ γ)‖u‖+ δ
∥∥N(Tu,Au)

∥∥],
K = {y ∈D : ‖y−u‖ ≤ ρ

}
.

(2.10)

Then K and X are both weakly compact convex subsets of D. Taking into account as-
sumptions (1.1), (1.2), (1.11), and (2.3)–(2.6), we know that for given x ∈ D−K , there
exists u∈ co(X ∪{x}) satisfying

φ(u,x)= 〈N(Tx,Ax),η(u,x)
〉

+ b(u,x)− b(u,u)− a(x,u− x)

= a(u− x,u− x)− a(u,u− x) +
〈
N(Tx,Ax)−N(Tu,Ax),η(u,x)

〉
+
〈
N(Tu,Ax)−N(Tu,Au),η(u,x)

〉
+
〈
N(Tu,Au),η(u,x)

〉
+ b(u,x)− b(u,u)

≥ α‖u− x‖2−β‖u‖‖u− x‖+ ξ‖x−u‖2− ζ‖x−u‖2

− δ
∥∥N(Tu,Au)

∥∥‖u− x‖− γ‖u‖‖u− x‖
= ‖u− x‖[γ‖u− x‖− (β+ γ)‖u‖− δ

∥∥N(Tu,Au)
∥∥] > 0.

(2.11)

Consequently, all the assumptions of Lemma 1.9 are satisfied. Thus, there exists v ∈ D
such that φ(w,v)≤ 0 for all w ∈D. That is, problem (2.7) has a solution v ∈D.

Suppose that problem (2.7) has another solution x ∈D different from v. It follows that

a(x,w− x) + b(u,w)− b(u,x)≥ 〈N(Tx,Ax),η(w,x)
〉

, ∀w ∈D. (2.12)

Taking w = x in (2.7) and w = v in (2.12), respectively, and adding these inequalities, by
(1.1), (1.2), (2.4), and (2.5), we get that

α‖v− x‖2 ≤ a(v− x,v− x)

≤ 〈N(Tv,Av)−N(Tx,Ax),η(v,x)
〉

≤ 〈N(Tv,Av)−N(Tx,Av),η(v,x)
〉

+
〈
N(Tx,Av)−N(Tx,Ax),η(v,x)

〉
≤−ξ‖v− x‖2 + ζ‖v− x‖2 = (ζ − ξ)‖v− x‖2.

(2.13)

Taking into account (2.6) and (2.13), we conclude immediately that

0 < γ‖v− x‖2 = (α+ ξ − ζ)‖v− x‖2 ≤ 0, (2.14)
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which is a contradiction, and hence v = x, that is, problem (2.7) has a unique solution
v ∈D. It follows that there exists a mapping f : D→D such that for each u∈D, f (u) is
the unique solution of problem (2.7).

Next, we show that f is nonexpansive. By the definition of f , we have

a
(
f (u),w− f (u)

)
+ b(u,w)− b

(
u, f (u)

)≥ 〈N(T f (u),A f (u)
)
,η
(
w, f (u)

)〉
, (2.15)

a
(
f (x),w− f (x)

)
+ b(x,w)− b

(
x, f (x)

)≥ 〈N(T f (x),A f (x)
)
,η
(
w, f (x)

)〉
(2.16)

for any u,x,w ∈ D. Taking w = f (x) in (2.15) and w = f (u) in (2.16) and adding these
inequalities, we get that

a
(
f (u)− f (x), f (u)− f (x)

)
+ b
(
u, f (u)

)
+ b
(
x, f (x)

)− b
(
u, f (x)

)− b
(
x, f (u)

)
≤ 〈N(T f (u),A f (u)

)−N
(
T f (x),A f (x)

)
,η
(
f (u), f (x)

)〉
.

(2.17)

By virtue of (1.2)–(1.5), (2.4), (2.5), and (2.17), we infer that

α
∥∥ f (u)− f (x)

∥∥2

≤ a
(
f (u)− f (x), f (u)− f (x)

)
≤ b

(
u− x, f (x)

)− b
(
u− x, f (u)

)
+
〈
N
(
T f (u),A f (u)

)−N
(
T f (x),A f (x)

)
,η
(
f (u), f (x)

)〉
≤ b

(
u− x, f (x)− f (u)

)
+
〈
N
(
T f (u),A f (u)

)−N
(
T f (x),A f (u)

)
,η
(
f (u), f (x)

)〉
+
〈
N
(
T f (x),A f (u)

)−N
(
T f (x),A f (x)

)
,η
(
f (u), f (x)

)〉
≤ γ‖u− x‖∥∥ f (x)− f (u)

∥∥− ξ
∥∥ f (x)− f (u)

∥∥2
+ ζ
∥∥ f (x)− f (u)

∥∥2
.

(2.18)

Using (2.6) and (2.18), we know that

∥∥ f (u)− f (x)
∥∥≤ γ

α+ ξ − ζ
‖u− x‖ = ‖u− x‖, ∀u,x ∈D, (2.19)

that is, f is nonexpansive. It follows from Lemma 1.1 that f has a fixed point u ∈ D,
which satisfies the following:

a(u,x−u) + b(u,x)− b(u,u)≥ 〈N(Tu,Au),η(x,u)
〉

, ∀x ∈D. (2.20)

That is, u∈D is a solution of the generalized nonlinear variational-like inequality prob-
lem (1.9). This completes the proof. �

Theorem 2.2. Let D, B, B∗, a and b be as in Theorem 2.1. Assume that T ,A : D → B,
N : B×B→ B∗, and η : D×D→ B satisfy that (2.1), (2.3), (2.4) hold and

T and η are continuous and A is s-Lipschitz continuous; (2.21)

N is continuous with respect to the first argument; (2.22)

N is t-Lipschitz continuous with respect to the second argument; (2.23)

α+ ξ = tsδ + γ. (2.24)
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Then there exists u ∈ D which solves the generalized nonlinear variational-like inequality
problem (1.9).

Proof. For any fixed u∈D, define a function φ : D×D→R by

φ(w,x)= 〈N(Tx,Ax),η(w,x)
〉

+ b(u,x)− b(u,w)− a(x,w− x), ∀w,x ∈D. (2.25)

Observe that (2.21) and (2.23) yield that
∥∥N(Tx,Ax)−N(Tw,Aw)

∥∥
≤ ∥∥N(Tx,Ax)−N(Tw,Ax)

∥∥+
∥∥N(Tw,Ax)−N(Tw,Aw)

∥∥
≤ ∥∥N(Tx,Ax)−N(Tw,Ax)

∥∥+ ts‖x−w‖, ∀x,w ∈D.

(2.26)

It follows from (2.21), (2.22), and (2.26) that N(Tx,Ax) is continuous on D. As in the
proof of Theorem 2.1, we conclude that conditions (i) and (ii) in Lemma 1.9 hold. Now
we verify that condition (iii) in Lemma 1.9 holds also. Putting X = {u},

ρ= 1 + γ−1[(β+ γ)‖u‖+ δ
∥∥N(Tu,Au)

∥∥],
K = {y ∈D : ‖y−u‖ ≤ ρ

}
.

(2.27)

It follows from (1.1), (1.2), (1.11), (2.3), (2.4), (2.21), (2.23), and (2.24) that for given
x ∈D−K , there exists u∈ co(X ∪{x}) satisfying

φ(u,x)= 〈N(Tx,Ax),η(u,x)
〉

+ b(u,x)− b(u,u)− a(x,u− x)

= a(u− x,u− x)− a(u,u− x) +
〈
N(Tx,Ax)−N(Tu,Ax),η(u,x)

〉
+
〈
N(Tu,Ax)−N(Tu,Au),η(u,x)

〉
+
〈
N(Tu,Au),η(u,x)

〉
+ b(u,x)− b(u,u)

≥ α‖u− x‖2−β‖u‖‖u− x‖+ ξ‖x−u‖2− tsδ‖x−u‖2

− δ
∥∥N(Tu,Au)

∥∥‖u− x‖− γ‖u‖‖u− x‖
= ‖u− x‖[γ‖u− x‖− (β+ γ)‖u‖− δ

∥∥N(Tu,Au)
∥∥] > 0.

(2.28)

Therefore, Lemma 1.9 ensures that problem (2.7) has a solution v ∈D. By a similar argu-
ment used in the proof of Theorem 2.1, the result follows. This completes the proof. �
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