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By use of the concavity of solution for an associate boundary value problem, existence
criteria of positive solutions are given for the Dirichlet BVP (Φ(u′))′ + λa(t) f (t,u) = 0,
0 < t < 1, u(0)= 0= u(1), where Φ is odd and continuous with 0 < l1 ≤ ((Φ(x)−Φ(y))/
(x− y))≤ l2, a(t)≥ 0, and f may change sign and be singular along a curve in [0,1]×R+.

1. Introduction

For the Sturm-Liouville boundary value problem (BVP)

(
Φ
(
u′
))′

+ λa(t) f (t,u)= 0,

α1u(0)−β1u
′(0)= 0= α1u(1) +β2u

′(1),
(1.1)

there has been much work done for some special cases in order to search the existence of
positive solutions. For example, Erbe and Wang [3] studied the case for Φ(v)= v, Wang
[8] discussed the problem with boundary conditions replaced by nonlinear ones, Sun
and Ge [7] dealt with the problem for the existence of multiple positive solutions in case
α1 = β2 = 0 and β1 = α2 = 1, Avery et al. [2] researched the existence of twin positive
solutions for the case Φ(v)= v, α1 = β2 = 1, β1 = α2 = 0, and He and Ge [6] discussed the
existence of multiple positive solutions. In all the above-mentioned articles f is supposed
to be nonnegative. When Φ(v)= v, Agarwal et al. [1] as well as Ge and Ren [4] discussed
the existence of positive solutions without nonnegativity condition imposed on f . As for
the general BVP

(
p(t)Φ

(
u′
))′

+ λp(t) f (t,u)= 0, 0 < t < 1,

u(0)= 0= u(1),
(1.2)

Hai et al. [5] studied the existence of positive solutions with f ≥ −M. When Φ is odd
and Φ−1 is concave, they proved that there are λ∗, λ > 0 such that BVP (1.2) has at least
one positive solution if λ ∈ (0,λ∗)[λ > λ] under the condition limu→∞ f (t,u)/Φ(u) =∞
uniformly for t ∈ [0,1]. The restriction, Φ−1 being concave, excludes the case Φ(u) =
|u|p−2u, 1 < p < 2.
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290 Singular BVP with a Laplace-like operator

In this paper, we want to give theorems for the existence of positive solutions for the
BVP

(
Φ
(
u′
))′

+ λa(t) f (t,u)= 0, 0 < t < 1, λ > 0,

u(0)= 0= u(1),
(1.3)

without the restriction f (t,u)≥−M for (t,u)∈ [0,1]×R+ and without Φ−1 being con-
cave.

We suppose throughout this paper that

(H1) a∈ C((0,1),R+) and for a δ ∈ (0,(1/2)), 0 <
∫ 1−δ
δ a(t)dt ≤ ∫ 1

0 a(t)dt <∞;
(H2) Φ is odd, continuous with

0 < l1 ≤ Φ(x)−Φ(y)
x− y

≤ l2 <∞, x �= y. (1.4)

Obviously (H2) implies that Φ−1(s) exists and

0 <
1
l2
≤
(
Φ−1

)
(x)− (Φ−1

)
(y)

x− y
≤ 1

l1
<∞, x �= y. (1.5)

2. Preliminary lemmas

Lemma 2.1. Suppose (H1)-(H2) hold. Then for λM ∈R,

(
Φ
(
u′
))′

+ λa(t)M = 0, 0 < t < 1,

u(0)= 0= u(1)
(2.1)

has a unique solution

wλM(t)=
∫ t

0
Φ−1

(
λM
(
c−
∫ s

0
a(τ)dτ

))
ds (2.2)

with c satisfying

∫ 1

0
Φ−1

(
λM
(
c−
∫ s

0
a(τ)dτ

))
ds= 0. (2.3)

Proof. It is easy to show that u= w(t) is a solution to BVP (2.1) if and only if u(t) is ex-
pressed in (2.2) with c satisfying (2.3). Now we show that there is only one c which makes
(2.3) hold. Without loss of generality, we suppose λM ≥ 0. Let H(c) = ∫ 1

0 Φ
−1(λM(c−∫ s

0 a(τ)dτ))ds. Then H :R→R is continuous and strictly increasing with

H(0) < 0 <H
(∫ 1

0
a(τ)dτ

)
, (2.4)

which implies there is a unique c0 ∈ (0,
∫ 1

0 a(τ)dτ) such that H(c0)= 0. �
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It follows that there is σ∗ ∈ (0,1) such that c0 =
∫ σ∗

0 a(τ)dτ and then (2.2) becomes

wλM(t)=
∫ t

0
Φ−1

(
λM

∫ σ∗

s
a(τ)dτ

)
ds. (2.5)

Remark 2.2. Let k0 = (1/l1)
∫ 1

0 a(τ)dτ. It follows from (2.5) that

‖wλM‖ = max
0≤t≤1

∣∣wλM(t)
∣∣≤ |λM| 1

l1

∫ 1

0
a(τ)dτ ≤ |λM|k0,

∥∥w′λM∥∥= max
0≤t≤1

∣∣w′λM(t)
∣∣≤ |λM| 1

l1

∫ 1

0
a(τ)dτ = |λM|k0.

(2.6)

Remark 2.3. It is easy to see that

w−λM(t)=−wλM(t), ‖w−λM‖ = ‖wλM‖,
∥∥w′−λM∥∥= ∥∥w′λM∥∥, (2.7)

and Φ(w′λM(t)) is nonincreasing when λM ≥ 0.

Lemma 2.4. uλ(t) and wλM(t) are solutions of BVP (1.3) and BVP (2.1), respectively, with
f replaced by f ∗ ∈ C([0,1]×R,R). Let

D = {(t,x)∈ (0,1)× (−∞,wλM(t)
]}
. (2.8)

If f ∗(t,x)≥M(≤M) holds for each (t,x)∈D, then

uλ(t)≥wλM(t)
(
uλ(t)≤wλM(t)

)
, t ∈ [0,1]. (2.9)

Proof. We prove only the case f ∗(t,x)≥M.
Suppose the contrary. Then there is t0 ∈ (0,1) such that (t0,uλ(t0)),(t0,wλM(t0)) ∈ D

and uλ(t0)−wλM(t0) < 0. Without loss of generality we assume u′λ(t0)−w′λM(t0)≤ 0. The
condition uλ(1)=wλM(1)= 0 implies there is t1 ∈ (t0,1] such that

uλ(t) < wλM(t), t ∈ [t0, t1
)
; uλ

(
t1
)=wλM

(
t1
)
. (2.10)

Then for t ∈ (t0, t1),

Φ
(
u′λ(t)

)−Φ
(
w′λM(t)

)
= [Φ(u′λ(t0))−Φ

(
w′λM

(
t0
))]− λ

∫ t

t0
a(τ)

[
f ∗
(
τ,uλ(τ)

)−M
]
dτ

≤Φ
(
u′λ
(
t0
))−Φ

(
w′λM

(
t0
))≤ 0,

(2.11)
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and therefore u′λ(t)≤w′λM(t) which implies

uλ
(
t1
)−wλM

(
t1
)= uλ

(
t0)−wλM

(
t0
)

+
∫ t1

t0

[
u′λ(s)−w′λM(s)

]
ds < 0, (2.12)

a contradiction to (2.10). �

Remark 2.5. If f (t,x) ≥M(≤M) is replaced by f (t,x) > M(< M), then uλ(t) > wλM(t)
(uλ(t) < wλM(t)).

Lemma 2.6. Suppose u, v ∈ C1([0,1],R+) and u(0) = u(1) = v(0) = v(1) = 0. If ‖u‖ ≥
‖v′‖ and u is concave, then

u(t)≥ v(t), t ∈ [0,1]. (2.13)

Proof. Suppose there is σ ∈ (0,1) such that u(σ)= ‖u‖ = L. Then v(t)≤ Lmin{t,1− t},
t ∈ [0,1]. The concavity of u implies u(t) ≥ u(σ)min{t,1− t}. So u(t) ≥ v(t) holds for
t ∈ [0,1].

For each x ∈ C([0,1],R), f ∗ ∈ C([0,1]×R,R), the solution to

(
Φ
(
u′
))′

+ λa(t) f ∗
(
t,x(t)

)= 0, 0 < t < 1,

u(0)= 0= u(1)
(2.14)

can be expressed in the form

u(t)=
∫ t

0
Φ−1

(
λ
(
c−
∫ s

0
a(τ) f ∗

(
τ,x(τ)

)
dτ
))

ds (2.15)

with c satisfying

∫ 1

0
Φ−1

(
λ
(
c−
∫ s

0
a(τ) f ∗

(
τ,x(τ)

)
dτ
))

ds= 0. (2.16)

Since H(c)= ∫ 1
0 Φ

−1(λ(c− ∫ s0 a(τ) f ∗(τ,x(τ))dτ))ds is strictly increasing with respect to c
and

H(c) < 0 when c < min
0≤t≤1

∫ t

0
a(τ) f ∗

(
τ,x(τ)

)
dτ,

H(c) > 0 when c > max
0≤t≤1

∫ t

0
a(τ) f ∗

(
τ,x(τ)

)
dτ,

(2.17)

there is only one cx ∈R,

min
0≤t≤1

∫ t

0
a(τ) f ∗

(
τ,x(τ)

)
dτ < cx < max

0≤t≤1

∫ t

0
a(τ) f ∗

(
τ,x(τ)

)
dτ (2.18)
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such that H(cx)= 0. So the solution to BVP (2.14) is unique. At the same time, (2.18) im-
plies there is σx ∈ (0,1) such that

∫ σx
0 a(τ) f ∗(τ,x(τ))dτ = cx. Then (2.15) can be written

as

u(t)=
∫ t

0
Φ−1

(
λ
∫ σx

s
a(τ) f ∗

(
τ,x(τ)

)
dτ
)
ds. (2.19)

Furthermore, by u(1)= 0 and for t ≥ σx,

u(t)=−
∫ t

0
Φ−1

(
λ
∫ s

σx
a(τ) f ∗

(
τ,x(τ)

)
dτ
)
ds

=
∫ 1

t
Φ−1

(
λ
∫ s

σx
a(τ) f ∗

(
τ,x(τ)

)
dτ
)
ds,

(2.20)

and therefore

u(t)=




∫ t

0
Φ−1

(
λ
∫ σx

s
a(τ) f ∗

(
τ,x(τ)

)
dτ
)
ds, 0≤ t ≤ σx,

∫ 1

t
Φ−1

(
λ
∫ s

σx
a(τ) f ∗

(
τ,x(τ)

)
dτ
)
ds, σx ≤ t ≤ 1

(2.21)

for each σx ∈ Σx = {σ ∈ [0,1] :
∫ σ

0 a(τ) f ∗(τ,x(τ))dτ = cx}. �

Lemma 2.7. The constant c = cx determined by (2.16) is continuous with respect to x ∈
C([0,1],R).

Proof. Suppose the contrary. Then there are xn ∈ C([0,1],R) which converge to x(t) uni-
formly in [0,1] and cn, determined by (2.16) with x replaced by xn, converging to c0 �= cx.
Applying Lebesgue’s dominating convergence theorem, we have∫ 1

0
Φ−1

(
λ
(
c0−

∫ s

0
a(τ) f ∗

(
τ,x(τ)

)
dτ
))

ds= 0 (2.22)

as n→∞ in ∫ 1

0
Φ−1

(
λ
(
cn−

∫ s

0
a(τ) f ∗

(
τ,xn(τ)

)
dτ
))

ds= 0. (2.23)

The uniqueness of solution to (2.16) implies c0 = cx, a contradiction.
Take X = C([0,1],R) and define

T : X −→ X (2.24)

by

(Tx)(t)=
∫ t

0
Φ−1

(
λ
(
cx −

∫ s

0
a(τ) f ∗

(
τ,x(τ)

)
dτ
))

ds (2.25)

with cx satisfying ∫ 1

0
Φ−1

(
λ
(
cx −

∫ s

0
a(τ) f ∗

(
τ,x(τ)

)
dτ
))

ds= 0, (2.26)
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or equivalently,

(Tx)(t)=




∫ t

0
Φ−1

(
λ
∫ σx

s
a(τ) f ∗

(
τ,x(τ)

)
dτ
)
ds, 0≤ t ≤ σx,

∫ 1

t
Φ−1

(
λ
∫ s

σx
a(τ) f ∗

(
τ,x(τ)

)
dτ
)
ds, σx ≤ t ≤ 1,

(2.27)

where σx ∈ Σx. Obviously u(t)= (Tx)(t) is the solution of (2.14). �

Lemma 2.8. T : X → X is completely continuous.

Proof. Because Φ−1, f are both continuous, a(t) is integrable on (0,1), and cx is contin-
uous with respect to x, it is easy to show that T is continuous in X . Given a bounded set
Ω⊂ X , (2.25) implies TΩ is bounded. Differentiating (2.25) with respect to t, one has

(Tx)′(t)=Φ−1
(
λ
(
cx −

∫ t

0
a(τ) f ∗

(
τ,x(τ)

)
dτ
))

. (2.28)

Obviously there is L > 0 independent of individual x ∈Ω such that

∣∣(Tx)′(t)
∣∣≤ L, x ∈Ω, t ∈ [0,1] (2.29)

which implies TΩ is equicontinuous. Then the complete continuity of T : X → X follows
from the Arzela-Ascoli theorem. �

Now we define furthermore

T∗ : X −→ X (2.30)

by

(
T∗x

)
(t)=wλM̃(t) +

(
T
(
x−wλM̃

))
(t), (2.31)

where M̃ is an arbitrary constant.
From Lemma 2.8 the following result holds.

Lemma 2.9. T∗ : X → X is completely continuous.

Obviously, u(t) = x(t)−wλM̃(t) is a solution to BVP (1.3) if and only if x is a fixed
point of T∗ : X → X .

3. Main results

Let M̃ = (l2/l1)M, let A = (1/l1)max0≤c≤1[
∫ c

0

∫ c
s a(τ)dτ ds+

∫ 1
c

∫ s
c a(τ)dτ ds], let B = (1/l2)

minδ≤c≤1−δ[
∫ c
δ

∫ c
s a(τ)dτ ds +

∫ 1−δ
c

∫ s
c a(τ)dτ ds], and let d = (M̃/l1)[

∫ δ
0

∫ 1
s a(τ)dτ ds +

∫ 1
1−δ∫ s

0 a(τ)dτ ds], where M > 0 is a constant. Condition (H1) implies A,B > 0.
Let also X = C([0,1],R) with the norm ‖ · ‖ defined by ‖u‖ =max0≤t≤1 |u(t)|, and

K = {u∈ X : u(t)≥ 0 is concave on [0,1]}. Then K is a cone in Banach space X .
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Suppose in addition
(H3) f (t,u) ≥ −M is continuous for (t,u) ∈ [0,1]× [wα(t),∞), where α, M > 0 are

two constants.
Then let

f ∗(t,u)=

 f (t,u), u≥wα(t),

f
(
t,wα(t)

)
, u < wα(t).

(3.1)

Clearly f ∗(t,u)≥−M is continuous on [0,1]×R.
Define T∗ : K → K as (2.31).

Lemma 3.1. T∗(K)⊂ K .

Proof. For y ∈ K ,

T∗y =wλM̃(t) +T
(
y−wλM̃

)
(t), (3.2)

where wλM̃ and T(y−wλM̃) satisfy, respectively, (2.1) and (2.14). Applying Lemma 2.4 we
get from f ∗(t, (y−wλM̃)(t))≥−M ≥−(l2/l1)M =−M̃ that

T
(
y−wλM̃

)
(t)≥w−λM̃(t)=−wλM̃(t), 0≤ t ≤ 1, (3.3)

and hence

(
T∗y

)
(t)≥ 0, 0≤ t ≤ 1. (3.4)

At the same time, for t1, t2 ∈ [0,1], t1 < t2,

(
T∗y

)′(
t2
)− (T∗y)′(t1)

= (T(y−wλM̃

))′(
t2
)− (T(y−wλM̃

))′(
t1
)

+w′
λM̃

(
t2
)−w′

λM̃

(
t1
)

=Φ−1
(
λ
∫ σ

t2
a(τ) f ∗

(
τ,
(
y−wλM̃

)
(τ)
)
dτ
)

−Φ−1
(
λ
∫ σ

t1
a(τ) f ∗

(
τ,
(
y−wλM̃

)
(τ)
)
dτ
)

+
(
Φ−1)(λM̃∫ σ0

t2
a(τ)dτ

)
− (Φ−1)(λM̃∫ σ0

t1
a(τ)dτ

)
.

(3.5)

Since

(
Φ−1)(λM̃∫ σ0

t2
a(τ)dτ

)
− (Φ−1)(λM̃∫ σ0

t1
a(τ)dτ

)
≤− 1

l2
λM̃

∫ t2

t1
a(τ)dτ ≤ 0, (3.6)

one has

(
T∗y

)′(
t2
)− (T∗y)′(t1)≤ 0 (3.7)
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if ∫ t2

t1
a(τ) f ∗

(
τ,
(
y−wλM̃

)
(τ)
)
dτ ≥ 0. (3.8)

On the other hand, when

∫ t2

t1
a(τ) f ∗

(
τ,
(
y−wλM̃

)
(τ)
)
dτ < 0, (3.9)

it follows that

Φ−1
(
λ
∫ σ

t2
a(τ) f ∗

(
τ,
(
y−wλM̃

)
(τ)
)
dτ
)
−Φ−1

(
λ
∫ σ

t1
a(τ) f ∗

(
τ,
(
y−wλM̃

)
(τ)
)
dτ
)

≤− 1
l1
λ
∫ t2

t1
a(τ) f ∗

(
τ,
(
y−wλM̃

)
(τ)
)
dτ ≤ 1

l1
λM

∫ t2

t1
a(τ)dτ,

(3.10)

and then

(
T∗y

)′(
t2
)− (T∗y)′(t1)≤ 1

l1
λM

∫ t2

t1
a(τ)dτ − 1

l2
λM̃

∫ t2

t1
a(τ)dτ = 0. (3.11)

Then (T∗y)(t) is concave. So T∗K ⊂ K .
Lemma 2.9 and Lemma 3.1 imply that T∗ : K → K is completely continuous. �

Theorem 3.2. Suppose (H1), (H2), and (H3) hold and
(H4) f (t,wα(t))≥ αa(t), t ∈ (0,1),
(H5) there are b > M̃k0 and c ∈ (2M̃k0,2b) such that

f (t,u) <
c− 2M̃k0

A
, (t,u)∈ [0,1]× [wα(t),b

]
. (3.12)

Then BVP (1.3) has at least a positive solution u= u(t) with

∥∥u+wλM̃

∥∥ < b, u(t)≥wα(t), t ∈ [0,1], (3.13)

if λ∈ [1,(2b/c)].

Proof. Take Kb = {x ∈ K : ‖x‖ < b}. Then Kb is a closed convex set in X . Each y ∈ ∂Kb,

(
T∗y

)
(t)≤ ∣∣wλM̃(t)

∣∣+
∫ t

0
Φ−1

(
λ
∫ σ

s
a(τ) f ∗

(
τ,
(
y−wλM̃

)
(τ)
)
dτ
)
ds

≤ λM̃k0 +
∫ t

0
Φ−1

(
λ
∫ σ

s
a(τ) f ∗

(
τ,
(
y−wλM̃

)
(τ)
)
dτ
)
ds,

(3.14)

where σ is taken from Σy−wλM̃
such that

T
(
y−wλM̃

)
(σ)= max

0≤t≤1
T
(
y−wλM̃

)
(t). (3.15)
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It follows from (2.27) that

(
T∗y

)
(t)≤ λM̃k0 +

λ
(
c− 2M̃k0

)
A

1
l1

∫ σ

0

∫ σ

s
a(τ)dτ ds,

(
T∗y

)
(t)≤ λM̃k0 +

λ
(
c− 2M̃k0

)
A

1
l1

∫ 1

σ

∫ s

σ
a(τ)dτ ds,

(3.16)

then

(
T∗y

)
(t)≤ λM̃k0 +

λ
(
c− 2M̃k0

)
2A

1
l1

[∫ σ

0

∫ σ

s
a(τ)dτ ds+

∫ 1

σ

∫ s

σ
a(τ)dτ ds

]

< λM̃k0 +
λ
(
c− 2M̃k0

)
2

= λc

2
.

(3.17)

When λ≤ (2b/c), we have

∥∥T∗y∥∥ < b = ‖y‖. (3.18)

Hence T∗ has a fixed point y = y(t) in Kb. Obviously u = y − wλM̃ is a solution to
BVP (2.14). When λ ≥ 1, one has λ f ∗(t,x) ≥ αa(t), (t,x) ∈ [0,1]× (−∞,wα(t)]. And
Lemma 2.4 implies u(t)≥wα(t), 0≤ t ≤ 1. So u(t) is also a solution to BVP (1.3). �

Corollary 3.3. In Theorem 3.2 if (H5) is replaced by
(H5)′ limu→+∞(( f (t,u))/u)= 0 uniformly in t ∈ [0,1],
then BVP (1.3) has at least one solution u= u(t) with

u(t)≥wα(t), ‖u‖ <∞ (3.19)

when λ≥ 1.

Proof. For λ ∈ [1,∞), take ε ∈ (0,(1/λA)). Then (H5)′ implies there is b > (2M̃k0/εA)
such that

f (t,u)
b

< ε for (t,u)∈ [0,1]× [wα(t),b
]
, (3.20)

that is,

f (t,u) < εb = c− 2M̃k0

A
for (t,u)∈ [0,1]× [wα(t),b

]
, (3.21)

where c = 2M̃k0 + εbA. Applying Theorem 3.2, we see that BVP (1.3) has a positive solu-
tion u(t)≥wα(t) since λ≤ (1/εA)= (2b/2bεA) < (2b/(2M̃k0 + bεA))= (2b/c). �

Theorem 3.4. Suppose (H1), (H2), and (H3) hold and in addition
(H6) there are b > 2k0 max{α,M̃} and c ∈ (4M̃k0,2b) such that

f (t,u) <
c− 2M̃k0

A
, (t,u)∈ [0,1]× [wα(t),b], (3.22)
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(H7) there are a > δa > b and r > (ac/b) such that

f (t,u) >
r +d

B
, (t,u)∈ [0,1]×

[
δa− 2b

c
M̃k0,a

]
. (3.23)

Then BVP (1.3) has a solution u= v(t) with

v(t) > wα(t), b <
∥∥v+wλM̃

∥∥ < a (3.24)

when λ∈ [(2a/r),(2b/c)].

Proof. It can be shown as in the proof of Theorem 3.2 that for y ∈ ∂Kb, we have

∥∥T∗y∥∥ < ‖y‖, λ∈
(

0,
2b
c

]
. (3.25)

For y ∈ ∂Ka, the concavity of y implies

y(t)≥ aδ,
(
y−wλM̃

)
(t)≥ aδ− 2b

c
M̃k0, t ∈ [δ,1− δ] (3.26)

for 0 < λ≤ (2b/c). Take σ which satisfies (3.15).
(A) σ ∈ [δ,1− δ].
By use of expressions (2.27) and (2.31), we get

∥∥T∗y∥∥ > T
(
y−wλM̃

)
(σ)

=
∫ σ

0
Φ−1

(
λ
∫ σ

s
a(τ) f ∗

(
τ,
(
y−wλM̃

)
(τ)
)
dτ
)
ds

≥
∫ σ

δ
Φ−1

(
λ
∫ σ

s
a(τ) f ∗

(
τ,
(
y−wλM̃

)
(τ)
)
dτ
)
ds

−
∫ δ

0
Φ−1

(
λM̃

∫ σ

s
a(τ)dτ

)
ds

>
λ(r +d)
l2B

∫ σ

δ

∫ σ

s
a(τ)dτ ds− λM̃

l1

∫ δ

0

∫ σ

s
a(τ)dτ ds,

∥∥T∗y∥∥ > λ(r +d)
l2B

∫ 1−δ

σ

∫ s

σ
a(τ)dτ ds− λM̃

l1

∫ 1

1−δ

∫ s

σ
a(τ)dτ ds.

(3.27)

It follows that

2
∥∥T∗y∥∥ > λ(r +d)− λd = λr, (3.28)∥∥T∗y∥∥ > a= ‖y‖ for λ≥ 2a

r
. (3.29)

(B) σ ∈ (0,δ)∪ (1− δ,1).
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Without loss of generality we suppose σ ∈ (0,δ). Then

∥∥T∗y∥∥ > λ(r +d)
l2B

∫ 1−δ

δ

∫ s

δ
a(τ)dτ ds− λM̃

l1

∫ 1

1−δ

∫ s

σ
a(τ)dτ ds

> λ(r +d)− λd = λr,
(3.30)

∥∥T∗y∥∥ > 2a > a for λ≥ 2a
r
. (3.31)

Expression (3.25), together with (3.29) or (3.31), implies T∗ has a fixed point y, b <
‖y‖ < a, when λ∈ [(2a/r),(2b/c)]. Then v = y−wλM̃ is a positive solution to BVP (2.14)
and

‖y‖ > b ≥ αk0 +
b

2

= αk0 +
2b

4M̃k0
M̃k0 > αk0 +

2b
c
M̃k0

≥ ∥∥w′α +w′
λM̃

∥∥, λ∈
[

2a
r

,
2b
c

]
.

(3.32)

Applying Lemma 2.6, we have

y(t)≥wα(t) +wλM̃(t), λ∈
[

2a
r

,
2b
c

]
, (3.33)

and then

v(t)= y(t)−wλM̃(t)≥wα(t), λ∈
[

2a
r

,
2b
c

]
(3.34)

which implies v(t) is also a positive solution to (1.3) with

v(t)≥wα(t), b <
∥∥v+wλM̃

∥∥ < a. (3.35)

�

Corollary 3.5. In Theorem 3.4, if (H7) is replaced by
(H7)′ limu→+∞( f (t,u)/u)= +∞ uniformly in t ∈ [0,1],
then BVP (1.3) has at least a solution u= v(t) with

v(t)≥wα(t), |v| <∞,
∥∥v+wλM̃

∥∥ > b (3.36)

when λ∈ (0,(2b/c)].

Proof. For each λ∈ (0,(2b/c)], take a ε ∈ (0,λ) and a N > (2/εδB). Condition (H7)′ im-
plies there is a0 > (2bM̃k0/δc) such that for each a≥ a0,

f (t,u)≥Nu≥N
(
δa− 2b

c
M̃k0

)
, u∈

[
δa− 2b

c
M̃k0,a

]
. (3.37)
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Take a > a0 large enough such that

N
(
δa− 2b

c
M̃k0

)
>

(2a/ε) +d

B
, u∈

[
δa− 2b

c
M̃k0,a

]
, (3.38)

then Theorem 3.4 implies BVP (1.3) has a positive solution v(t) when λ ∈ [ε, (2b/c)],
where v(t)≥wα(t), b < ‖v+wλM̃‖ <∞.

It is easy to show the following two theorems. �

Theorem 3.6. Suppose (H1), (H2), (H3), (H4), (H5), and (H7)′ hold. Then BVP (1.3) has
at least two positive solutions u(t) and v(t) when λ∈ [1,(2b/c)], where

u(t),v(t)≥wα(t), α≤ ∥∥u+wλM̃

∥∥ < b <
∥∥v+wλM̃

∥∥ <∞. (3.39)

Theorem 3.7. Suppose (H1), (H2), (H3), (H5)′, (H6), and (H7) hold. Then BVP (1.3) has
at least two positive solutions v(t) and u(t), when λ∈ [(2a/r),(2b/c)], where

v(t),u(t)≥wα(t), b <
∥∥v+wλM̃

∥∥ < a <
∥∥u+wλM̃

∥∥ <∞. (3.40)

Remark 3.8. Our theorems can be applied to case that f possesses singularity along a
curve in [0,1]×R+ since no restriction is imposed on f for (t,u)∈ [0,1]× (0,wα(t)].

Example 3.9. Let a(t)= π2 sinπt, f (t,x)= (4/(4x+ 1− 2sinπt)), and

Φ(u)=




u, |u| ≤ 3
2

,

u
(
2 + sinπ|u|), 3

2
< |u| < 5

2
,

3u, |u| ≥ 5
2
.

(3.41)

Then w1(t)= sinπt is the unique solution of

(
Φ
(
u′
))′

+π2 sinπt = 0, u(0)= 0= u(1),

f
(
t,w1(t)

)= 4
1 + 2sinπt

≥ 4
3
> 1= α.

(3.42)

Clearly limu→∞( f (t,u)/u) = limu→∞(4/(4u2 + u − 2usinπt)) = 0 uniformly. Applying
Corollary 3.3, we conclude that

(
Φ
(
u′
))′

+ λ
4π2 sinπt

4u+ 1− 2sinπt
= 0,

u(0)= 0= u(1)
(3.43)
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has at least a positive solution u(t) > sinπt when λ > 1. Since f is singular along with
u = (1/4)(2sinπt− 1) > 1, (1/6) < t < (5/6), no previous result can be applied to obtain
the above conclusion.

Example 3.10. Let a,Φ be the same as those in Example 3.9 and f (t,x) = (x2/432π2)−
(4/(4x+ 1− 2sinπt)). Then l1 = 1, l2 = 3 and for w1(t)= sinπt we have k0 = 2π and

f (t,x) >−4, (t,x)∈ [0,1]× [sinπt,∞),

A= max
0≤x≤1

[∫ x

0
ds
∫ x

s
π2 sinπτ dτ +

∫ 1

x
ds
∫ s

x
π2 sinπτ dτ

]
= π.

(3.44)

Take c = 5M̃k0 = 120π, b= 144π. It follows that

c− 2M̃k0

A
> 48,

f (t,x) <
(144π)2

432π2
= 48 <

c− 2M̃k0

A
for (t,x)∈ [0,1]× [w1(t),b

]
.

(3.45)

Based on Corollary 3.5, BVP

(
Φ
(
u′
))′

+ λπ2 sinπt
[

u2

432π2
− 4

4u+ 1− 2sinπt

]
= 0,

u(0)= 0= u(1)
(3.46)

has at least a positive solution u(t), satisfying u(t) > sinπt for t ∈ (0,1), when λ≤ (2b/c)=
(12/5).
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