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We introduce and study a new class of generalized nonlinear implicit quasivariational
inclusions involving relaxed Lipschitzian mappings. We prove the existence of solution
for the generalized nonlinear implicit quasivariational inclusions and construct some new
stable perturbed iterative algorithms with errors. We also give an application to a class of
generalized nonlinear implicit variational inequalities.

1. Introduction

Variational inequality theory and complementarity problem theory are very powerful
tools of the current mathematical technology. In recent years, classical variational in-
equality and complementarity problems have been extended and generalized to study a
wide class of problems generated in mechanics, physics, optimization and control, non-
linear programming, economics and transportation equilibrium, and engineering sci-
ences, and so forth. A useful and important generalization of variational inequalities is a
variational inclusion. Using the resolvent operator technique, many authors have studied
various variational inequalities and inclusions with applications (see [1, 2, 5, 6, 8, 9, 10,
11, 12, 13, 14, 16, 18, 19, 20, 21] and the references therein).

In 1997, Verma [19] studied the solvability, based on an iterative algorithm, of a class
of generalized nonlinear variational inequalities involving relaxed Lipschitz and relaxed
monotone operators. Recently, Huang [9, 10] introduced and studied the Mann- and Ish-
ikawa-type perturbed iterative sequence with errors for the generalized nonlinear implicit
quasivariational inequalities and inclusions. On the other hand, Huang et al. [12] and
Shim et al. [16] proved some existence theorems of solutions for the generalized non-
linear mixed quasivariational inequalities (inclusions) and convergence theorems of the
iterative sequences generated by the perturbed algorithms with errors.

Inspired and motivated by the recent papers [1, 9, 10, 11, 12, 16, 19], in this paper, we
introduce and study a new class of generalized nonlinear implicit quasivariational inclu-
sions involving relaxed Lipschitz mappings and construct some new perturbed iterative
algorithms with errors. We discuss the convergence and stability of perturbed iterative
sequences with errors generated by the algorithms for solving the generalized nonlinear
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implicit quasivariational inclusions. We also give an application to a class of generalized
nonlinear implicit variational inequalities.

2. Preliminaries

Let H be a real Hilbert space endowed with a norm ‖ · ‖ and an inner product 〈·,·〉, re-
spectively. For given mappings f ,g, p : H →H , and N : H ×H →H . Let M : H ×H → 2H

be a set-valued mapping such that, for each fixed t ∈ H , M(·, t) : H → 2H is a maximal
monotone mapping and Range(p)

⋂
Dom(M(·, t)) �= ∅. We consider the following prob-

lem. Find u∈H such that

p(u)∈Dom
(
M
(·,g(u)

))
,

0∈ f (u)−N(u,u) +M
(
p(u),g(u)

)
,

(2.1)

which is called the generalized nonlinear implicit quasivariational inclusion.
Some special cases of the problem (2.1) are as follows.
(1) If M(x, t) =M(x) for all x, t ∈H , then the problem (2.1) is equivalent to finding

u∈H such that

p(u)∈Dom(M),

0∈ f (u)−N(u,u) +M
(
p(u)

)
,

(2.2)

where M : H → 2H is a maximal monotone mapping. The problem (2.2) was considered
by Adly [1] and Huang [10], respectively.

(2) If M(·, t)= ∂ϕ(·, t) for each t ∈H , then the problem (2.1) is equivalent to finding
u∈H such that

p(u)∈Dom
(
∂ϕ
(·,g(u)

))
,〈

f (u)−N(u,u),v− p(u)
〉≥ ϕ

(
p(u),g(u)

)−ϕ
(
v,g(u)

) (2.3)

for all v ∈H , where ϕ : H×H →R⋃{+∞} such that for each t∈H , ϕ(·, t) : H →R⋃{+∞}
is a proper convex lower semicontinuous function with

Range(p)
⋂

Dom
(
∂ϕ(·, t)) �= ∅. (2.4)

When g is the identity mapping, the problem (2.3) was considered by Ding [6].
(3) If f = 0 and g is the identity mapping, then the problem (2.1) is equivalent to

finding u∈H such that

p(u)∈Dom
(
M(·,u)

)
,

0∈−N(u,u) +M
(
p(u),u

) (2.5)

which is called the generalized strongly nonlinear implicit quasivariational inclusion con-
sidered by Shim et al. [16].
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(4) If f = p and M(·, t) = ∂ϕ for all t ∈ H , then the problem (2.1) is equivalent to
finding u∈H such that

p(u)∈Dom(∂ϕ),
〈
p(u)−N(u,u),v− p(u)

〉≥ ϕ
(
p(u)

)−ϕ(v)
(2.6)

for all v ∈H , where ∂ϕ denotes the subdifferential of a proper convex lower semicontin-
uous function ϕ : H →R⋃{+∞}.

(5) If f = p, N(x, y)= Sx−Ty for all x, y ∈H and M(·, t) = δK(t) for all t ∈H , then
the problem (2.1) is equivalent to finding u∈H such that

p(u)∈ K
(
g(u)

)
,

〈
p(u)− (Su−Tu),v− p(u)

〉≥ 0
(2.7)

for all v ∈ K(g(u)), where S,T : H →H are two single-valued mappings, K : H → 2H is a
set-valued mapping with nonempty closed convex values, and δK(t) denotes the indicator
function of K(t) for each fixed t ∈H .

Remark 2.1. For a suitable choice of f , p, g, N , M, and the space H , a number of classes
of variational inequalities, complementarity problems, and variational inclusions can be
obtained as special cases of the generalized nonlinear implicit quasivariational inclusion
(2.1).

In the sequel, we give some concepts and lemmas.

Definition 2.2. A mapping f : H →H is said to be
(i) strongly monotone if there exists a constant r > 0 such that

〈
f (u)− f (v),u− v

〉≥ r‖u− v‖2 (2.8)

for all u,v ∈H ,
(ii) Lipschitzian continuous if there exists a constant s > 0 such that

∥∥ f (u)− f (v)
∥∥≤ s‖u− v‖ (2.9)

for all u,v ∈H .

Definition 2.3. A mapping N : H ×H →H is said to be relaxed Lipschitzian with respect
to the first argument if there exists a constant t > 0 such that

〈
N(u,·)−N(v,·),u− v

〉≤−t‖u− v‖2 (2.10)

for all u,v ∈H .
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Definition 2.4. A mapping N : H ×H → H is said to be Lipschitzian continuous with
respect to the first argument if there exists a constant α > 0 such that

∥∥N(u,·)−N(v,·)∥∥≤ α‖u− v‖ (2.11)

for all u,v ∈H .

In a similar way, we can define the Lipschitzian continuity of the mapping N(·,·) with
respect to the second argument.

Definition 2.5. Let {Mn} and M be maximal monotone mappings for n= 0,1,2, . . . . The

sequence {Mn} is said to be graph-convergence to M (write Mn G→M) if, for every (x, y)∈
Graph(M), there exists a sequence (xn, yn)∈Graph(Mn) such that xn → x and yn → y as
n→∞.

Lemma 2.6 [4]. Let {Mn} and M be maximal monotone mappings for n= 0,1,2, . . . . Then

Mn G→M if and only if

JM
n

λ (x)−→ JMλ (x) (2.12)

for every x ∈H and λ > 0, where JMλ = (I + λM)−1.

Lemma 2.7. Let {an},{bn}, and {cn} be three sequences of nonnegative numbers satisfying
the following conditions: there exists a positive integer n0 such that

an+1 ≤
(
1− tn

)
an + bntn + cn (2.13)

for n≥ n0, where

tn ∈ [0,1],
∞∑
n=0

tn = +∞, lim
n→∞bn = 0,

∞∑
n=0

cn < +∞. (2.14)

Then an→ 0 as n→ +∞.

Proof. Let σ = inf{an : n ≥ n0}. Then σ ≥ 0. Suppose that σ > 0. Then an ≥ σ > 0 for all
n≥ n0. It follows from (2.7) that

an+1 ≤ an− σtn + tnbn + cn = an−
(

1
2
σ − bn

)
tn− 1

2
σtn + cn (2.15)

for all n≥ n0. Since bn→ 0 as n→∞, there exists n1 ≥ n0 such that

1
2
σ ≥ bn (2.16)

for all n≥ n1. Combining (2.13) and (2.15), we have

an+1 ≤ an− 1
2
σtn + cn (2.17)
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for all n≥ n1, which implies that

1
2
σ

∞∑
n=n1

tn ≤ an1 +
∞∑

n=n1

cn < +∞. (2.18)

This is a contradiction. Therefore, σ = 0 and so there exists a subsequence {anj} ⊂ {an}
such that anj → 0 as j →∞. It follows from (2.7) that

anj+1 ≤ anj + bnj tnj + cnj , (2.19)

and so anj+1 → 0 as j →∞. A simple induction leads to anj+k → 0 as j →∞ for all k ≥ 1
and this means that an→ 0 as n→∞. This completes the proof. �

Lemma 2.8 (see [11, 12]). u∈H is a solution of the problem (2.1) if and only if

p(u)= J
M(·,g(u))
ρ

[
p(u)− ρ f (u) + ρN(u,u)

]
, (2.20)

where ρ > 0 is a constant and

J
M(·,g(u))
ρ = (I + ρM

(·,g(u)
))−1

. (2.21)

3. Existence and uniqueness theorems

In this section, we show the existence and uniqueness of solution for the generalized
nonlinear implicit quasivariational inclusion problem (2.1) in terms of Lemma 2.8.

Theorem 3.1. Let N : H ×H →H be Lipschitzian continuous with respect to the first and
second arguments with constants α, β, respectively, and let it be relaxed Lipschitzian with
respect to the first argument with a constant t > 0. Let f , p,g : H →H be Lipschitzian con-
tinuous with constants σ , s, and l, respectively, and let p be strongly monotone with a constant
r > 0. Suppose that there exist constants λ > 0 and ρ > 0 such that for each x, y,z ∈H ,

∥∥∥JM(·,x)
ρ (z)− J

M(·,y)
ρ (z)

∥∥∥≤ λ‖x− y‖, (3.1)

2
√

1− 2r + s2 +
√

1− 2ρt+ ρ2α2 +
(
ρβ+ ρσ + λl

)
< 1. (3.2)

Then the problem (2.1) has a unique solution u∗ ∈H .

Proof. By Lemma 2.8, it is enough to show that the mapping F : H → H has a unique
fixed point u∗ ∈H , where F is defined as follows:

F(u)= u− p(u) + J
M(·,g(u))
ρ

[
p(u)− ρ f (u) + ρN(u,u)

]
(3.3)
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for all u∈H . From (3.1) and (3.3), we have
∥∥F(u)−F(v)

∥∥
=
∥∥∥u− p(u) + J

M(·,g(u))
ρ

[
p(u)− ρ f (u) + ρN(u,u)

]

−
{
v− p(v) + J

M(·,g(v))
ρ

[
p(v)− ρ f (v) + ρN(v,v)

]}∥∥∥
≤ ∥∥u− v− (p(u)− p(v)

)∥∥
+
∥∥∥JM(·,g(u))

ρ
[
p(u)− ρ f (u) + ρN(u,u)

]− J
M(·,g(v))
ρ

[
p(v)− ρ f (v) + ρN(v,v)

]∥∥∥
≤ ∥∥u− v− (p(u)− p(v)

)∥∥
+
∥∥∥JM(·,g(u))

ρ
[
p(u)− ρ f (u) + ρN(u,u)

]− J
M(·,g(u))
ρ

[
p(v)− ρ f (v) + ρN(v,v)

]∥∥∥
+
∥∥∥JM(·,g(u))

ρ
[
p(v)− ρ f (v) + ρN(v,v)

]− J
M(·,g(v))
ρ

[
p(v)− ρ f (v) + ρN(v,v)

]∥∥∥
≤ ∥∥u− v− (p(u)− p(v)

)∥∥+ λ
∥∥g(u)− g(v)

∥∥
+
∥∥p(u)− ρ f (u) + ρN(u,u)− [p(v)− ρ f (v) + ρN(v,v)

]∥∥
≤ ∥∥u− v+ ρ

(
N(u,u)−N(v,v)

)∥∥
+ 2
∥∥u− v− (p(u)− p(v)

)∥∥+ ρ
∥∥ f (u)− f (v)

∥∥+ λl‖u− v‖
≤ 2
∥∥u− v− (p(u)− p(v)

)∥∥+
∥∥u− v+ ρ

(
N(u,u)−N(v,u)

)∥∥
+ ρ
∥∥N(v,u)−N(v,v)

∥∥+
(
ρσ + λl

)‖u− v‖.
(3.4)

By the Lipschitzian continuity and strong monotonicity of p, we have

∥∥u− v− (p(u)− p(v)
)∥∥2

= ‖u− v‖2− 2
〈
u− v, p(u)− p(v)

〉
+
∥∥p(u)− p(v)

∥∥2

≤ (1− 2r + s2)‖u− v‖2.

(3.5)

Since N is Lipschitzian continuous with respect to the first and second arguments and
relaxed Lipschitzian with respect to the first argument, we obtain

∥∥u− v+ ρ
(
N(u,u)−N(v,u)

)∥∥2

= ‖u− v‖2 + 2ρ
〈
u− v,N(u,u)−N(v,u)

〉
+ ρ2

∥∥N(u,u)−N(v,u)
∥∥2

≤ (1− 2ρt+ ρ2α2)‖u− v‖2,∥∥N(v,u)−N(v,v)
∥∥≤ β‖u− v‖.

(3.6)

From (3.4), (3.5), and (3.6), we have
∥∥F(u)−F(v)

∥∥≤ h‖u− v‖, (3.7)

where

h= 2
√

1− 2r + s2 +
√

1− 2ρt+ ρ2α2 +
(
ρβ+ ρσ + λl

)
. (3.8)
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From (3.2), we know that 0 < h < 1. Therefore, there exists a unique u∗ ∈ H such that
F(u∗)= u∗. This completes the proof. �

Remark 3.2. If there is a constant ρ > 0 such that

∣∣∣∣ρ− t− (1− k)(β+ σ)
α2− (β+ σ)2

∣∣∣∣ <
√(

t+ (k− 1)(β+ σ)
)2− k(2− k)

(
α2− (β+ σ)2

)
α2− (β+ σ)2

,

t > (1− k)(β+ σ) +
√
k(2− k)

(
α2− (β+ σ)2

)
, α > β+ σ ,

ρ(β+ σ) < 1− k, k = 2
√

1− 2r + s2 + λl, k < 1,

(3.9)

then it is easy to check that condition (3.2) is satisfied.

From Theorem 3.1, we can obtain the following theorem.

Theorem 3.3. Let N , p, and f be the same as in Theorem 3.1. Suppose that there exists
a constant ρ > 0 such that (3.2) holds for k = 2

√
1− 2r + s2. Then the problem (2.2) has a

unique solution u∗ ∈H .

4. Perturbed algorithms and stability

In this section, we construct some new perturbed iterative algorithms with errors for
solving the generalized nonlinear implicit quasivariational inclusion problem (2.1) and
prove the convergence and stability of the iterative sequences generated by the perturbed
iterative algorithms with errors.

Definition 4.1. Let T be a self-mapping of H , x0 ∈ H and xn+1 = f (T ,xn) define an
iteration procedure which yields a sequence of points {xn} in H . Suppose that {x ∈
H : Tx = x} �= ∅ and {xn} converges to a fixed point x∗ of T . Let {yn} ⊂ H and let
εn = ‖yn+1− f (T , yn)‖.

(i) If limn→∞ εn = 0 implies that limn→∞ yn = x∗, then the iteration procedure {xn}
defined by xn+1 = f (T ,xn) is said to be T-stable or stable with respect to T .

(ii) If
∑∞

n=0 εn < +∞ implies that limn→∞ yn = x∗, then the iteration procedure {xn} is
said to be almost T-stable.

Some stability results of iteration algorithms have been established by several authors
(see [3, 7, 12, 15]). As was shown by Harder and Hicks [7], the study on the stability is
both of theoretical and of numerical interest.

Remark 4.2. An iteration procedure {xn} which is T-stable is almost T-stable and an
iteration procedure {xn} which is almost T-stable need not be T-stable [15].

Now, we give the perturbed iterative algorithms with errors for the generalized non-
linear implicit quasivariational inclusion problem (2.1) as follows.

Algorithm 4.3. Let f , p,g : H →H and N : H ×H →H be four single-valued mappings.
Let {Mn} and M be set-valued mappings from H ×H into the power of H such that

for each t ∈ H , Mn(·, t) and M(·, t) are maximal monotone mappings and Mn(·, t) G→
M(·, t). For any given u0 ∈H , the perturbed iterative sequence {un}with errors is defined
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as follows:

un+1 =
(
1−αn

)
un

+αn
[
vn− p

(
vn
)

+ J
Mn(·,g(vn))
ρ

(
p
(
vn
)− ρ f

(
vn
)

+ ρN
(
vn,vn

))]
+αnen + ln,

vn =
(
1−βn

)
un

+βn
[
un− p

(
un
)

+ J
Mn(·,g(un))
ρ

(
p
(
un
)− ρ f

(
un
)

+ ρN
(
un,un

))]
+ fn

(4.1)

for n= 0,1,2, . . . , where {αn} and {βn} are two sequences in [0,1], {en},{ln}, and { fn} are
three sequences in H satisfying the following conditions:

lim
n→∞

∥∥en∥∥= lim
n→∞

∥∥ fn∥∥= 0,
∞∑
n=0

αn = +∞,
∞∑
n=0

∥∥ln∥∥ < +∞. (4.2)

From Algorithm 4.3, we obtain the following algorithm for the problem (2.2) as
follows.

Algorithm 4.4. Let f , p : H → H and N : H ×H → H be three single-valued mappings.
Let {Mn} and M be maximal monotone mappings from H into the power of H such that

Mn G→M. For any given u0 ∈H , define the perturbed iterative sequence {un} with errors
as follows:

un+1 =
(
1−αn

)
un

+αn
[
vn− p

(
vn
)

+ JM
n

ρ

(
p
(
vn
)− ρ f

(
vn
)

+ ρN
(
vn,vn

))]
+αnen + ln,

vn =
(
1−βn

)
un

+βn
[
un− p

(
un
)

+ JM
n

ρ

(
p
(
un
)− ρ f

(
un
)

+ ρN
(
un,un

))]
+ fn

(4.3)

for n= 0,1,2, . . . , where {αn},{βn},{en},{ln}, and { fn} are the same as in Algorithm 4.3.

Remark 4.5. For a suitable choice of f , p, g, N , Mn, and M, Algorithm 4.3 includes several
known algorithms in [1, 5, 6, 9, 10, 12, 16, 18] as special cases.

Theorem 4.6. Let f , p, g, and N be the same as in Theorem 3.1. Suppose that {Mn} and M
are set-valued mappings from H ×H into the power of H such that for each t ∈H , Mn(·, t)
and M(·, t) are maximal monotone mappings and Mn(·, t) G→M(·, t). Assume that there
exist constants ρ > 0 and λ > 0 such that for each x, y,z ∈H and n≥ 0,

∥∥∥JM(·,x)
ρ (z)− J

M(·,y)
ρ (z)

∥∥∥≤ λ‖x− y‖,∥∥∥JMn(·,x)
ρ (z)− J

Mn(·,y)
ρ (z)

∥∥∥≤ λ‖x− y‖,
(4.4)
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and the condition (3.2) holds. Let {yn} be a sequence in H and define a sequence {εn} of real
numbers as follows:

εn =
∥∥∥yn+1−

{(
1−αn

)
yn +αn

[
xn− p

(
xn
)

+ J
Mn(·,g(xn))
ρ

(
p
(
xn
)− ρ f

(
xn
)

+ ρN
(
xn,xn

))]

+αnen + ln
}∥∥∥,

xn =
(
1−βn

)
yn +βn

[
yn− p

(
yn
)

+ J
Mn(·,g(yn))
ρ

(
p(yn)− ρ f

(
yn
)

+ ρN
(
yn, yn

))]
+ fn,

(4.5)

where {αn},{βn},{en},{ln}, and { fn} are the same as in Algorithm 4.3. Then the following
hold.

(1) The sequence {un} defined by Algorithm 4.3 converges strongly to the unique solution
u∗ of the problem (2.1).

(2) If εn = αn∆n + γn with
∑∞

n=0 γn < +∞ and limn→∞∆n = 0, then limn→∞ yn = u∗.
(3) limn→∞ yn = u∗ implies that limn→∞ εn = 0.

Proof. Let u∗ ∈H be the unique solution of the problem (2.1). It is easy to see that the
conclusion (1) follows from the conclusion (2). Now, we prove that (2) is true. It follows
from Lemma 2.8 that

u∗ = (1−αn
)
u∗ +αn

[
u∗ − p

(
u∗
)

+ J
M(·,g(u∗))
ρ

(
p
(
u∗
)− ρ f

(
u∗
)

+ ρN
(
u∗,u∗

))]
.

(4.6)

From (4.1), (4.5), and (4.6), we have

∥∥yn+1−u∗
∥∥

=
∥∥∥yn+1−

{(
1−αn

)
u∗ +αn

[
u∗ − p

(
u∗
)

+ J
M(·,g(u∗))
ρ

(
p
(
u∗
)− ρ f

(
u∗
)

+ ρN
(
u∗,u∗

))]}∥∥∥
≤
∥∥∥yn+1−

{(
1−αn

)
yn +αn

[
xn− p

(
xn
)

+ J
Mn(·,g(xn))
ρ

(
p
(
xn
)− ρ f

(
xn
)

+ ρN
(
xn,xn

))]

+αnen + ln
}∥∥∥

+
∥∥∥(1−αn

)
yn +αn

[
xn− p

(
xn
)

+ J
Mn(·,g(xn))
ρ

(
p
(
xn
)− ρ f

(
xn
)

+ ρN
(
xn,xn

))]

−
{(

1−αn
)
u∗ +αn

[
u∗ − p

(
u∗
)

+ J
M(·,g(u∗))
ρ

(
p
(
u∗
)− ρ f

(
u∗
)

+ ρN
(
u∗,u∗

))]}∥∥∥
+αn

∥∥en∥∥+
∥∥ln∥∥

≤ εn +
(
1−αn

)∥∥yn−u∗
∥∥+αn

∥∥xn−u∗ − (p(xn)− p
(
u∗
))∥∥

+αn
∥∥∥JMn(·,g(xn))

ρ
[
p
(
xn
)− ρ f

(
xn
)

+ ρN
(
xn,xn

)]

− J
M(·,g(u∗))
ρ

[
p
(
u∗
)− ρ f

(
u∗
)

+ ρN
(
u∗,u∗

)]∥∥∥
+αn

∥∥en∥∥+
∥∥ln∥∥
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≤ εn +
(
1−αn

)∥∥yn−u∗
∥∥+αn

∥∥xn−u∗ − (p(xn)− p
(
u∗
))∥∥

+αn
∥∥∥JMn(·,g(xn))

ρ
[
p
(
xn
)− ρ f

(
xn
)

+ ρN
(
xn,xn

)]

− J
Mn(·,g(xn))
ρ

[
p
(
u∗
)− ρ f

(
u∗
)

+ ρN
(
u∗,u∗

)]∥∥∥
+αn

∥∥∥JMn(·,g(xn))
ρ

[
p
(
u∗
)− ρ f

(
u∗
)

+ ρN
(
u∗,u∗

)]

− J
Mn(·,g(u∗))
ρ

[
p
(
u∗
)− ρ f

(
u∗
)

+ ρN
(
u∗,u∗

)]∥∥∥
+αn

∥∥∥JMn(·,g(u∗))
ρ

[
p
(
u∗
)− ρ f

(
u∗
)

+ ρN
(
u∗,u∗

)]

− J
M(·,g(u∗))
ρ

[
p
(
u∗
)− ρ f

(
u∗
)

+ ρN
(
u∗,u∗

)]∥∥∥+αn
∥∥en∥∥+

∥∥ln∥∥
≤ εn +

(
1−αn

)∥∥yn−u∗
∥∥+αn

∥∥xn−u∗ − (p(xn)− p
(
u∗
))∥∥

+αn
∥∥p(xn)− p

(
u∗
)− ρ

(
f
(
xn
)− f

(
u∗
))

+ ρ
(
N
(
xn,xn

)−N
(
u∗,u∗

))∥∥
+αnλ

∥∥g(xn)− g
(
u∗
)∥∥+αngn +αn

∥∥en∥∥+
∥∥ln∥∥

≤ εn +
(
1−αn

)∥∥yn−u∗
∥∥+ 2αn

∥∥xn−u∗ − (p(xn)− p
(
u∗
))∥∥

+αn
∥∥xn−u∗ + ρ

(
N
(
xn,xn

)−N
(
u∗,xn

))∥∥+αnρ
∥∥N(u∗,xn

)−N
(
u∗,u∗

)∥∥
+αnρ

∥∥ f (xn)− f
(
u∗
)∥∥+αnλl

∥∥xn−u∗
∥∥+αngn +αn

∥∥en∥∥+
∥∥ln∥∥

≤ (1−αn
)∥∥yn−u∗

∥∥+ 2αn
∥∥xn−u∗ − (p(xn)− p

(
u∗
))∥∥

+αn
∥∥xn−u∗ + ρ

(
N
(
xn,xn

)−N
(
u∗,xn

))∥∥+αnρ
∥∥N(u∗,xn

)−N
(
u∗,u∗

)∥∥
+αn

(
ρσ + λl

)∥∥xn−u∗
∥∥+αn

(
gn +

∥∥en∥∥+∆n
)

+
(∥∥ln∥∥+ γn

)
,

(4.7)

where

gn =
∥∥∥JMn(·,g(u∗))

ρ
[
p
(
u∗
)− ρ f

(
u∗
)

+ ρN
(
u∗,u∗

)]

− J
M(·,g(u∗))
ρ

[
p
(
u∗
)− ρ f

(
u∗
)

+ ρN
(
u∗,u∗

)]∥∥∥−→ 0.
(4.8)

It follows from (3.5) and (3.6) that

∥∥xn−u∗ − (p(xn)− p
(
u∗
))∥∥2 ≤ (1− 2r + s2)∥∥xn−u∗

∥∥2
,

∥∥xn−u∗ + ρ
(
N
(
xn,xn

)−N
(
u∗,xn

))∥∥2 ≤ (1− 2ρt+ ρ2α2)∥∥xn−u∗
∥∥2

,∥∥N(u∗,xn
)−N

(
u∗,u∗

)∥∥≤ β
∥∥xn−u∗

∥∥.
(4.9)

Substituting (4.9) into (4.7), we have

∥∥yn+1−u∗
∥∥≤ (1−αn

)∥∥yn−u∗
∥∥+αnh

∥∥xn−u∗
∥∥

+αn
(
gn +

∥∥en∥∥+∆n
)

+
(∥∥ln∥∥+ γn

)
,

(4.10)
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where

h= 2
√

1− 2r + s2 +
√

1− 2ρt+ ρ2α2 + ρ(β+ σ) + λl. (4.11)

From (3.2), we know that 0 < h < 1.
Similarly, we have

∥∥xn−u∗
∥∥≤ (1−βn

)∥∥yn−u∗
∥∥+βnh

∥∥yn−u∗
∥∥+βngn +

∥∥ fn∥∥. (4.12)

Combining (4.10) and (4.12), we have

‖yn+1−u∗‖
≤ (1−αn

)∥∥yn−u∗
∥∥+αnh

(
1−βn

)∥∥yn−u∗
∥∥+αnh

2βn
∥∥yn−u∗

∥∥
+αnhβngn +αnh

∥∥ fn∥∥+αn
(
gn +

∥∥en∥∥+∆n
)

+
(∥∥ln∥∥+ γn

)

≤ (1− (1−h
)
αn
)∥∥yn−u∗

∥∥

+ (1−h)αn · 1
1−h

(
hβngn +h

∥∥ fn∥∥+ gn +
∥∥en∥∥+∆n

)
+
(∥∥ln∥∥+ γn

)
.

(4.13)

Let

an =
∥∥yn−u∗

∥∥, cn = ‖ln‖+ γn, tn = (1−h)αn,

bn = 1
1−h

(
hβngn +h

∥∥ fn∥∥+ gn +
∥∥en∥∥+∆n

)
.

(4.14)

We can rewrite (4.13) as follows:

an+1 ≤
(
1− tn

)
an + bntn + cn. (4.15)

From the assumptions, we know that {an},{bn},{cn}, and {tn} satisfy the conditions of
Lemma 2.7. This implies that an→ 0 and so yn→ u∗.

Next, we prove the conclusion (3). Suppose that limn→∞ yn = u∗. It follows from (4.2)
and (4.12) that xn→ u∗. From (4.5), we have

εn =
∥∥∥yn+1−

{(
1−αn

)
yn +αn

[
xn− p

(
xn
)

+ J
Mn(·,g(xn))
ρ

(
p
(
xn
)− ρ f

(
xn
)

+ ρN
(
xn,xn

))]

+αnen + ln
}∥∥∥

≤ ∥∥yn+1−u∗
∥∥+αn

∥∥en∥∥+
∥∥ln∥∥

+
∥∥∥(1−αn

)
yn +αn

[
xn− p

(
xn
)

+ J
Mn(·,g(xn))
ρ

[
p
(
xn
)− ρ f

(
xn
)

+ ρN
(
xn,xn

)]]−u∗
∥∥∥.

(4.16)
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As in the proof of (4.10), we have

∥∥∥(1−αn
)
yn +αn

[
xn− p

(
xn
)

+ J
Mn(·,g(xn))
ρ

(
p
(
xn
)− ρ f

(
xn
)

+ ρN
(
xn,xn

))]−u∗
∥∥∥

≤ (1−αn
)∥∥yn−u∗

∥∥+αnh
∥∥xn−u∗

∥∥+αngn.
(4.17)

It follows from (4.16) and (4.17) that

εn ≤
∥∥yn+1−u∗

∥∥+αn
∥∥en∥∥+

∥∥ln∥∥+
(
1−αn

)∥∥xn−u∗
∥∥+αnh

∥∥xn−u∗
∥∥+αngn. (4.18)

This implies that limn→∞ εn = 0. This completes the proof. �

From Theorem 4.6, we have the following theorem.

Theorem 4.7. Let f , p, and N be the same as in Theorem 4.6. Let {Mn} and M be maximal

monotone mappings from H into the power of H such that Mn G→M. Assume that there exists
a constant ρ > 0 such that (3.2) holds for k = 2

√
1− 2r + s2. Let {yn} be a sequence in H and

define {εn} as follows:

εn =
∥∥∥yn+1−

{(
1−αn

)
yn +αn

[
xn− p

(
xn
)

+ JM
n

ρ

(
p
(
xn
)− ρ f

(
xn
)

+ ρN
(
xn,xn

))]

+αnen + ln
}∥∥∥,

xn =
(
1−βn

)
yn +βn

[
yn− p

(
yn
)

+ JM
n

ρ

(
p
(
yn
)− ρ f

(
yn
)

+ ρN
(
yn, yn

))]
+ fn,

(4.19)

where {αn}, {βn}, {en}, {ln}, and { fn} are the same as in Algorithm 4.4. Then
(1) the sequence {un} defined by Algorithm 4.4 converges strongly to the unique solution

u∗ of the problem (2.2),
(2) if εn = αn∆n + γn with

∑∞
n=0 γn < +∞ and limn→∞∆n = 0, then limn→∞ yn = u∗,

(3) limn→∞ yn = u∗ implies that limn→∞ εn = 0.

5. An application

In this section, we give an application to a class of generalized nonlinear implicit varia-
tional inequalities.

Definition 5.1. Let A be a single-valued mapping from H to H . The mapping A is said to
be hemicontinuous if the mapping from [0,1] into (−∞,+∞) defined by

t �−→ 〈A((1− t)u+ tv
)
,w
〉

(5.1)

is continuous for all u,v,w ∈H .

Lemma 5.2 [17]. Let ϕ : H → R
⋃{+∞} be a proper convex lower semicontinuous func-

tion and let A : H → H be a single-valued monotone mapping such that CL(Dom(ϕ)) ⊂
Dom(A), where CL(Dom(ϕ)) denotes the closure of Dom(ϕ). If A is hemicontinuous on
CL(Dom(ϕ)) and if Dom(∂ϕ) is closed, then ∂ϕ+A is a maximal monotone mapping on H .
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Theorem 5.3. Let ϕ : H → R
⋃{+∞} be a proper convex lower semicontinuous function

and A : H →H is a single-valued monotone mapping such that CL(Dom(ϕ))⊂Dom(A), S
is hemicontinuous on CL(Dom(ϕ)), and Dom(∂ϕ) is closed. Let N , f , and p be the same as
in Theorem 3.3. If there exists a constant ρ > 0 such that (3.2) holds for k = 2

√
1− 2r + s2,

then there exists a unique u∗ ∈H such that

p(u)∈Dom(∂ϕ),
〈
A
(
p(u)

)
+ f (u)−N(u,u),v− p(u)

〉≥ ϕ
(
p(u)

)−ϕ(v)
(5.2)

for all v ∈H , which is called the generalized nonlinear implicit variational inequality. More-
over, let {yn} be a sequence in H and define a sequence {εn} of positive real numbers as
follows:

εn =
∥∥∥yn+1−

{(
1−αn

)
yn +αn

[
xn− p

(
xn
)

+ J
A+∂ϕ
ρ

(
p
(
xn
)− ρ f

(
xn
)

+ ρN
(
xn,xn

))]

+αnen + ln
}∥∥∥,

xn =
(
1−βn

)
yn +βn

[
yn− p

(
yn
)

+ J
A+∂ϕ
ρ

(
p
(
yn
)− ρ f

(
yn
)

+ ρN
(
yn, yn

))]
+ fn,

(5.3)

where {αn},{βn},{en},{ln}, and { fn} are the same as in Algorithm 4.4. Then
(1) if εn = αn∆n + γn with

∑∞
n=0 γn < +∞ and limn→∞∆n = 0, then limn→∞ yn = u∗,

(2) limn→∞ yn = u∗ implies that limn→∞ εn = 0.

Proof. The monotone mapping A + ∂ϕ is maximal monotone by Lemma 5.2. Let M =
A+ ∂ϕ. From Theorem 3.3, we know that there exists a unique u∗ ∈H such that p(u)∈
Dom(A+ ∂ϕ) and

N(u,u)− f (u)−A
(
p(u)

)∈ ∂ϕ
(
p(u)

)
. (5.4)

Hence p(u)∈Dom(∂ϕ) and

〈
A
(
p(u)

)
+ f (u)−N(u,u),v− p(u)

〉≥ ϕ
(
p(u)

)−ϕ(v) (5.5)

for all v ∈H . The conclusions (1) and (2) follow from Theorem 4.7. This completes the
proof. �
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