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We apply a fixed point result for multifunctions to derive existence results for bound-
ary value problems of Sturm-Liouville differential equations with nonlinearities that may
involve discontinuous and functional dependencies.

1. Introduction

The main goal of this paper is to study the solvability of the following Sturm-Liouville
boundary value problem (BVP)

− d

dt

(
µ(t)u′(t)

)= λg
(
t,u,u(t),u′(t)

)
a.e. in J = [t0, t1

]
,

a0u
(
t0
)− b0u

′(t0)= c0, a1u
(
t1
)

+ b1u
′(t1)= c1,

(1.1)

where g : J ×C(J)×R×R→R. We are looking for solutions of (1.1) out of

Y = {u∈ C1(J) | µu′ ∈AC(J)
}
. (1.2)

In Section 2, we give first an existence result for problems where the second, the func-
tional argument u of g, is replaced in (1.1) by fixed functions v ∈ C(J), and study the
dependence of solution sets of these problems on v. The so obtained results and a fixed
point result for multifunctions proved recently in [7] are then used in Section 3 to derive
existence results for minimal and maximal solutions of (1.1). Also in nonfunctional case
we get new existence results. Because of weaker hypotheses than those assumed, for ex-
ample, in [1, 3, 4, 5, 8, 9, 10], the fixed point results for single-valued operators do not
apply.

2. Hypotheses and preliminaries

2.1. Hypotheses. Throughout this paper we assume that

λ,aj ,bj ∈R+, a0a1 + a0b1 + a1b0 > 0, cj ∈R, j = 0,1, µ∈ C
(
J , (0,∞)

)
, (2.1)

and that C(J) is ordered pointwise.
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The function g : J ×C(J)×R×R→R is assumed to satisfy the following hypotheses.
(g0) (t,x, y) �→ g(t,v,x, y) is a Carathéodory function, that is measurable in t and

jointly continuous in (x, y), for each v ∈ C(J).
(g1) |g(t,v,x, y)| ≤ p(t)max{|x|,|y|}+m(t) for all x, y ∈ R, for all v ∈ C(J), and for

a.e. t ∈ J , where p,m∈ L1
+(J).

(g2) g(t,·,x, y) is increasing for a.e. t ∈ J and for all x, y ∈R.
(g3) For each fixed v ∈ C(J), |g(t,v,x, y)− g(t,v,x,z)| ≤ pv(t)φv(|y− z|) for a.e. t ∈ J

and for all x, y,z ∈ R, where pv ∈ L1
+(J), φv : R+ → R+ is increasing and∫ 1

0+(dx/φv(x))=∞.
Notice that g can be discontinuous in its first and second arguments, and is mono-

tone only with respect to its second, functional argument. It is also worth to notice that
no lower or upper solutions are assumed to exist, and no Nagumo-type hypotheses are
imposed on g.

We are going to show that if λ is small enough, then the BVP (1.1) has under the above
hypotheses a minimal solution u− and a maximal solution u+ in the sense that if u is any
solution of (1.1), then u≤ u− implies u= u− and u+ ≤ u implies u= u+.

2.2. Auxiliary results. For the sake of completeness we recall in this section several aux-
iliary results whose proofs can be found, for example, in [1, 5].

Lemma 2.1. If q ∈ L1(J), then the BVP

− d

dt

(
µ(t)u′(t)

)= q(t) a.e. in J ,

a0u
(
t0
)− b0u

′(t0)= c0, a1u
(
t1
)

+ b1u
′(t1)= c1

(2.2)

has a unique solution u in Y , and it can be represented as

u(t)= c0y1(t) + c1y0(t)
D

+
∫ t1

t0
k(t,s)q(s)ds, t ∈ J , (2.3)

where

y0(t)=
∫ t

t0

a0

µ(s)
ds+

b0

µ
(
t0
) , y1(t)=

∫ t1

t

a1

µ(s)
ds+

b1

µ
(
t1
) ,

D =
∫ t1

t0

a0a1

µ(s)
ds+

a0b1

µ
(
t1
) +

a1b0

µ
(
t0
) , k(t,s)=



y1(t)y0(s)

D
, t0 ≤ s≤ t,

y0(t)y1(s)
D

, t ≤ s≤ t1.

(2.4)

Denote

z0(t)=max
{
y0(t),

a0

µ(t)

}
, z1(t)=max

{
y1(t),

a1

µ(t)

}
, (2.5)
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and define an operator A : C(J)→ C(J) by

Au(t)=
∫ t1

t0
�(t,s)p(s)u(s)ds, where l(t,s)=




z1(t)y0(s)
D

, t0 ≤ s≤ t,

z0(t)y1(s)
D

, t ≤ s≤ t1.

(2.6)

Lemma 2.2. If the hypothesis (g1) holds, and if λ ∈ [0,λ1), where λ1 is the least positive
eigenvalue of A, then the integral equation

b(t)=
∣∣c0
∣∣z1(t) +

∣∣c1
∣∣z0(t)

D
+ λ

∫ t1

t0
�(t,s)

(
p(s)b(s) +m(s)

)
ds (2.7)

has a unique solution b ∈ C(J).

Lemma 2.3. If the hypotheses (g0) and (g1) hold, then each solution of the BVP (1.1) belongs
to the set

B = {u∈ C1(J)
∣∣max

{∣∣u(t)
∣∣,
∣∣u′(t)∣∣}≤ b(t), t ∈ J

}
, (2.8)

where b is the unique solution of (2.7).

2.3. An auxiliary problem. In this section, we study the BVP

− d

dt

(
µ(t)u′(t)

)= λg
(
t,v,u(t),u′(t)

)
for a.e. t ∈ J ,

a0u
(
t0
)− b0u

′(t0)= c0, a1u
(
t1
)

+ b1u
′(t1)= c1

(2.9)

in the case when v is a fixed element of the set

P = {v ∈ C(J)
∣∣∣∣v(t)

∣∣≤ b(t), t ∈ J
}

, (2.10)

where b is the solution of (2.7).
The following existence result is proved in [5, Proposition 4.1.1].

Proposition 2.4. Let the hypotheses (g0) and (g1) hold, assume that λ∈ [0,λ1), where λ1

is the least positive eigenvalue of the operator A, defined by (2.6), and let B and P be defined
by (2.8) and (2.10), where b is the solution of (2.7). Then for each v ∈ P the BVP (2.9) has a
solution in B.

Hint to the proof. Obviously, B is closed and convex subset of C1(J) with respect to the
norm of C1(J) defined by

‖u‖ =max
{∣∣u(t)

∣∣,
∣∣u′(t)∣∣∣∣ t ∈ J

}
. (2.11)

Let v ∈ P be given. It can be shown (cf. [5, Proposition 4.1.1]) that relation

Fvu(t)= c0y1(t) + c1y0(t)
D

+ λ
∫ t1

t0
k(t,s)g

(
s,v,u(s),u′(s)

)
ds, t ∈ J (2.12)
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defines a compact mapping Fv : B→ B. Thus Fv has by Schauder’s fixed point theorem a
fixed point u in B. It then follows from Lemma 2.1 that u is a solution of (2.9) in B. �

Remark 2.5. The BVP

−u′′(t)= λu(t), t ∈ J = [0,π], u(0)= 0, u(π)= 1 (2.13)

does not have any solution when λ= 1. Thus the result of Proposition 2.4 is not valid in
general if condition λ∈ [0,λ1) is dropped.

The auxiliary problem (2.9) does not, in general, have a unique solution. However, the
results of the next Proposition show that the solutions of (2.9), or equivalently, the fixed
points of Fv defined by (2.12) have properties which enable us to apply a fixed point result
for multivalued functions that has been proved recently in [7].

Proposition 2.6. Let the hypotheses (g0)–(g3) hold, and assume that v1,v2 ∈ P, v1 ≤ v2,
where P is given by (2.10). Then the fixed points of the operators Fvi , defined by (2.12), have
the following properties.

(a) If u∈ P and u= Fv1u, there exists a w ∈ P such that u≤w = Fv2w.
(b) If w ∈ P and w = Fv2w, there exists a u∈ P such that u= Fv1u≤w.

Proof. (a) Let u∈ P, u= Fv1u, be given. Define a mapping f : J ×C(J)×R×R→R by

f (t,v,x, y)=

g
(
t,v,u(t), y

)
, if u(t) > x,

g
(
t,v,x, y

)
, if u(t)≤ x.

(2.14)

The so-defined mapping f satisfies the hypotheses (g0)–(g3) given for g, with m replaced
by m+ pu in (g1). Thus the BVP

− d

dt

(
µ(t)w′(t)

)= λ f
(
t,v2,w(t),w′(t)

)
for a.e. t ∈ J ,

a0w
(
t0
)− b0w

′(t0)= c0, a1w
(
t1
)

+ b1w
′(t1)= c1

(2.15)

has a solution w ∈ Y . Moreover, u is a solution of the BVP

− d

dt

(
µ(t)u′(t)

)= λg
(
t,v1,u(t),u′(t)

)
for a.e. t ∈ J ,

a0u
(
t0
)− b0u

′(t0)= c0, a1u
(
t1
)

+ b1u
′(t1)= c1.

(2.16)

To prove that u ≤ w, we will show that if u �≤ w, then u(t)−w(t) ≡ c > 0, which yields
a0 = a1 = 0, and hence a0a1 + a0b1 + a1b0 = 0, contradicting with (2.1). Consider first the
case when u−w attains a positive maximum c at t2 ∈ (t0, t1).

The proof that u(t)−w(t)≡ c is divided into two steps.
(i) Let t3 be the greatest number on (t2, t1] such that u(t)≥w(t) for each t ∈ [t2, t3].
To prove that w′(t) ≤ u′(t) for each t ∈ [t2, t3], assume on the contrary: there is a

subinterval [a,b] of [t2, t3] such that

0 < w′(t)−u′(t), t ∈ (a,b], w′(a)−u′(a)= 0. (2.17)
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Denoting K =max(1/µ), we have

x(t) := K
(
µ(t)w′(t)−µ(t)u′(t)

)≥w′(t)−u′(t) ∀t ∈ [a,b]. (2.18)

Since u,w ∈ Y , then x ∈ AC(J) by (1.2). Applying (2.14), (2.15), (2.16), (2.18), (g2), and
(g3) we get

x′(t)= K
d

dt

(
µ(t)w′(t)

)−K
d

dt

(
µ(t)u′(t)

)
= Kλ

(
g
(
t,v1,u(t),u′(t)

)− f
(
t,v2,w(t),w′(t)

))
≤ Kλ

(
g
(
t,v2,u(t),u′(t)

)− g
(
t,v2,u(t),w′(t)

))
≤ Kλ

∣∣g(t,v2,u(t),u′(t)
)− g

(
t,v2,u(t),w′(t)

)∣∣
≤ Kλpv2 (t)φv2

(∣∣u′(t)−w′(t)
∣∣)= Kλpv2 (t)φv2

(
w′(t)−u′(t)

)
≤ Kλpv2 (t)φv2

(
K
(
µ(t)w′(t)−µ(t)u′(t)

))= Kλpv2 (t)φv2

(
x(t)

)

(2.19)

for a.e. t ∈ (a,b]. Thus we have x′(t) ≤ Kλpv2 (t)φv2 (x(t)) a.e. in (a,b], x(a) = 0, whence
x(t) ≡ 0 on [a,b] by [5, Lemma B.6.1]. This contradicts (2.17). Consequently, w′(t) ≤
u′(t) on [t2, t3], whence

u(t)−w(t)= u
(
t2
)−w

(
t2
)

+
∫ t

t2

(
u′(s)−w′(s)

)
ds

≥ u
(
t2
)−w

(
t2
)
, t ∈ [t2, t3

]
.

(2.20)

Because t2 was the maximum point of u(t)−w(t), then u(t)−w(t) ≡ c on [t2, t3]. This
result and the choice of t3 imply that t3 = t1. Thus u(t)−w(t)≡ c on [t2, t1].

(ii) Choose next t4 to be the least number on [t0, t2) such that u(t) ≥ w(t), for each
t ∈ [t4, t2].

To prove that u′(t) ≤ w′(t) for each t ∈ [t4, t2], assume on the contrary: there is a
subinterval [a,b] of [t4, t2] such that

0 < u′(t)−w′(t), t ∈ [a,b), u′(b)=w′(b). (2.21)

Thus

x(t) := K
(
µ(t)u′(t)−µ(t)w′(t)

)≥ u′(t)−w′(t) ∀t ∈ [a,b]. (2.22)

In view of (2.14), (2.15), (2.16), (2.22), (g2) and (g3) we obtain

−x′(t)= K
d

dt

(
µ(t)w′(t)

)−K
d

dt

(
µ(t)u′(t)

)
= Kλ

(
g
(
t,v1,u(t),u′(t)

)− f
(
t,v2,w(t),w′(t)

))
≤ Kλ

(
g
(
t,v2,u(t),u′(t)

)− g
(
t,v2,u(t),w′(t)

))
≤ Kλ

∣∣g(t,v2,u(t),u′(t)
)− g

(
t,v2,u(t),w′(t)

)∣∣
≤ Kλpv2 (t)φv2

(∣∣u′(t)−w′(t)
∣∣)= Kλpv2 (t)φv2

(
u′(t)−w′(t)

)
≤ Kλpv2 (t)φv2

(
K
(
µ(t)u′(t)−µ(t)w′(t)

))= Kλpv2 (t)φv2

(
x(t)

)

(2.23)
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for a.e. t ∈ [a,b). Because x(b)= 0, we have

−x′(t)≤ Kλpv2 (t)φv2

(
x(t)

)
a.e. in [a,b), x(b)= 0, (2.24)

which implies a contradiction:

∞=
∫ x(a)

0+

dx

φv2 (x)
=
∫ a

b−
x′(t)dt
φv2

(
x(t)

) =
∫ b−

a

−x′(t)dt
φv2

(
x(t)

) ≤
∫ b

a
Kλpv2 (t)dt <∞. (2.25)

Thus u′(t)≤w′(t) on [t4, t2], whence

u
(
t2
)−w

(
t2
)= u(t)−w(t) +

∫ t2

t

(
u′(s)−w′(s)

)
ds≤ u(t)−w(t), t ∈ [t4, t2

]
. (2.26)

Because t2 was the maximum point of u(t)−w(t), then u(t)−w(t) ≡ c in [t4, t2]. This
result and the choice of t4 imply that t4 = t0. Thus u(t)−w(t)≡ c on [t0, t2].

The results of (i) and (ii) imply that u(t)−w(t)≡ c > 0 in the considered case. Apply-
ing this result and the boundary conditions

a0u
(
t0
)− b0u

′(t0)= a0w
(
t0
)− b0w

′(t0)= c0,

a1u
(
t1
)

+ b1u
′(t1)= a1w

(
t1
)

+ b1w
′(t1)= c1,

(2.27)

one can show that a0 = a1 = 0 by the reasoning used in the proof of [5, Lemma 3.4.2].
This proof covers also cases when u(t)−w(t) attains its positive maximum at t0 or at t1.

The above proof shows that if u �≤w, then a0 = b0 = 0. But then a0a1 + a0b1 + a1b0 = 0,
which contradicts with the assumption (2.1). Consequently, the maximum of u(t)−w(t)
is not positive, whence u(t)≤ w(t) for all t ∈ J . This result, (2.14) and (2.15) imply that
w is a solution of the BVP

− d

dt

(
µ(t)w′(t)

)= λg
(
t,v2,w(t),w′(t)

)
for a.e. t ∈ J ,

a0w
(
t0
)− b0w

′(t0)= c0, a1w
(
t1
)

+ b1w
′(t1)= c1,

(2.28)

or equivalently, w = Fv2w. This proves (a) because u≤w.
The proof of case (b) is similar. �

3. Main results

In the proof of our main existence theorem we need the following special case of a fixed
point result proved recently in [7] as a slight modification to [6, Theorem 2.1].

Lemma 3.1. Let X be an ordered normed space, and let G : P ⊂ X → 2P \∅ satisfy the
following hypotheses.

(G1) The set P0 = {u∈ P | u≤ v for some v ∈G(u)} is nonempty.
(G2) If un ≤ vn ∈G(un), n∈N, and if (vn) is increasing, then vn→ v ∈ P0.
Then G has a maximal fixed point u+, that is u+ ∈ G(u+), and if u∈ G(u) and u+ ≤ u,

then u= u+.

Now we are ready to prove our main existence theorem.
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Theorem 3.2. Assume that g satisfies the hypotheses (g0)–(g3), and that λ∈ [0,λ1), where
λ1 is the least positive eigenvalue of the operator A, defined by (2.6). Then the BVP (1.1) has
a minimal solution u− and a maximal solution u+ in Y , given by (1.2).

Proof. Choose X = C(J), equipped with the sup-norm and pointwise ordering. Let b ∈ X
be the solution of (2.7), and let P be defined by (2.10) and Fv, v ∈ P by (2.12). In view of
Proposition 2.4 the relation

G(v)= {u∈ X | u= Fvu
}

, v ∈ P, (3.1)

defines a mapping G : P → 2P \∅. We will show that the hypotheses (G1) and (G2) of
Lemma 3.1 hold. (G1) holds because −b ∈ P0. To prove (G2), assume that un ≤ vn ∈
G(un), and that (vn) is increasing. It follows from [5, (4.1.16)] that

∣∣Fvu(t)
∣∣≤ b(t),

∣∣∣∣ d

dt
Fv
(
u(t)

)∣∣∣∣≤ b(t) ∀t ∈ J and v ∈ P. (3.2)

Thus G[P]=∪{G(v) | v ∈ P} = ∪{u | u= Fvu, v ∈ P} is a bounded and equicontinuous
subset of P. This implies that v = limn vn exists in X . Because P is closed, then v ∈ P. Since
un ≤ vn ≤ v for each n∈N, there exists by Proposition 2.6(a) a wn ∈G(v) such that vn ≤
wn. Since the operator Fv is compact with respect to the norm of C1(J) defined by (2.11),
then sequence (wn)= (Fvwn) has a subsequence, say (wk) which has a limit w in C1(J) in
the sense that wk → w and w′k → w′ uniformly on J . Denoting k0 =max{k(t,s) | t,s∈ J},
it follows from (2.12) that

∣∣Fvwk(t)−Fvw(t)
∣∣≤ k0λ

∫ t1

t0

∣∣g(s,v,wk(s),w′k(s)
)− g

(
s,v,w(s),w′(s)

)∣∣ds, t ∈ J.

(3.3)

Because (x, y) �→ g(s,v,x, y) is continuous by (g0), the above inequality and the domi-
nated convergence theorem imply that Fvwk → Fvw in X as n→∞. Thus it follows from
wk = Fvwk as k →∞ that w = Fvw, so that w ∈ G(v). Since vk ≤ wk for each k we get,
as k →∞, that v ≤ w ∈ G(v). Thus v ∈ P0, so that (G2) holds. Thus all the hypothe-
ses of Lemma 3.1 hold, which implies that G has a maximal fixed point u. In particular,
u∈ G(u), whence u= Fuu by (3.1). In view of (2.12) u is a solution of the integral equa-
tion

u(t)= c0y1(t) + c1y0(t)
D

+ λ
∫ t1

t0
k(t,s)g

(
s,v,u(s),u′(s)

)
ds, t ∈ J. (3.4)

As a maximal fixed point of G, u is a maximal solution of (3.4) in P, and hence by
Lemma 2.1 a maximal solution of the BVP (1.1) in P. Since all the solutions of (1.1)
are contained in B ⊂ P by Lemma 2.3, then u is a maximal solution of (1.1) in Y .

The proof of the existence of a minimal solution of (1.1) can be reduced to the above
proof, replacing the order relation≤ of C(J) by its dual relation�, defined by u� v if and
only if v ≤ u, using Proposition 2.6(b), and replacing −b by b in the proof of (G1). �
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The hypotheses (g2) and (g3) are needed only in the proof of Proposition 2.6. If g is
constant with respect to its second argument v, the results of Proposition 2.6 are trivially
valid. As a consequence of this remark and Theorem 3.2 we obtain the following result.

Proposition 3.3. Assume that q : J ×R2 →R is a Carathéodory function satisfying
(qa) |q(t,x, y)|≤ p(t)max{|x|,|y|}+m(t) for all x, y ∈R and for a.e. t∈ J , where p,m∈

L1
+(J) and ‖An‖1/n < 1 for some n≥ 1 with A : C(J)→ C(J) given by (2.6).

Then the BVP

− d

dt

(
µ(t)u′(t)

)= q
(
t,u(t),u′(t)

)
for a.e. t ∈ J ,

a0u
(
t0
)− b0u

′(t0)= c0, a1u
(
t1
)

+ b1u
′(t1)= c1

(3.5)

has minimal and maximal solutions in Y .

In particular, the following result holds.

Corollary 3.4. If q : J ×R2 → R is an L1-bounded Carathéodory function, then the BVP
(3.5) has minimal and maximal solutions for each choices of cj ∈R and aj ,bj ∈R+, j = 0,1,
satisfying a0a1 + a0b1 + a1b0 > 0.

The next result is also a direct consequence of Theorem 3.2.

Proposition 3.5. Assume that q : J ×R2 → R is a Carathéodory function satisfying (qa)
and the following hypothesis.

(qb) There exists a p1∈L1
+(J) and an increasing function φ :R+→R+ with

∫ 1
0+(dz/φ(z))=

∞ such that |q(t,x,z)− q(t,x, y)| ≤ p1(t)φ(|z− y|) for a.e. t ∈ J and all x, y,z ∈R.
If h : J ×R→R is an L1-bounded and sup-measurable function, and if h(t,·) is increasing

for a.e. t ∈ J , then the BVP

− d

dt

(
µ(t)u′(t)

)= q
(
t,u(t),u′(t)

)
+h
(
t,u(t)

)
for a.e. t ∈ J ,

a0u
(
t0
)− b0u

′(t0)= c0, a1u
(
t1
)

+ b1u
′(t1)= c1

(3.6)

has minimal and maximal solutions in Y .

Proof. The function g(t,v,x, y)= q(t,x, y) + h(t,v(t)) satisfies the hypotheses (g0)–(g3).
�

The next result is a special case to Theorem 3.2.

Proposition 3.6. Assume that the function g : J × C(J)×R→ R satisfies the following
hypotheses.

(ga) g(·,v,x) is measurable, g(t,·,x) is increasing and g(t,v,·) is continuous for a.e. t ∈ J
and for all v ∈ C(J) and x ∈R.

(gb) |g(t,v,x)| ≤ p(t)|x|+m(t) for all x ∈ R, for all v ∈ C(J), and for a.e. t ∈ J , where
p,m∈ L1

+(J).
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Then the BVP

− d

dt

(
µ(t)u′(t)

)= λg
(
t,u,u(t)

)
for a.e. t ∈ J ,

a0u
(
t0
)− b0u

′(t0)= c0, a1u
(
t1
)

+ b1u
′(t1)= c1

(3.7)

has minimal and maximal solutions in Y whenever λ∈ [0,λ0), where λ0 is the least positive
eigenvalue of the operator T : C(J)→ C(J), defined by

Tu(t)=
∫ t1

t0
k(t,s)p(s)u(s)ds, t ∈ J. (3.8)

Example 3.7. Define f :R2 →R and q : J ×R2 →R by

f (x, y)=
∞∑

j=−∞

∞∑
k=1

ϕ
(
x− y + j/k

)
2| j|+k

, where ϕ(z)=


zcos

1
z

, z �= 0,

0, z = 0,

q(t,x, y)= f (x, y)
1 +

∣∣ f (x, y)
∣∣

∞∑
j=1

∞∑
k=1

2 + sin
(
1/
(
1 +

[
k1/ j t

]− k1/ j t
))

(k j)2
, t ∈ J , x, y ∈R.

(3.9)

The function q satisfies the hypotheses of Corollary 3.4. Thus the BVP (3.5) has for
each choices of aj ,bj ∈R+, j = 0,1, satisfying a0a1 + a0b1 + a1b0 > 0, and c0,c1 ∈Rmini-
mal and maximal solutions. By Proposition 3.5 this result holds also for the BVP (3.6) if
q : J ×R2 →R and h : J ×R→R are defined by

q(t,x, y)= sin(y)ϕ(x)
1 +

∣∣ϕ(x)
∣∣

∞∑
j=1

∞∑
k=1

2 + sin
(
1/
(
1 +

[
k1/ j t

]− k1/ j t
))

(k j)2
, t ∈ J , x, y ∈R,

h(t,x)= arctan

( ∞∑
j=1

∞∑
k=1

[
2 +

[
k1/ j t

]− k1/ j t
]

+
[
k1/ jx

]
(k j)2

)
, t ∈ J , x ∈R,

(3.10)

where [z] denotes the greatest integer ≤ z.

Remark 3.8. The hypothesis (g2) of our main existence result, Theorem 3.2, is weaker
than that of [1, Theorem 2.1] and [5, Theorem 4.1.1], because g(t,v,·, y) is not assumed
to be decreasing. Thus we cannot use fixed point results for single-valued operators in the
proof of Theorem 3.2. This is the reason that instead of least and greatest solutions we can
prove the existence of minimal and maximal solutions of the BVP (1.1). The hypothesis
(g3) is also somewhat weaker than the corresponding hypothesis in [1, 5]. In fact, the
proof of Proposition 2.6 could be carried out also when (g3) is replaced by the following
hypothesis.

(g3′) For each fixed v ∈ C(J) there exists an rv > 0 and a pv ∈ L1
+(J) such that |g(t,v,x,

y)− g(t,v,x,z)| ≤ pv(t)φv(|y− z|) for a.e. t ∈ J and for all x, y,z ∈ R, |y− z| ≤
rv, where φv :R+ →R+ is increasing and

∫ rv
0+(dx/φv(x))=∞.
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For instance, φv can be any one of the functions: φ0(z)= z, z ∈R+, and

φn(z)=



z ln

1
z
··· lnn

1
z

, 0 < z ≤ rn = 1
expn(1)

,

0, z = 0, n= 1,2, . . . ,
(3.11)

where lnn and expn denote the n-fold iterated logarithm and exponential functions, re-
spectively.

Implicit discontinuous Sturm-Liouville BVP’s are studied, for example, in [1, 3, 4, 5,
8]. The special case when µ(t)≡ 1 is considered in [3, 4, 8, 10]. The existence of positive
solutions for the Sturm-Liouville BVP’s is studied in [2], and uniqueness results in [1, 5,
8, 11].
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