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We prove that a Jordan homomorphism from a Banach algebra into a semisimple com-
mutative Banach algebra is a ring homomorphism. Using a signum effectively, we can
give a simple proof of the Hyers-Ulam-Rassias stability of a Jordan homomorphism be-
tween Banach algebras. As a direct corollary, we show that to each approximate Jordan
homomorphism f from a Banach algebra into a semisimple commutative Banach algebra
there corresponds a unique ring homomorphism near to f.

1. Introduction and statement of results

It seems that the stability problem of functional equations had been first raised by Ulam
(cf. [11, Chapter VI] and [12]): For what metric groups G is it true that an e-automor-
phism of G is necessarily near to a strict automorphism?

An answer to the above problem has been given as follows. Suppose E; and E, are two
real Banach spaces and f : E; — E; is a mapping. If there exist § = 0 and p = 0, p # 1 such
that

f Gt y) = fG0) = fFOl =< 8(IxlIP + 1 yl17) (1.1)

for all x, y € E,, then there is a unique additive mapping T : E; — E, such that || f(x) —
T(x)|l <28]lx]IP/|2 — 2P| for every x € E;. This result is called the Hyers-Ulam-Rassias
stability of the additive Cauchy equation g(x + y) = g(x) + g(y). Indeed, Hyers [5] ob-
tained the result for p = 0. Then Rassias [8] generalized the above result of Hyers to the
case where 0 < p < 1. Gajda [4] solved the problem for 1 < p, which was raised by Rassias;
In the same paper, Gajda also gave an example that a similar result to the above does not
hold for p =1 (cf. [9]). If p <0, then [|lx]|? is meaningless for x = 0; In this case, if we
assume that ||0]|”? means co, then the proof given in [8] also works for x # 0. Moreover,
with minor changes in the proof, the result is also valid for p < 0. Thus, the Hyers-Ulam-
Rassias stability of the additive Cauchy equation holds for p € R\ {1}. Here and after, the
letter R denotes the real number field and C stands for the complex number field.
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Suppose A and B are two Banach algebras. We say that a mapping 7: A — B is a Jordan
homomorphism if

t(a+b)=1(a)+7(b) (a,beA),

7(a®) = 1(a)* (a€A). (1.2)
If, in addition, 7 is multiplicative, that is
7(ab) = t(a)r(b) (a,beA), (1.3)

we say that 7 is a ring homomorphism. The study of ring homomorphisms between Ba-
nach algebras A and B is of interest even if A = B = C. For example, the zero mapping, the
identity and the complex conjugate are ring homomorphisms on C, which are all contin-
uous. On the other hand, the existence of a discontinuous ring homomorphism on C is
well-known (cf. [6]). More explicitly, if G is the set of all surjective ring homomorphisms
on C, then #G = 2%C, where #S denotes the cardinal number of a set S. In fact, Charnow
(3, Theorem 3] proved that there exist 2# automorphisms for every algebraically closed
field k; It is also known that if & is a uniform algebra on a compact metric space, then
there are exactly 2#¢ complex-valued ring homomorphisms on & whose kernels are non-
maximal prime ideals (see [7, Corollary 2.4]).

By definition, it is obvious that ring homomorphisms are Jordan homomorphisms.
Conversely, under a certain condition, Jordan homomorphisms are ring homomor-
phisms. For example, each Jordan homomorphism 7 from a commutative Banach algebra
9B into C is a ring homomorphism: Fix a,b € B arbitrarily. Since 7((a+b)?) = t(a+b)?,
a simple calculation shows that 7(ab + ba) = 27(a)7(b). The commutativity of % implies
7(ab) = 7(a)7(b), and hence 7 is a ring homomorphism. This simple example leads us to
the following general result.

THEOREM 1.1. Suppose A is a Banach algebra, which need not be commutative, and suppose
B is a semisimple commutative Banach algebra. If T : A — B is a Jordan homomorphism, then
7(ab) = 1(a)1(b) for all a,b € A, that is, T is a ring homomorphism.

Next, we consider the stability, in the sense of Hyers-Ulam-Rassias, of Jordan homo-
morphisms. Bourgin [2] proved the following stability result of ring homomorphisms
between two unital Banach algebras.

THEOREM 1.2. Suppose A and B are unital Banach algebras. If f : A — B is a surjective
mapping such that

|[fla+b)— f(a)— f(b)||<e (a,beA),

1.4
f(ab)— f@fb)l| =6 (abea) (14)

for some € = 0 and § = 0, then f is a ring homomorphism.

Applying a theorem of Hyers [5], Rassias [8] and Gajda [4], Badora [1] proved the
Hyers-Ulam-Rassias stability of ring homomorphisms, which generalizes the above result
of Bourgin. We will prove the Hyers-Ulam-Rassias stability of Jordan homomorphisms.
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We emphasize that the introduction of the signum s = |1 — p|/(1 — p) made it possible to
give a simple proof of our stability results.

THEOREM 1.3. Suppose A and B are Banach algebras. If f : A — B is a mapping such that

1f(a+b) = f(a) = f®)]| < 5(l[all” +|[6]|") (a,b € A), (1.5)
IIf (a*) = f(@)?*]| < dllall*? (acA) (1.6)

for some § = 0 and p > 0,p # 1, then there is a unique Jordan homomorphism 7: A — B
such that

I1f(a) - 2(a)]| < ;2376214”“”1’ (@aeA). (1.7)

For p < 0, we can also give a similar result to Theorem 1.3, under an additional con-
dition that f(0) = 0. The hypothesis f(0) = 0 seems to be natural. It follows from (1.5)
that f(0) = 0 whenever p > 0; On the other hand, if p < 0 then the inequalities (1.5) and
(1.6) give no information for f(0).

THEOREM 1.4. Suppose A and B are Banach algebras. If f : A — B is a mapping, with f(0) =
0, such that the inequalities (1.5) and (1.6) are valid for some § = 0 and p < 0, then there is
a unique Jordan homomorphism 7 : A — B such that

| f(a)—1(a lall? (acA). (1.8)

20
)||Sm

As an easy corollary to Theorems 1.1, 1.3, and 1.4, we obtain the following stability
result.

CoROLLARY 1.5. Suppose A is a Banach algebra and suppose B is a semisimple commutative
Banach algebra. If f : A — B is a mapping such that

If(a+b) - f(a)= f(B)]] = 8(llal”+bI?) (a,b € A),

(@) = f@?] < 8llal® (aeA) (1.9)

forsomed=0andpeR.Ifp=0andp +1,0r p<0and f(0) =0, then there is a unique
ring homomorphism 7 : A — B such that

1f (@) - 7(a)]| < lzf—iﬂnanp (acA). (1.10)

2. Proof of results

Before we turn to the proof of Theorem 1.1, we need the following lemma. It should be
mentioned that the following proof is just a slight modification of [13, Proof of Theorem
1] by Zelazko.

LemMaA 2.1. Suppose A is a Banach algebra, which need not be commutative. Then each
Jordan homomorphism ¢ : A — C is a ring homomorphism.
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Proof. Recall that ¢ is an additive mapping such that ¢(a?) = ¢(a)? for all a € A. Replace-
ment of a by x + y results in

P(xy+yx) =2¢(x)p(y) (x€A, y€A). 2.1)
Then (2.1), with x = x2, implies
$(x?y +yx?) = 2¢(x)*¢(y). (2.2)
Taking y = xy + yx in (2.1), we see that
¢(x(xy+yx) + (xy+ yx)x) = 2¢(x)$(xy + yx), (2.3)
and hence, by (2.1)
$(x*y +2xyx+yx’) = 4p(x)*$(y) (x €A, y € A). (2.4)
Subtraction (2.4) from (2.2) gives
d(xyx) = ¢(x)*¢(y) ifxe€A, y€eA. (2.5)

Fix a € A and b € A arbitrarily, and put

2t = $(ab — ba). (2.6)
It follows from (2.1) and (2.6) that

¢(ab) = p(a)p(b) +1,  ¢(ba) = $p(a)p(b) — 1. (2.7)
By (2.5), (2.6), (2.7),

= ¢((ab—ba)?)

= gla h)z $(ab’a) - $ (ba’b) + $(ba)?

2.8
d(a)p(b) + t}2 —2¢(a)?¢(b)* + {¢(a)p(b) — t}2 (28

{
212

hence t = 0, which proves ¢(ab) = ¢(ba). It follows from (2.1) that ¢(ab) = ¢(a)¢p(b),
and the proof is complete. O

Proof of Theorem 1.1. We show that 7 is multiplicative. Let Mp be the maximal ideal space
of B. We associate to each ¢ € My a function 7, : A — C defined by

7o(a) = ¢(1(a)) (acA). (2.9)

Pick ¢ € M arbitrarily. We see that 7,(a*) = 7,(a)? for all a € A, and so Lemma 2.1,
applied to 7,, implies that 7, is multiplicative. By the definition of 7, we get ¢(7(ab)) =
¢(r(a)r(b)) for all a,b € A. Since ¢ € Mp was arbitrary and since B is assumed to be
semisimple, we obtain 7(ab) = t(a)7(b) for all a,b € A. We thus conclude that 7 is a ring
homomorphism, and the proof is complete. O
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Proof of Theorem 1.3. Tt follows from [8] and [4] (cf. [5]) that there is an additive map-
ping 7 : A — B such that

28
- < —— P . 2.1
If(a) - 7(a)]| < gy lalf (@c4) (2.10)
We first show that 7(a?) = 7(a)? for all a € A. Pick a € A arbitrarily, and put s = [1 —
pl/(1 = p). Note that s =1if 0 < p < 1 and that s = —1 if p > 1. Since 7 is additive, it

follows from (2.10) that

I3 05a) = (@) = I (ra2) - ()|
<n® 2 382;7 | [n*a?||” 21
for all n € N, and hence
25 ) = ()| < 0 2 .12)
for all n € N. A similar argument to the above shows for each n € N that
- _ 26
In=*f (n*a) = 7(a)|| < nP~" 7 g7 Il (2.13)
Since s(p — 1) < 0, it follows from (2.12) and (2.13) that
7(a?) = lim n % f(n*a?), 7(a) = lim n=f(n'a). (2.14)
By (1.6), we get || f (n*a?) — f(n*a)?|| < &lln*all* for all n € N. So,
%gg n_zs(f(nzsaz) — f(nsa)z) < %1_1;010 n=e-D§|all?? = o0, (2.15)
since s(p — 1) < 0. Now it follows from (2.14) and (2.15) that
7(a®) = lim n==f(n*a*)
= ,llf?o {nfzsf(nzsaz) - nfzs(f(nzsaz) - f(nsa)z)} (2.16)
= {rlll_'nolo n_sf(nsa)}2 =1(a)>.

Since a € A was arbitrary, we obtain 7(a?) = 7(a)? for all a € A, and hence 7 is a Jordan
homomorphism.

Finally, suppose that 7* : A — B is another Jordan homomorphism such that || f(a) -
7*(a)|| <26]lallP/|2 — 2P| for all a € A. Then (2.13), with 7 = 7*, is also valid. We thus
obtain

l[t(a) = t*(a)|| < ||t(a) —n~* f (n'a) ||+ ||n"*f (n'a) — T*(a)||
46 (2.17)

< nsp-D) 27| lall?
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foralla € A and n € N. Since s(p — 1) <0, it follows that 7 = 7*, and hence the unique-
ness have been proved. O

Proof of Theorem 1.4. It follows from [8] that there exists an additive mapping 7: A — B
such that

26
|2-2¢]

If(a) —7(a)]| = lallP (a € A), (2.18)

where we assume ||0]|? = oo. It suffices to show that 7(a?) = 7(a)? for all a € A. Since T
is additive, we obtain 7(0) = 0, and so the case a = 0 is omitted. Pick a € A \ {0} arbi-
trarily. There are now two possibilities. Either a> = 0 or a* # 0, in which case the proof
of Theorem 1.3 works well, and so 7(a?) = 7(a)?. Thus we need consider only the case
a?> = 0 (In this case, we cannot apply the proof of Theorem 1.3. In fact, if a*> = 0, then
lla?||? = oo and hence (2.13), with a = a?, is meaningless). We will show that 7(a)* = 0
whenever a? = 0.

Pick a € A\ {0} such that a> = 0. It follows from (1.6), with the hypothesis f(0) = 0,
that

|1n72 f(na)?|| < n=28lInall*® = n*P=V§|lal|?. (2.19)

Since a # 0 and since p — 1 < 0, we obtain

rllgr{)lo n*f(na)* = 0. (2.20)
Note also that
ln~! f(na) — ()| < n”ﬁllnaup = np~! B Eip | llall? (2.21)
for all n € N, and hence
7(a) = %13)10 n~! f(na). (2.22)

It follows from (2.20) and (2.22) that

7(a)? = ;11330 n=?f(na)* =0, (2.23)

which proves 7(a?) = 0 = 7(a)? whenever a? = 0. This completes the proof. O

In this paper, we have proved the Hyers-Ulam-Rassias stability of Jordan homomor-
phisms for p € R\ {1}. On the other hand, Semrl [10] gave an example that the stability
result fails for p = 1: In fact, to each § > 0 there corresponds a multiplicative continuous
function f : C — C satisfying f (ia) = if (a) for all a € C such that

| fla+b) - f(a) - f(B)] <8(lal+1b]) (a,beC) (2.24)
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and that

>1 (2.25)
aeC\ {0} |al

for all ring homomorphism 7: C — C.
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