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We improve several results recently established by Dragomir et al. in (2000) for the Gam-
ma and Beta functions. All we need is some clever applications of classical inequalities.

1. Introduction

Recently, in the survey paper [6] various inequalities for Beta and Gamma functions ob-
tained from some classical inequalities are given. The most common way in which the
Gamma function is defined is the following integral representation:

Γ(x)=
∫∞

0
e−ttx−1dt, x > 0. (1.1)

The integral in (1.1) is uniformly convergent for all a≤ x ≤ b, where 0 < a≤ b <∞, so we
also have

Γ(k)(x)=
∫∞

0
e−ttx−1(log t)kdt, x > 0. (1.2)

Various well-known formulas for Gamma function are also given in [6]. For example,

Γ(x)= sx
∫∞

0
e−sttx−1dt, x,s > 0. (1.3)

The Beta function is given by

B(x, y)=
∫ 1

0
tx−1(1− t)y−1dt, x > 0, y > 0, (1.4)

and its connection to Gamma function is also well known:

B(x, y)= Γ(x)Γ(y)
Γ(x+ y)

. (1.5)
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Among others know formulas for Beta function given in [6] is the following one:

B(x+ 1, y) +B(x, y + 1)= B(x, y), x, y > 0. (1.6)

Let us note that (1.6) is a special case of the following formula:

n∑
k=0

(
n
k

)
B(x+ k, y +n− k)= B(x, y), x, y > 0. (1.7)

Indeed, we have

n∑
k=0

(
n
k

)
B(x+ k, y +n− k)=

n∑
k=0

(
n
k

)∫ 1

0
tx+k−1(1− t)y+n−k−1dt

=
∫ 1

0

n∑
k=1

(
n
k

)
tx+k−1(1− t)y+n−k−1dt

=
∫ 1

0
tx−1(1− t)y−1

[ n∑
k=0

(
n
k

)
tk(1− t)n−k

]
dt

=
∫ 1

0
tx−1(1− t)y−1dt = B(x, y).

(1.8)

For example, the following inequalities are obtained in [6]. If p,q > 1, x ∈ [0,1], then

∣∣B(p,q)− xp−1(1− x)q−1
∣∣

≤max{p− 1,q− 1} (p− 2)p−2(q− 2)q−2

(p+ q− 4)p+q−4

[
1
4

+
(
x− 1

2

)2
]

,
(1.9)

∣∣B(p,q)− xp−1(1− x)q−1
∣∣

≤max{p− 1,q− 1}B(p− 1,q− 1)

[
1
4

+
(
x− 1

2

)2
]
.

(1.10)

If s > 1, p,q > 2− 1/s > 1, 1/s+ 1/r = 1, then

∣∣B(p,q)− xp−1(1− x)q−1
∣∣

≤ 1
(r + 1)1/r

[
xr+1 + (1− x)r+1]1/r

max{p− 1,q− 1}[B(s(p− 2) + 1, s(q− 2) + 1
)]1/s

.

(1.11)

In this paper, we will give some improvements and generalizations of these and some
other results from [6].

2. Inequalities via Chebyshev’s inequality

The following result is well known in the literature as Chebyshev’s integral inequality
for synchronous (asynchronous) mappings (see, e.g., [16, pages 239–293] or [17, pages
197–208]).
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Lemma 2.1. Let f ,g,h : I ⊂ R→ R be such that h(x)≥ 0 for x ∈ I and h, h f g, h f and hg
are integrable on I . If f and g are synchronous (asynchronous) on I , that is, if it holds

(
f (x)− f (y)

)(
g(x)− g(y)

)≥ (≤)0 ∀x, y ∈ I , (2.1)

then we have the inequality∫
I
h(x)dx

∫
I
h(x) f (x)g(x)dx ≥ (≤)

∫
I
h(x) f (x)dx

∫
I
h(x)g(x)dx. (2.2)

Theorem 2.2. Let m, p, and k be real numbers with m, p > 0 and p > k >−m, and let n be
a nonnegative integer,

k(p−m− k)≥ (≤)0, (2.3)

then we have

Γ(2n)(p)Γ(2n)(m)≥ (≤)Γ(2n)(m+ k). (2.4)

Proof. Consider the mappings f ,g,h : [0,∞)→ [0,∞) given by

f (x)= xp−k−m, g(x)= xk, h(x)= xm−1e−x(logx)2n. (2.5)

If the condition (2.3) holds, then functions f and g are synchronous (asynchronous) on
(0,∞) and then, by Chebyshev’s inequality for I = (0,∞), we have

∫∞
0
xm−1e−x(logx)2ndx

∫∞
0
xp−k−mxkxm−1e−x(logx)2ndx

≥ (≤)
∫∞

0
xp−k−mxm−1e−x(logx)2ndx

∫∞
0
xkxm−1e−x(logx)2ndx,

(2.6)

that is, ∫∞
0
xm−1e−x(logx)2ndx

∫∞
0
xp−1e−x(logx)2ndx

≥ (≤)
∫∞

0
xp−k−1e−x(logx)2ndx

∫∞
0
xk+m−1e−x(logx)2ndx.

(2.7)

Hence, (2.4) follows from the integral representation (1.2). �

Remark 2.3. For n= 0 (Γ(0) = Γ) the following result follows from [6]:

Γ(p)Γ(m)≥ (≤)Γ(p− k)Γ(m+ k) (2.8)

or, in equivalent form

B(p,m)≥ (≤)B(p− k,m+ k). (2.9)

Corollary 2.4. Let p > 0 and q ∈ R be such that |q| < p, and let n be a nonnegative integer.
Then

[
Γ(2n)(p)

]2 ≤ Γ(2n)(p− q)Γ(2n)(p+ q). (2.10)
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Proof. Choose in Theorem 2.2 m= p and k = q. Then

k(p−m− k)=−q2 ≤ 0 (2.11)

and by (2.4), we get

[
Γ(2n)(p)

]2 ≤ Γ(2n)(p− q)Γ(2n)(p+ q). (2.12)

�

Remark 2.5. For n= 0 we have inequality from [6]:

Γ2(p)≤ Γ(p− q)Γ(p+ q) (2.13)

or, equivalently

B(p, p)≤ B(p− q, p+ q). (2.14)

For m= 2, p = a+ b, k = b− 1, the condition (2.3) becomes

(a− 1)(b− 1)≥ (≤)0, (2.15)

that is the positive real numbers a and b are similarly (oppositely) unitary (see [6, Defi-
nition 1]), and (2.4) becomes

Γ(2n)(2)Γ(2n)(a+ b)≥ (≤)Γ(2n)(a+ 1)Γ(2n)(b+ 1), (2.16)

wherefrom, for n= 0, we have the following inequality from [6]:

Γ(a+ b)≥ (≤)Γ(a)Γ(b) (2.17)

or, equivalently

B(a,b)≥ (≤)
1
ab

. (2.18)

As a consequence of (2.10) it was proved in [6] that the mapping logΓ(x) is superadditive
for x > 1, and the following inequality holds:

Γ(na)≥ (n− 1)!a2(n−1)[Γ(a)
]n

(n∈N, a > 0). (2.19)

For a given real m > 0 and nonnegative integer n, consider the mapping Γm,n(x) =
Γ(2n)(x+m)/Γ(2n)(m).

Corollary 2.6. The mapping Γm,n(·) is supermultiplicative on [0,∞).

Proof. For p = x+ y +m, k = y, the condition (2.3) becomes

y(x+ y +m−m− y)= xy ≥ 0 (2.20)
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since x, y ∈ [0,∞). Hence, (2.4) becomes

Γ(2n)(m)Γ(2n)(x+ y +m)≥ Γ(2n)(x+m)Γ(2n)(y +m) (2.21)

which is equivalent to

Γm,n(x+ y)≥ Γm,n(x)Γm,n(y) (2.22)

and the corollary is proved. �

3. An inequality via Hölder inequality

The following inequality is a generalization of [6, Theorem 5].

Theorem 3.1. Let a,b ≥ 0 with a+ b = 1 and x, y > 0 be real numbers and let n be a non-
negative integer. Then

Γ(2n)(ax+ by)≤ [Γ(2n)(x)
]a[

Γ(2n)(y)
]b

, (3.1)

that is, the mapping Γ(2n) is logarithmically convex on (0,∞).

Proof. We use the following weighted version of Hölder inequality:

∣∣∣∣
∫
I
f (s)g(s)h(s)ds

∣∣∣∣≤
(∫

I

∣∣ f (s)
∣∣ph(s)ds

)1/p(∫
I

∣∣g(s)
∣∣qh(s)ds

)1/q

(3.2)

for p > 1, 1/p + 1/q = 1, nonnegative h on I , provided that the other integrals exist and
are finite. Choose

f (s)= sa(x−1), g(s)= sb(y−1), h(s)= e−s(logs)2n, s∈ (0,∞) (3.3)

in (3.2), to get (for I = (0,∞) and p = 1/a, q = 1/b)

∫∞
0
sa(x−1)sb(y−1)e−s(logs)2nds

≤
(∫∞

0
sa(x−1)·(1/a)e−s(logs)2nds

)a(∫∞
0
sb(y−1)·(1/b)e−s(logs)2nds

)b (3.4)

which is equivalent to

∫∞
0
sax+by−1e−s(logs)2nds

≤
(∫∞

0
sx−1e−s(logs)2nds

)a(∫∞
0
sy−1e−s(logs)2nds

)b (3.5)

and the inequality (3.1) is proved. �
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4. Inequalities via Grüss’ inequality

Let us note that the following interpolation of Grüss’ inequality is well known [16, page
295–310].

Lemma 4.1. Let f , g and h be integrable functions defined on [a,b] such that

ϕ≤ f (x)≤Φ, γ ≤ g(x)≤ Γ ∀x ∈ [a,b], (4.1)

where ϕ, Φ, γ, and Γ are given constants, and h is nonnegative. Then

∣∣D( f ,g;h)
∣∣≤D( f , f ;h)1/2D(g,g;h)1/2 ≤ 1

2
(Φ−ϕ)(Γ− γ)

[∫ b

a
h(t)dt

]2

, (4.2)

where

D( f ,g;h)=
∫ b

a
h(t)dt

∫ b

a
h(t) f (t)g(t)dt−

∫ b

a
h(t) f (t)dt

∫ b

a
h(t)g(t)dt. (4.3)

Theorem 4.2. Let p,q,α,β > 0. Then we have

∣∣B(α,β)B(α+ p,β+ q)−B(α+ p,β)B(α,β+ q)
∣∣

≤ [B(α,β)B(α+ 2p,β)−B2(α+ p,β)
]1/2[

B(α,β)B(α,β+ 2q)−B2(α,β+ q)
]1/2

≤ 1
4
B(α,β)2,

(4.4)

where B is Beta function.

Proof. Set in Lemma 4.1: f (x)= xp, g(x)= (1− x)q, h(x)= xα−1(1− x)β−1, a= 0, b = 1.
Note that we have ϕ= γ = 0, Φ= Γ= 1. �

Remark 4.3. For α= β = 1 we have the following improvement of inequality [6, (3.32)]:

∣∣∣∣B(p+ 1,q+ 1)− 1
(p+ 1)(q+ 1)

∣∣∣∣≤ pq

(p+ 1)(q+ 1)
√

(2p+ 1)(2q+ 1)
<

1
4

, (4.5)

(p,q > 0).

Note that Theorem 4.2 is also improvement of [6, Proposition 2].
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Theorem 4.4. Let n,m, p,q,α,β > 0. Then we have

∣∣B(α,β)B(α+m+ p,β+n+ q)−B(α+m,β+n)B(α+ p,β+ q)
∣∣

≤ [B(α,β)B(α+ 2m,β+ 2n)−B2(α+m,β+n)
]1/2

× [B(α,β)B(α+ 2p,β+ 2q)−B2(α+ p,β+ q)
]1/2

≤ 1
4
· mmnn

(m+n)m+n
· ppqq

(p+ q)p+q B
2(α,β).

(4.6)

Proof. Set in (4.2): f (x) = xm(1− x)n, g(x) = xp(1− x)q, h(x) = xα−1(1− x)β−1, a = 0,
b = 1 and note that (see [6]) minimum of f and g is zero, while maximum of f is
mmnn/(m+n)m+n, and maximum of g is ppqq/(p+ q)p+q. �

Remark 4.5. Theorem 4.4 gives improvement of [6, Theorem 8 and Proposition 1].

Theorem 4.6. Let α,β,γ,u,v,w > 0, then

∣∣∣∣ Γ(α+β+ γ)Γ(γ)
(u+ v+w)α+β+γwγ −

Γ(α+ γ)Γ(β+ γ)
(u+w)α+γ(v+w)β+γ

∣∣∣∣
≤
[
Γ(2α+ γ)Γ(γ)

(2u+w)2α+γwγ −
Γ2(α+ γ)

(u+w)2(α+γ)

]1/2[ Γ(2β+ γ)Γ(γ)
(2v+w)2β+γwγ −

Γ2(β+ γ)
(v+w)2(β+γ)

]1/2

≤ 1
4

(
α

ue

)α( β

ve

)β Γ2(γ)
w2γ .

(4.7)

Proof. Consider the mapping fα,u(t)= tαe−ut defined on (0,∞). Then

f ′α,u(t)= e−uttα−1(α−ut) (4.8)

which shows that fα,u is increasing on (0,α/u) and decreasing on (α/u,∞), and the max-
imal value is fα,u(α/u) = (α/(ue))α. Using (4.2) for a = 0, b→∞, f (x) = fα,u(x), g(x) =
fβ,u(x), h(x)= fγ−1,v(x) we will obtain (4.7), using formula (1.3). �

Remark 4.7. For u = v = w = 1, we have the following improvement of inequality [6,
(3.38)]:

∣∣∣∣Γ(α+β+ γ)Γ(γ)
3α+β+γ − Γ(α+ γ)Γ(β+ γ)

2α+β+2γ

∣∣∣∣
≤
[
Γ(2α+ γ)Γ(γ)

32α+γ − Γ2(α+ γ)
4α+γ

]1/2[Γ(2β+ γ)Γ(γ)
32β+γ − Γ2(β+ γ)

4β+γ

]1/2

≤ 1
4
· α

α

eα
· β

β

eβ
·Γ2(γ).

(4.9)
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5. On inequalities via Ostrowski’s inequality

The following lemma gives the well-known Ostrowski’s inequality (see, e.g., [16, page
469]).

Lemma 5.1. Let f : [a,b] → R be continuous on [a,b], and differentiable on (a,b) with
bounded derivative and let ‖ f ′‖∞ := supt∈[a,b] | f ′(t)| <∞. Then

∣∣∣∣ f (x)− 1
b− a

∫ b

a
f (t)dt

∣∣∣∣≤
[

1
4

+

(
x− (a+ b)/2

)2

(b− a)2

]
(b− a)‖ f ′‖∞ (5.1)

for all x ∈ [a,b]. The constant is sharp in the sense that it cannot be replaced by a smaller
one.

Remark 5.2. Let us note that a generalization of this result involving Lipschitzian function
is proved in [6, Theorem 5] and [4]. Moreover, such results are well known (see [16, page
470]).

Theorem 5.3. Let p,q > 1 and x ∈ [0,1]. Then

∣∣B(p,q)− xp−1(1− x)q−1
∣∣≤ K1

[
1
4

+
(
x− 1

2

)2
]

≤max{p− 1,q− 1} (p− 2)p−2(q− 2)q−2

(p+ q− 4)p+q−4

[
1
4

+
(
x− 1

2

)2
]

,

(5.2)

where

K1 =max
i=1,2

[
x
p−2
i (1− xi)q−2(p− 1)− (p+ q− 2)xi

]
,

x1,2 =
(p− 1)(p+ q− 3)±

√
(p− 1)(q− 1)(p+ q− 3)

(p+ q− 2)(p+ q− 3)
.

(5.3)

Proof. Consider Lemma 5.1 for the mapping la,b : (0,1) → R, la,b(x) = xa(1− x)b. For
p,q > 1, we get

l′p−1,q−1(t)= pp−2,q−2(t)
[
(p− 1)− (p+ q− 2)t

]
, t ∈ (0,1),

l′′p−1,q−1(t)= pp−3,q−3(t)
[
(p−1)(p−2)(1−t)2−2(1−p)(1−q)t(1−t)+(q−1)(q−2)t2].

(5.4)

Extreme values of l′p−1,q−1 we have for l′′p−1,q−1 = 0, that is for x1,2. From Lemma 4.1 we
have the first inequality in (5.2). The second one is a simple consequence of the fact that

max
t∈[0,1]

[
(p− 1)− (p+ q− 2)t

]=max{p− 1,q− 1},

max
t∈[0,1]

tp−2(1− t)q−2 = (p− 2)p− 2(q− 2)q−2

(p+ q− 4)p+q−4 .
(5.5)

�
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Remark 5.4. The above result is an improvement of [6, Theorem 14], that is, of (1.9).
It is well known that Ostrowski’s inequality is useful in the estimation of the remainder

for a quadrature formula (see [4, 6, 10, 12, 13]).

Let In : a = x0 < x1 < ··· < xn−1 < xn = b be a division of the interval [a,b] and ξi ∈
[xi,xi+1] (i = 0,1, . . . ,n− 1) a sequence of intermediate points for In. Consider the Rie-
mann sums

Rn
(
f ,In,ξ

)= n−1∑
i=0

f
(
ξi
)
hi, (5.6)

where hi = xi+1− xi, (i= 0,1, . . . ,n− 1). Then we have the following quadrature formula.

Lemma 5.5. Let f : [a,b] → R be continuous on [a,b] and differentiable on (a,b), with
bounded derivative on (a,b). Then we have the Riemann quadrature formula

∫ b

a
f (x)dx = Rn

(
f ,In,ξ

)
+Wn

(
f ,In,ξ

)
, (5.7)

where the remainder satisfies the estimate

∣∣Wn
(
f ,In,ξ

)∣∣≤
[

1
4

n−1∑
i=0

h2
i +

n−1∑
i=0

(
ξi− xi + xi+1

2

)2
]
‖ f ′‖∞

≤ 1
2
‖ f ′‖∞

n−1∑
i=1

h2
i

(5.8)

for all ξi (i= 0,1, . . . ,n− 1) as above.

In particular, for ξi = (xi + xi+1)/2, (i= 0,1, . . . ,n− 1), we have the midpoint rule

∫ b

a
f (x)dx =Mn

(
f ,In

)
+ Sn

(
f ,In

)
, (5.9)

where

Mn
(
f ,In

)= n−1∑
i=0

f
(
xi + xi+1

2

)
hi, (5.10)

and the remainder Sn( f ,In) satisfies the estimation

∣∣Sn( f ,In
)∣∣≤ 1

4
‖ f ′‖∞

n−1∑
i=0

h2
i . (5.11)

The following approximation formula for the Beta mapping holds.

Theorem 5.6. Let In : 0= x0 < x1 < ··· < xn−1 < xn = 1 be a division of the interval [0,1],
ξi ∈ [xi,xi+1] (i= 0,1, . . . ,n− 1) a sequence of intermediate points for In and p,q > 2. Then
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we have the formula

B(p,q)=
n−1∑
i=0

ξ
p−1
i

(
1− ξi

)q−1
hi +Tn(p,q), (5.12)

where the remainder Tn(p,q) satisfies the estimation

∣∣Tn(p,q)
∣∣≤ K1

[
1
4

n−1∑
i=0

h2
i +

n−1∑
i=0

(
ξi− xi + xi+1

2

)2
]

≤ 1
2
K1

n−1∑
i=0

h2
i ,

(5.13)

and K1 is given by (5.3).
In particular for ξi = (xi + xi+1)/2 (i= 0,1, . . . ,n− 1), we get the approximation

B(p,q)= 1
2p+q−2

n−1∑
i=0

(
xi + xi+1

)p−1(
2− xi− xi+1

)q−1
+Vn(p,q), (5.14)

where

∣∣Vn(p,q)
∣∣≤ 1

4
K1

n−1∑
i=0

h2
i . (5.15)

Remark 5.7. The results above are improvements of those given in [6, Theorem 15] where
K1 is given by

max{p− 1,q− 1} (p− 2)p−2(q− 2)q−2

(p+ q− 4)p+q−4 . (5.16)

The following inequality of Ostrowski type is also valid (see [11], [16, page 471]).

Lemma 5.8. Let f be absolutely continuous on [a,b] with f ′ ∈ L1(a,b), then

∣∣∣∣ f (x)− 1
b− a

∫ b

a
f (t)dt

∣∣∣∣≤ 1
b− a

max{x− a,b− x}‖ f ′‖1. (5.17)

Remark 5.9. Let us note that

max{x− a,b− x} = 1
2

(b− a) +
∣∣∣∣x− a+ b

2

∣∣∣∣, (5.18)

hence (5.17) is the same as result obtained in [8]. An extension of the above result in the
case of function of bounded variation was considered in [5, 6].

Theorem 5.10. Let p,q > 1 and x ∈ [0,1]. Then

∣∣B(p,q)− xp−1(1− x)q−1
∣∣≤ K2 max{x,1− x}

≤max{p− 1,q− 1}B(p− 1,q− 1)max{x,1− x}, (5.19)
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where

K2 = (p− 1)B(p− 1,q) + (q− 1)B(p,q− 1). (5.20)

Proof. Let us consider Lemma 5.8 for mapping lp−1,q−1(t). We have

∥∥l′p−1,q−1

∥∥
1 =

∫ 1

0

∣∣lp−2,q−2(t)
∣∣∣∣[p− 1− (p+ q− 2)t

]∣∣dt
≤
∫ 1

0
lp−2,q−2(t)

[
(q− 1)t+ (p− 1)(1− t)

]
dt

= (q− 1)B(p,q− 1) + (p− 1)B(p− 1,q)

≤max{q− 1, p− 1}[B(p,q− 1) +B(p− 1,q)
]

=max{q− 1, p− 1}B(p− 1,q− 1)

(5.21)

by (1.6). �

Remark 5.11. Theorem 5.10 is an improvement of (1.10), that is, [6, Theorem 1.8].

Application of (5.12) in quadrature formulas was considered in [5, 6, 8]. The following
result is valid.

Lemma 5.12. Let f be as in Lemma 5.8 and In, ξi (i= 0,1, . . . ,n− 1) as for Lemma 5.5. Then
we have the Riemann quadrature formula (5.7) where the remainder satisfies the estimate

∣∣Wn
(
f ,In,ξ

)∣∣≤ sup
i=0,1,...,n−1

[
1
2
hi +

∣∣∣∣ξi− xi + xi+1

2

∣∣∣∣
]
‖ f ′‖1

≤
[

1
2

ν(h) + sup
i=0,1,...,n−1

∣∣∣∣ξi− xi + xi+1

2

∣∣∣∣
]
‖ f ′‖1

≤ ν(h)‖ f ′‖1,

(5.22)

for all ξi, i= 0,1, . . . ,n− 1, where ν(h)=maxi=0,1,...,n−1{hi}.
In particular, we have the midpoint rule (5.9) and the remainder Sn( f ,In) satisfies the

estimate

∣∣Sn( f ,In
)∣∣≤ 1

2
ν(h)‖ f ′‖1. (5.23)

Applications of Lemma 5.12 for Beta function gives the following theorem.

Theorem 5.13. Let the conditions of Theorem 5.6 be fulfilled. The remainder Tn(p,q) in
formula (5.12) satisfies the estimation

∣∣Tn(p,q)
∣∣≤ K2

[
1
2

ν(h) + sup
i=0,1,...,n−1

∣∣∣∣ξi− xi + xi+1

2

∣∣∣∣
]

≤ K2ν(h),
(5.24)

where K2 is given by (5.20).
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In particular, for ξi = (xi + xi+1)/2, (i = 0,1, . . . ,n− 1) the approximation (5.7) is valid,
where

∣∣Vn(p,q)
∣∣≤ 1

2
K2ν(h). (5.25)

Remark 5.14. The last theorem gives improvement of [6, Theorem 19].

Fink [11] (see also [15, page 471], [5, 16]) has proved the following result.

Lemma 5.15. Let f be absolutely continuous on [a,b] with f ′ ∈ L1[a,b]. Then for 1 < s <∞,
1/s+ 1/r = 1,

∣∣∣∣ f (x)− 1
b− a

∫ b

a
f (t)dt

∣∣∣∣≤
[

(x− a)r+1 + (b− x)r+1

(r + 1)(b− a)r

]r

‖ f ′‖s. (5.26)

Theorem 5.16. Let s > 1, p,q > 2− 1/s > 1, 1/s+ 1/r = 1. Then

∣∣B(p,q)− xp−1(1− x)q−1
∣∣

≤ K3

[
xr+1 + (1− x)r+1

r + 1

]1/r

≤max{p− 1,q− 1}[B(s(p− 2) + 1,s(q− 2) + 1
)]1/s

[
xr + (1− x)r+1

r + 1

]1/r

,

(5.27)

where

K3 =
[
(q− 1)sB

(
s(p− 2) + 2,s(q− 2) + 1

)
+ (p− 1)sB

(
s(p− 2) + 1,s(q− 2) + 2

)]1/s
.

(5.28)

Proof. Set in Lemma 5.15: f (t)= lp−1,q−1(t), a= 0, b= 1. It follows

∥∥l′p−1,q−1

∥∥
s

=
(∫ 1

0
lsp−2,q−2(t)

∣∣p− 1− (p+ q− 2)t
∣∣sdt)1/s

≤
(∫ 1

0
lsp−2,q−2

[
(q− 1)t+ (p− 1)(1− t)s

]
dt
)1/s

≤
(∫ 1

0
lsp−2,q−2

[
t(q− 1)s + (1− t)(p− 1)s]

)1/s

= [(q− 1)sB
(
s(p− 2) + 2,s(q− 2) + 1

)
+ (p− 1)sB

(
s(p− 2) + 1,s(q− 2) + 2

)]1/s

≤max{q− 1, p− 1}[B(s(p− 2) + 2,s(q− 2) + 1
)

+B
(
s(p− 2) + 1,s(q− 2) + 2

)]1/s

=max{q− 1, p− 1}[B(s(p− 2) + 1,s(q− 2) + 1
)]1+s (

by (1.6)
)
.

(5.29)
�

Remark 5.17. The result above is an improvement of (1.11), that is, [6, Theorem 22].
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An application of Lemma 5.15 for quadrature formula was given in [6, 9].

Lemma 5.18. Let f be as in Lemma 5.15 and In, ξi (i= 0,1, . . . ,n) as for Lemma 5.5. Then
the Riemann quadrature formula (5.7) is valid, where the remainder satisfies the estimate

∣∣Wn
(
f ,In

)∣∣≤ ‖ f ′‖s
(r + 1)1/r

(n−1∑
i=0

[(
ξi− xi

)r+1
+
(
xi+1− ξi

)r+1
])1/r

≤ ‖ f ′‖s
(r + 1)1/r

(n−1∑
i=0

hr+1
i

)1/r

.

(5.30)

In particular, for ξi = (xi + xi+1)/2, (i= 0,1, . . . ,n− 1), we have the midpoint formula (5.9)
ant the remainder Sn( f ,In) satisfies

∣∣Sn( f ,In
)∣∣≤ ‖ f ′‖s

(r + 1)1/r

(n−1∑
i=0

hr+1
i

)1/r

. (5.31)

This lemma can be used in the proof of the following approximation of the Beta func-
tion in terms of Riemann sums.

Theorem 5.19. Let the conditions of Theorem 5.6 be fulfilled. The remainder Tn(p,q) in
formula (5.12) satisfies the estimation

∣∣Tn(p,q)
∣∣≤ K3

(r + 1)1/r

(n−1∑
i=0

[(
ξi− xi

)r+1
+
(
xi+1− ξi

)r+1
])1/r

≤ K3

(r + 1)1/r

(n−1∑
i=0

hr+1
i

)1/r

.

(5.32)

In particular for ξi = (xi + xi+1)/2 (i= 0,1, . . . ,n), we have the approximation formula
(5.7), where

∣∣Vn(p,q)
∣∣≤ 1

2
K3

(r + 1)1/r

(n−1∑
i=0

hr+1
i

)1/r

. (5.33)

Remark 5.20. Theorem 5.19 gives an improvement of [6, Theorem 23].

6. Inequalities via Milovanović-Pečarić-Fink inequality

Milovanović and Pečarić in [14] and Fink in [11] (see also [16, page 470]) have considered
generalization of Ostrowski’s inequality (5.1) in the form

∣∣∣∣∣1
n

[
f (x) +

n−1∑
k=1

Fk(x)

]
− 1
b− a

∫ b

a
f (t)dt

∣∣∣∣∣≤ K(n,s,x,a,b)
∥∥ f (n)

∥∥
s, (6.1)
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where Fk is defined by

Fk(x)= n− k

k!(b− a)

[
f (k−1)(a)(x− a)k − f (k−1)(b)(x− b)k

]
. (6.2)

For n= 1 the sum above is defined to be zero.
In fact, Milovanović and Pečarić have proved that [16, page 469]:

K(n,∞,x,a,b)= (x− a)n+1 + (b− x)n+1

n(n+ 1)!(b− a)
(6.3)

while Fink proved that

K(n,s,x,a,b)=
[
(x− a)nr+1 + (b− x)nr+1

]1/r

n!(b− a)
B
(
(n− 1)r + 1,r + 1

)1/r
, (6.4)

where 1 < s≤∞, 1/s+ 1/r = 1, B is the Beta function and

K(n,1,x,a,b)= (n− 1)n−1

nnn!(b− a)
max

{
(x− a)n, (b− x)n

}
, (6.5)

where, of course, for n= 1 it holds (n− 1)n−1 ≡ 1, for s=∞, r = 1 and for s= 1, r =∞.
It is clear that Lemmas 5.1, 5.8, and 5.15 are special cases of the results above for n= 1.

Also, by (5.18) it is clear that (6.5) can be given in equivalent form

K(n,1,x,a,b)= (n− 1)n−1

nnn!(b− a)

[
b− a

2
+
∣∣∣∣x− a+ b

2

∣∣∣∣
]n
. (6.6)

Theorem 6.1. (i) Let p,q > n+ 1− 1/s, 1≤ s≤∞, x ∈ [0,1]. Then

∣∣∣∣B(p,q)− 1
n
xp−1(1− x)q−1

∣∣∣∣≤ K(n,∞,x,0,1)
∥∥l(n)

p−1,q−1

∥∥
s, (6.7)

where

l(n)
p−1,q−1 = lp−n−1,q−n−1(t)

n∑
i=0

(−1)n
(
n
k

)
(p− 1)(n−k)(q− 1)(k)(1− t)n−ktk (6.8)

and a(k) = a(a− 1)···(a− k+ 1), a(0) = 1.
We also have for s=∞, p,q > n,

∥∥l(n)
p−1,q−1

∥∥∞ ≤ max
0≤k≤n

{
(p− 1)(n−k)(q− 1)(k)} (p−n− 1)p−n−1(q−n− 1)q−n−1

(p+ q− 2n− 2)p+q−2n−2 . (6.9)

(ii) For s= 1, p,q > n,

∥∥l(n)
p−1,q−1

∥∥
1 ≤

n∑
k=0

(
n
k

)
(p− 1)(n−k)(q− 1)(k)B(p−n+ k− 2,q− k− 2)

≤ max
0≤k≤n

{
(p− 1)(n−k)(q− 1)(k)}B(p−n,q−n).

(6.10)
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(iii) For 1 < s <∞, p+ q > n+ 1− 1/s,

∥∥l(n)
p−1,q−1

∥∥
s

≤
[ n∑

k=0

(
n
k

)[
(p− 1)(n−k)(q− 1)(k)]sB(s(p−n− 1) + k− 1,s(q−n− 1) +n− k− 1

)]1/s

≤ max
0≤k≤n

{
(p− 1)(n−k)(q− 1)(k)}[B(s(p−n− 1) + 1,s(q−n− 1) + 1

)]1/s
.

(6.11)

Proof. Let us consider Milovanović-Pečarić-Fink inequality (6.1) for the function

f (t)= lp−1,q−1(t). (6.12)

We have

f (n)(t)= l(n)
p−1,q−1(t)= lp−n−1,q−n−1(t)

n∑
k=0

(−1)k
(
n
k

)
(p− 1)(n−k)(q− 1)(k)(1− t)n−ktk.

(6.13)

Since p,q > n, we have for k = 1, . . . ,n− 1

f (k)(0)= l(k)
p−1,q−1(0)= 0, f (k)(1)= l(k)

p−1,q−1(1)= 0 (6.14)

that is Fk(x)= 0. So we get (6.7).
Also we have

∣∣l(n)
p−1,q−1(t)

∣∣= lp−n−1,q−n−1(t)

∣∣∣∣∣
n∑

k=0

(−1)k
(
n
k

)
(p− 1)(n−k)(q− 1)(k)(1− t)n−ktk

∣∣∣∣∣,

(6.15)

that is,

∣∣l(n)
p−1,q−1(t)

∣∣= lp−n−1,q−n−1(t)
n∑

k=0

(
n
k

)
(p− 1)(n−k)(q− 1)(k)(1− t)n−ktk. (6.16)

So we have
∥∥l(n)

p−1,q−1

∥∥∞ = max
t∈[0,1]

∣∣l(n)
p−1,q−1(t)

∣∣

≤ max
t∈[0,1]

lp−n−1,q−n−1(t) max
t∈[0,1]

n∑
k=0

(
n
k

)
(p− 1)(n−k)(q− 1)(k)(1− t)n−ktk

≤ max
t∈[0,1]

lp−n−1,q−n−q(t) max
k=0,1,...,n

{
(p− 1)(n−k)(q− 1)(k)} n∑

k=1

(
n
k

)
(1− t)n−ktk

= max
t∈[0,1]

lp−n−1,q−n−1(t) max
k=0,1,...,n

{
(p− 1)(n−k)(q− 1)(k)}.

(6.17)
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Using (6.16) we also have

∥∥l(n)
p−1,q−1

∥∥
1 ≤

∫ 1

0
lp−n−1,q−n−1(t)

n∑
k=0

(
n
k

)
(p− 1)(n−k)(q− 1)(k)(1− t)n−ktkdt

=
n∑

k=0

(
n
k

)
(p− 1)(n−k)(q− 1)(k)B(p−n+ k,q− k)

≤ max
k=0,1,...,n

{
(p− 1)(n−k)(q− 1)(k)} n∑

k=0

(
n
k

)
B(p−n− k,q− k)

= max
k=0,1,...,n

{
(p− 1)(n−k)(q− 1)(k)}B(p−n,q−n)

(
by (1.6)

)
.

(6.18)

So (6.1) gives (6.9).
Similarly we have (6.11) since by (6.16) it follows, using Jensen’s inequality:

∥∥l(n)
p−1,q−1

∥∥
s

≤
{∫ 1

0
lsp−n−1,q−n−1(t)

[ n∑
k=0

(
n
k

)
(p− 1)(n−k)(q− 1)(k)(1− t)n−ktk

]s

dt

}1/s

≤
{∫ 1

0
lsp−n−1,q−n−1(t)

n∑
k=0

(
n
k

)
(1− t)n−ktk

[
(p− 1)(n−k)(q− 1)(k)]s}1/s

=
{ n∑

k=0

(
n
k

)
B
(
s(p−n− 1) + k+ 1,s(q−n− 1) +n− k+ 1

)[
(p− 1)(n−k)(q− 1)(k)]s}1/s

≤ max
k=0,1,...,n

{
(p−1)(n−k)(q−1)(k)}[ n∑

k=0

(
n
k

)
B
(
s(p−n−1)+k+1,s(q−n−1)+n−k+1

)]1/s

= max
k=0,1,...,n

{
(p− 1)(n−k)(q− 1)(k)}[B(s(p−n− 1) + 1,s(q−n− 1) + 1

)]1/s
.

(6.19)
�

7. On some inequalities of the Ostrowski type in probability theory
and applications for the Beta function

Let X be a random variable with the probability density function f : [a,b]⊂ R→ R+ and
with cumulative distribution function F(x)= Pr(X ≤ x).

The following result was proved by Barnett and Dragomir [2].



R. P. Agarwal et al. 609

Theorem 7.1. Let f ∈ L∞[a,b] and put ‖ f ‖∞ = supt∈[a,b] | f (t)| <∞. Then we have the
inequality

∣∣∣∣Pr(X ≤ x)− b−E(X)
b− a

∣∣∣∣≤
[

1
4

+

(
x− (a+ b)/2

)2

(b− a)2

]
(b− a)‖ f ‖∞ (7.1)

for all x ∈ [a,b]. The constant 1/4 in (7.1) is sharp.

A Beta random variable X with parameters (p,q) has the probability density function

f (x; p,q) := xp−1(1− x)q−1

B(p,q)
, 0 < x < 1, (7.2)

where B is the Beta function.

Theorem 7.2 [2]. Let X be a Beta random variable with the parameters (p,q), p,q > 1.
Then

∣∣∣∣Pr(X ≤ x)− q

p+ q

∣∣∣∣≤
[

1
4

+
(
x− 1

2

)2
]

(p− 1)p−1(q− 1)q−1

B(p,q)(p+ q− 2)p+q−2 , (7.3)

where x ∈ [0,1].
In particular, we have

∣∣∣∣Pr
(
X ≤ 1

2

)
− q

p+ q

∣∣∣∣≤ 1
4
· (p− 1)p−1(q− 1)q−1

B(p,q)(p+ q− 2)p+q−2 . (7.4)

Some related results based on Ostrowski type inequality for functions from L1[a,b]
are obtained in [1, 6]. For example, the following result is valid.

Theorem 7.3. Let X be a Beta random variable with parameters (p,q), p,q > 0. Then

∣∣∣∣Pr(X ≤ x)− q

p+ q

∣∣∣∣≤ 1
2

+
∣∣∣∣x− 1

2

∣∣∣∣, (7.5)

for all x ∈ [0,1] and, in particularly

∣∣∣∣Pr
(
X ≤ 1

2

)
− q

p+ q

∣∣∣∣≤ 1
2
. (7.6)

Dragomir, Barnett, and Wang [7] (see also [6]) are proved.
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Theorem 7.4. Let X be a random variable with the probability density function f : [a,b]⊂
R→ R+. If f ∈ Ls[a,b], s > 1, then we have the inequality

∣∣∣∣Pr(X ≤ x)− b−E(X)
b− a

∣∣∣∣≤ r

r + 1
‖ f ‖s(b− a)1/r

[(
x− a

b− a

)(1+r)/r

+
(
b− x

b− a

)(1+r)/r
]

≤ r

r + 1
‖ f ‖s(b− a)1/r

(7.7)

for all x ∈ [a,b], where 1/s+ 1/r = 1.

An improvement of Theorem 7.4 was obtained in [3].

Theorem 7.5. Let the assumptions of Theorem 7.4 be fulfilled. Then

∣∣∣∣Pr(X ≤ x)− b−E(X)
b− a

∣∣∣∣≤
[

(x− a)r+1 + (b− x)r+1

(r + 1)(b− a)r

]1/r

‖ f ‖s. (7.8)

The following result from [3] is also improvement of result proved in [6, 7].

Theorem 7.6. Let s > 1 and X be a Beta random variable with parameters (p,q), p >
1− 1/s, q > 1− 1/s. Then we have the inequality

∣∣∣∣Pr(X ≤ x)− q

p+ q

∣∣∣∣≤
[
x1+r + (1− x)1+r

1 + r

]1/r
B
(
s(p− 1) + 1,s(q− 1) + 1

)1/s

B(p,q)
(7.9)

for all x ∈ [0,1].
In particular, we have

∣∣∣∣Pr
(
X ≤ 1

2

)
− q

p+ q

∣∣∣∣≤ B
(
s(p− 1) + 1,s(q− 1) + 1

)1/s

2(1 + r)1/rB(p,q)
. (7.10)

Now, we will give some extension of previous results.

Theorem 7.7. Let X be a random variable with the probability density function f : [a,b]⊂
R→ R+ and with cummulative distribution function F(x)= Pr(X ≤ x). If f (n−1) ∈ Ls[a,b],
n≥ 1, s > 1, and F(i)(0)= F(i)(1)= 0, i= 1, . . . ,n− 2 (if n≥ 3), then

∣∣∣∣1
n

[
Pr(X ≤ x) +

(n− 1)(b− x)
b− a

]
− b−E(X)

b− a

∣∣∣∣≤ K(n,s,x,a,b)
∥∥ f (n−1)

∥∥
s, (7.11)

where K(n,s,x,a,b) are given by (6.3), (6.4), and (6.5) or (6.6).

Proof. Set in (6.1): f (x) = F(x) and note that F(a) = 0, F(b) = 1,
∫ b
a F(t)dt = b− E(x),

Fk(x)= 0, k = 2, . . . ,n− 1, while F1(x)= (n− 1)((b− x)/(b− a)). �
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Theorem 7.8. Let 1 ≤ s ≤ ∞ and X be a Beta random variable with parameters (p,q),
p > n− 1/s, q > n− 1/s. Then

∣∣∣∣1
n

[
Pr(X ≤ x) + (n− 1)(1− x)

]− q

p+ q

∣∣∣∣≤ K(n,s,x,0,1)
∥∥ f (n−1)

∥∥
s, (7.12)

where

f (n−1)(t)= lp−n,q−n(t)

B(p,q)

n−1∑
k=0

(−1)k
(
n− 1
k

)
(p− 1)(n−k−1)(q− 1)(k)(1− t)n−k−1tk. (7.13)

Further, we have
(i) For s=∞, p,q > n

∥∥ f (n−1)
∥∥∞ ≤ max

k=0,1,...,n−1

{
(p− 1)(n−k−1)(q− 1)(k)} (p−n)p−n(q−n)q−n

B(p,q)(p+ q− 2n)p+q−2n . (7.14)

(ii) For s= 1, p,q > n− 1

∥∥ f (n−1)‖1 ≤ 1
B(p,q)

n−1∑
k=0

(
n− 1
k

)
(p− 1)(n−k−1)(q− 1)(k)B(p−n+ k+ 1,q− k)

≤ 1
B(p,q)

max
0≤k≤n−1

{
(p− 1)(n−k−1)(q− 1)(k)}B(p−n+ 1,q−n+ 1).

(7.15)

(iii) For 0 < s <∞, p,q > n− 1/s

∥∥ f (n−1)
∥∥
s

≤ 1
B(p,q)

{n−1∑
k=0

(
n− 1
k

)[
(p− 1)(n−k−1)(q− 1)(k)]sB(s(p−n) + k+ 1,s(q−n) +n− k

)}1/s

≤ 1
B(p,q)

max
0≤k≤n−1

{
(p− 1)(n−k−1)(q− 1)(k)}[B(s(p−n) + 1,s(q−n) + 1

)]1/s
.

(7.16)

Proof. A Beta random variable X with parameters (p,q) has the probability density func-
tion

f (x; p,q) := xp−1(1− x)q−1

B(p,q)
, 0 < x < 1. (7.17)
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We have

E(X)= 1
B(p,q)

∫ 1

0
x · xp−1(1− x)q−1dx

= B(p+ 1,q)
B(p,q)

= p

p+ q
.

(7.18)

So from Theorem 7.7 we have (7.12). Proof of the rest of the theorem is similar to that of
Theorem 6.1. �
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