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The concepts P− lim sup and P− lim inf for double sequences were introduced by Pat-
terson in 1999. In this paper, we have studied some new inequalities related to these con-
cepts by using the RH-conservative four-dimensional matrices.
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1. Introduction

A double sequence x = [xjk]∞j,k=0 is said to be convergent to a number l in the Pringsheim
sense or P-convergent if for every ε > 0, there exists N ∈N, the set of natural numbers,
such that |xjk − l| < ε whenever j,k > N , [5]. In this case, we write P− limx = l. In what
follows, we will write [xjk] in place of [xjk]∞j,k=0.

A double sequence x is said to be bounded if there exists a positive number M such
that |xjk| <M for all j, k, that is, if

‖x‖ = sup
j,k

∣
∣xjk

∣
∣ <∞. (1.1)

Let �2∞ be the space of all real bounded double sequences. We should note that in con-
trast to the case for single sequences, a convergent double sequence need not be bounded.
By c∞2 , we mean the space of all P-convergent and bounded double sequences.

Let A= [amn
jk ]∞j,k=0 be a four-dimensional infinite matrix of real numbers for all m,n=

0,1, . . . . The sums

ymn =
∞
∑

j=0

∞
∑

k=0

amn
jk xjk (1.2)

are called the A-transforms of the double sequence x. We say that a sequence x is A-
summable to the limit s if the A-transform of x exists for all m,n= 0,1, . . . and convergent
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in the Pringsheim sense, that is,

lim
p,q→∞

p
∑

j=0

q
∑

k=0

amn
jk xjk = ymn,

lim
m,n→∞ ymn = s.

(1.3)

A matrix A = [amn
jk ] is said to be RH-regular (see [1, 6]) if Ax ∈ c∞2 and P − limAx =

P− limx for each x ∈ c∞2 . If a matrix A is RH-regular, then we write A∈ (c∞2 ,c∞2 )reg. It is
shown that A is RH-regular if and only if

P− lim
m,n

amn
jk = 0 for each j,k, (1.4)

P− lim
m,n

∑

j

∑

k

amn
jk = 1, (1.5)

P− lim
m,n

∑

j

∣
∣amn

jk

∣
∣= 0 for each k, (1.6)

P− lim
m,n

∑

k

∣
∣amn

jk

∣
∣= 0 for each j, (1.7)

‖A‖ = sup
m,n

∑

j

∑

k

∣
∣amn

jk

∣
∣ <∞. (1.8)

A matrix A = [amn
jk ] is said to be RH-conservative if Ax ∈ c∞2 for each x ∈ c∞2 . In this

case, we write A ∈ (c∞2 ,c∞2 ). One can prove that A is RH-conservative if and only if the
condition (1.8) holds and

P− lim
m,n

amn
jk = vjk for each j,k, (1.9)

P− lim
m,n

∑

j

∑

k

amn
jk = v exists, (1.10)

P− lim
m,n

∑

j

∣
∣amn

jk − vkl
∣
∣= 0 for each k, (1.11)

P− lim
m,n

∑

k

∣
∣amn

jk − vkl
∣
∣= 0 for each k. (1.12)

For an RH-conservative matrix A, we can define the functional

Γ(A)= v−
∑

j

∑

k

vjk, (1.13)

where
∑

j

∑

k |vjk| <∞ which follows from (1.8) and (1.9). Note that Γ(A)= 1, when A is
an RH-regular matrix.

Móricz and Rhoades [2] have defined almost convergence of a double sequence as
follows.
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A double sequence x = [xjk] of real numbers is said to be almost convergent to a limit
l if

lim
p,q→∞

sup
m,n≥0

∣
∣
∣
∣
∣

1
pq

m+p−1
∑

j=m

n+q−1
∑

k=n
xjk − l

∣
∣
∣
∣
∣
= 0 uniformly in m,n= 1,2, . . . . (1.14)

Note that a convergent single sequence is also almost convergent but for a double se-
quence this is not the case, that is, a convergent double sequence need not be almost con-
vergent. However, every bounded convergent double sequence is almost convergent. By
f2 we denote the space of all almost convergent double sequences. A matrixA∈ ( f2,c∞2 )reg

is said to be strongly regular and the conditions of strong regularity are known [2].
For any real bounded double sequence x, the concepts l(x)= P− liminf x and L(x)=

P− limsupx have been introduced in [4] and also an inequality related to the P− limsup
has been studied as follows.

Lemma 1.1 [4, Theorem 3.2]. For any real double sequence x, P − limsupAx ≤ P −
limsupx if and only if A is RH-regular and

P− lim
m,n

∑

j

∑

k

∣
∣amn

jk

∣
∣= 1. (1.15)

Let us define the sublinear functionals Last(x), last(x) on �2∞ as follows:

Last(x)= P− limsup
p,q→∞

sup
m,n≥0

1
pq

m+p−1
∑

j=m

n+q−1
∑

k=n
xjk,

last(x)= P− liminf
p,q→∞

sup
m,n≥0

1
pq

m+p−1
∑

j=m

n+q−1
∑

k=n
xjk.

(1.16)

Then, the MR-core of a real bounded double sequence x is the closed interval [last(x),
Last(x)], [3]. Also, it is proved in [3] that L(Ax)≤ Last(x) for all x ∈ �2∞ if and only if A is
strongly regular and (1.15) holds.

In this paper, we have proved some new inequalities related to the P− limsup by using
the RH-conservative matrices.

2. The main results

Firstly, we need two lemmas, the first can be obtained from [4, Lemma 3.1].

Lemma 2.1. If A= [amn
jk ] is a matrix such that the conditions (1.4), (1.6), (1.7), and (1.8)

hold, then for any y ∈ �2∞ with ‖y‖ ≤ 1,

P− limsup
m,n

∑

j

∑

k

amn
jk y jk = P− limsup

m,n

∑

j

∑

k

∣
∣amn

jk

∣
∣. (2.1)
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Lemma 2.2. Let A= [amn
jk ] be RH-conservative and λ∈R+. Then,

P− limsup
m,n

∑

j

∑

k

∣
∣amn

jk − vjk
∣
∣≤ λ (2.2)

if and only if

P− limsup
m,n

∑

j

∑

k

(

amn
jk − vjk

)+ ≤ λ+Γ(A)
2

,

P− limsup
m,n

∑

j

∑

k

(

amn
jk − vjk

)− ≤ λ−Γ(A)
2

,
(2.3)

where for any γ ∈R, γ+ =max{0,γ} and γ− =max{−γ,0}.
Proof. Since A is RH-conservative, we have

P− limsup
m,n

∑

j

∑

k

(

amn
jk − vjk

)= Γ(A). (2.4)

Therefore, the results follow from the relations

∑

j

∑

k

(

amn
jk − vjk

)=
∑

j

∑

k

(

amn
jk − vjk

)+−
∑

j

∑

k

(

amn
jk − vjk

)−
,

∑

j

∑

k

∣
∣amn

jk − vjk
∣
∣=

∑

j

∑

k

(

amn
jk − vjk

)+
+
∑

j

∑

k

(

amn
jk − vjk

)−
.

(2.5)

�

Theorem 2.3. Let A= [amn
jk ] be RH-conservative. Then, for some constant λ≥ |Γ(A)| and

for all x ∈ �2∞, one has

P− limsup
m,n

∑

j

∑

k

(

amn
jk − vjk

)

xjk ≤ λ+Γ(A)
2

L(x)− λ−Γ(A)
2

l(x) (2.6)

if and only if (2.2) holds.

Proof. Suppose that (2.6) holds. Define the matrix B = [bmn
jk ] by bmn

jk = (amn
jk − vjk) for all

m,n, j,k ∈N. Then, since A is RH-conservative, the matrix B satisfies the hypothesis of
Lemma 2.1. Hence, for a y ∈ �2∞ such that ‖y‖ ≤ 1, we have (2.1) with bmn

jk in place of
amn
jk . So, from (2.6), we get that

P− limsup
m,n

∑

j

∑

k

∣
∣bmn

jk

∣
∣≤ λ+Γ(A)

2
L(y)− λ−Γ(A)

2
l(y)

≤
[
λ+Γ(A)

2
+
λ−Γ(A)

2

]

‖y‖ ≤ λ

(2.7)

which is (2.2).
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Conversely, suppose that (2.2) holds and x ∈ �2∞. Then, for any ε > 0, there exists an
N ∈N such that

l(x)− ε < xjk < L(x) + ε (2.8)

whenever j,k > N . Now, we can write

∑

j

∑

k

bmn
jk xjk =

∑

j≤N

∑

k≤N
bmn
jk xjk +

∑

j≤N

∑

k>N

bmn
jk xjk +

∑

j>N

∑

k≤N
bmn
jk xjk

+
∑

j>N

∑

k>N

(

bmn
jk

)+
xjk −

∑

j>N

∑

k>N

(

bmn
jk

)−
xjk,

(2.9)

where bmn
jk is defined as above. Hence, by the RH-conservativeness of A and Lemma 2.2,

we obtain

P− limsup
m,n

∑

j

∑

k

bmn
jk xjk ≤

(

L(x) + ε
)
(
λ+Γ(A)

2

)

− (l(x)− ε
)
(
λ−Γ(A)

2

)

= λ+Γ(A)
2

L(x)− λ−Γ(A)
2

l(x) + λε.

(2.10)

Since ε is arbitrary, this completes the proof. �

In the case Γ(A) > 0 and λ= Γ(A), we have the following result.

Theorem 2.4. Let A be RH-conservative and x ∈ �2∞. Then,

P− limsup
m,n

∑

j

∑

k

(

amn
jk − vjk

)

xjk ≤ Γ(A)L(x) (2.11)

if and only if

P− lim
m,n

∑

j

∑

k

∣
∣amn

jk − vjk
∣
∣= Γ(A). (2.12)

Also, we should note that whenA is RH-regular, Theorem 2.4 is reduced to Lemma 1.1.

Theorem 2.5. Let A= [amn
jk ] be RH-conservative. Then, for some constant λ≥ |Γ(A)| and

for all x ∈ �2∞, one has

P− limsup
m,n

∑

j

∑

k

(

amn
jk − vjk

)

xjk ≤ λ+Γ(A)
2

Last(x) +
λ−Γ(A)

2
last(−x) (2.13)

if and only if (2.2) holds and

P− lim
m,n

∑

j

∑

k

∣
∣Δ10a

mn
jk

∣
∣= 0, (2.14)

P− lim
m,n

∑

j

∑

k

∣
∣Δ01a

mn
jk

∣
∣= 0, (2.15)
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where

Δ10a
mn
jk = amn

jk − amn
j+1,k −

(

vjk − vj+1,k
)

, Δ01a
mn
jk = amn

jk − amn
j,k+1−

(

vjk − vj,k+1
)

.
(2.16)

Proof. Suppose that (2.13) holds. Then, since Last(x) ≤ L(x) and last(−x) ≤ −l(x) for all
x ∈ �2∞ (see [3]), the necessity of (2.2) follows from Theorem 2.3.

Define a matrix C = [cmn
jk ] by cmn

jk = (bmn
jk − bmn

j+1,k) for all m,n, j,k ∈N; where bmn
jk is as

in Theorem 2.3. Then, we have from Lemma 2.1, a y ∈ �2∞ such that ‖y‖ ≤ 1 and (2.1)
holds with cmn

jk in place of amn
jk . Also, for the same y, we can write

∑

j

∑

k

cmn
jk y j+1,k =

∑

j

∑

k

bmn
jk

(

yjk − yj+1,k
)

. (2.17)

So, we have from (2.13) that

P− limsup
m,n

∑

j

∑

k

∣
∣cmn

jk

∣
∣= P− limsup

m,n

∑

j

∑

k

cmn
jk y j+1,k

= P− limsup
m,n

∑

j

∑

k

bmn
jk

(

yjk − yj+1,k
)

≤ λ+Γ(A)
2

Last(yjk − yj+1,k
)

+
λ−Γ(A)

2
last(yj+1− yjk

)

.

(2.18)

Now, let y = [yjk] = 1 for all j,k ∈ N. Then, since (yjk − yj+1,k) ∈ f ∞,0
2 , the space of all

double almost null sequences

Last(yjk − yj+1,k
)= last(yj+1− yjk

)= 0. (2.19)

This implies the necessity of (2.14). By the same argument one can prove the necessity of
(2.15).

Conversely, suppose that the conditions (2.2), (2.14), and (2.15) hold. For any given
ε > 0, we can find integers p,q ≥ 2 such that

last(−x)− ε <
1
pq

m+p−1
∑

j=m

n+q−1
∑

k=n
xjk < Last(x) + ε (2.20)

whenever j,k ≥N . Now, one can write

∑

j

∑

k

bmn
jk xjk =

∑

1

+
∑

2

+
∑

3

+
∑

4

, (2.21)
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where

∑

1

=
∑

j

∑

k

bmn
jk

1
pq

j+p−1
∑

s= j

k+q−1
∑

t=k
xst,

∑

2

=−
p−2
∑

s=0

q−2
∑

t=0

1
pq

s
∑

j=0

t
∑

k=0

bmn
jk xst,

∑

3

=−
∞
∑

j=p−1

∞
∑

t=q−1

(

1
pq

s
∑

j=s−p+1

t
∑

k=t−q+1

bmn
jk − bmn

jk

)

xst,

∑

4

=
p−2
∑

j=0

q−2
∑

k=0

bmn
jk xjk,

(2.22)

and bmn
jk is defined as in Theorem 2.3. Then, since

∣
∣
∣
∣
∣

∑

2

∣
∣
∣
∣
∣
≤ ‖x‖

p−2
∑

j=0

q−2
∑

k=0

∣
∣bmn

jk

∣
∣,

∣
∣
∣
∣
∣

∑

4

∣
∣
∣
∣
∣
≤ ‖x‖

p−2
∑

j=0

q−2
∑

k=0

∣
∣bmn

jk

∣
∣, (2.23)

using the condition (1.9), we observe that
∑

2 → 0,
∑

4 → 0 (m,n→∞). On the other
hand, since

∣
∣
∣
∣
∣

∑

3

∣
∣
∣
∣
∣
≤ ‖x‖

pq

p−1
∑

s=0

q−1
∑

t=0

(

(p− s− 1)
∑

j

∑

k

∣
∣Δ10a

mn
jk

∣
∣+ (q− t− 1)

∑

j

∑

k

∣
∣Δ01a

mn
jk

∣
∣

)

,

(2.24)

by the conditions (2.14)-(2.15),
∑

3 → 0 (m,n→∞). Thus, we can write

∑

1

=
∑

j≤N

∑

k≤N
bmn
jk

1
pq

j+p−1
∑

s= j

k+q−1
∑

t=k
xst +

∑

j≥N

∑

k≥N
bmn
jk

1
pq

j+p−1
∑

s= j

k+q−1
∑

t=k
xst

−
∑

j≥N

∑

k≥N
bmn
jk

1
pq

j+p−1
∑

s= j

k+q−1
∑

t=k
xst.

(2.25)

By (1.9), (2.20) and Lemma 2.2, we get that

P− limsup
m,n

∑

j

∑

k

bmn
jk xjk ≤

(

Last(x) + ε
)λ+Γ(A)

2
+
(

last(−x) + ε
)λ−Γ(A)

2

= λ+Γ(A)
2

Last(x) +
λ−Γ(A)

2
last(−x) + λε

(2.26)

which is (2.13), since ε is arbitrary. �

In the case Γ(A) > 0 and λ= Γ(A), we have the following.
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Theorem 2.6. Let A be RH-conservative and x ∈ �2∞. Then,

P− limsup
m,n

∑

j

∑

k

(

amn
jk − vjk

)

xjk ≤ Γ(A)Last(x) (2.27)

if and only if (2.12), (2.14), and (2.15) hold.

We should state that whenA is strongly regular, Theorem 2.6 is reduced to [3, Theorem
3.1].
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