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We will introduce the k times modified centered and uncentered Hardy-Littlewood max-
imal operators on nonhomogeneous spaces for k > 0. We will prove that the k times mod-
ified centered Hardy-Littlewood maximal operator is weak type (1,1) bounded with con-
stant 1 when k ≥ 2 if the Radon measure of the space has “continuity” in some sense. In
the proof, we will use the outer measure associated with the Radon measure. We will also
prove other results of Hardy-Littlewood maximal operators on homogeneous spaces and
on the real line by using outer measures.
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1. Introduction

Hardy-Littlewood maximal operators were first introduced by Hardy and Littlewood
([6]) in one dimensional case for the purpose of the application to Complex Analysis.
Then Wiener ([14]) introduced this operator in higher dimensional Eucledian spaces
for the purpose of the application to Ergodic Theory. Later, Coifman and Weiss ([4])
defined Hardy-Littlewood maximal operators on quasi-metric measure spaces satisfying
doubling conditions (which we call homogeneous spaces). More recently, Nazarov et al.
([9]) defined modified Hardy-Littlewood maximal operators on quasi-metric measure
spaces possesing a Radon measure that does not satisfy a doubling condition (which we
call nonhomogeneous spaces), which are used in harmonic analysis on nonhomogeneous
spaces. In this paper, we will treat weak type (1,1) inequalities satisfied by several types of
Hardy-Littlewood maximal operators. As is well known, weak type (1,1) inequalities sat-
isfied by Hardy-Littlewood maximal operators are keys to prove their strong type (p, p)
boundedness via Marcinkiewicz’s interpolation theorem. To prove their weak type (1,1)
inequalities, the unification of our approach is the use of outer measures. The advantage
of the use of outer measures over usual measures is that they could measure any subsets
of a total space, even when they are nonmeasurable.
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2 Outer measures and maximal functions

Let (X ,μ) be a metric space possesing a nondegenerate Radon measure such that
μ(B(x,r)) is continuous with respect to the variable r > 0 when the variable x ∈ X is
fixed, where B(x,r) denotes a ball centered at x and of radius r. We will define the k times
modified centered Hardy-Littlewood maximal operator as follows:

Mk f (x)= sup
r>0

1
μ
(
B(x,kr)

)
∫

B(x,r)

∣
∣ f (y)

∣
∣dμ(y). (1.1)

We will prove that the k times modified centered Hardy-Littlewood maximal operator
Mk is weak-(1,1) bounded when k is larger than or equal to 2, and that their weak-(1,1)
constant (which is the infimum (consequently the minimum) of the constant appearing
in the weak type (1,1) inequality) is less than or equal to 1. We will state the main idea
of the proof of this fact. Let R > 0 be fixed. Let k > 0. We consider the k times modified
centered Hardy-Littlewood maximal operator with bounded radius:

Mk,R f (x)= sup
r≤R

1
μ
(
B(x,kr)

)
∫

B(x,r)

∣
∣ f (y)

∣
∣dμ(y). (1.2)

We set Aλ := {x |Mk,R f (x) > λ}. The set Aλ is easily seen to be an open set. From the
continuity of the measure, we can assume that k > 2. Let J ⊂ Aλ be an arbitrary compact
set. For each x ∈ J , we choose rx such that

1
μ
(
B
(
x,krx

))
∫

B(x,rx)

∣
∣ f (y)

∣
∣dμ(y) > λ. (1.3)

Set

Jn :=
{
x ∈ J | rx > 1

n

}
. (1.4)

The set Jn is not necessarily measurable. So we use the outer measure associated with μ to
estimate the “size” of the set Jn. Take 0 < θ < 1 such that 1 < (k− 1)θ. Set

R1 := sup
x∈Jn

rx. (1.5)

Then there exists x1 ∈ Jn such that θR1 < rx1 , and it holds that

1
λ

∫

B(x1,rx1 )

∣
∣ f (y)

∣
∣dμ(y) > μ

(
B
(
x1,krx1

))
. (1.6)

If B(x1,krx1 )⊃ Jn, then we have μ∗(Jn)≤ 1/λ‖ f ‖1. Here, μ∗ is the outer measure associ-
ated with μ, that is,

μ∗(B)= inf
B⊆C,C:measurable

μ(C). (1.7)
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If B(x1,krx1 ) 
⊃ Jn, we set

R2 := sup
x∈Jn\B(x1,krx1 )

rx. (1.8)

We proceed in the same way. This process ends in finite times, because of the compactness
of J and the lower uniform boundness of rx. Thus we obtain the proof.

Furthermore, we will treat the weighted weak-(1,1) inequality of the centered Hardy-
Littlewood maximal operator on a metric space possesing a doubling Radon measure.
We will get some upper bound of the weak-(1,1) constant of the weighted weak-(1,1)
inequality of the centered Hardy-Littlewood maximal operator. We should remark that
the method of this proof resembles to that of the above mentioned result on nonhomo-
geneous spaces.

The following is the constitution of our paper.
In Section 2, we will prove weak-(1,1) boundedness of the k times modified centered

Hardy-Littlewood maximal operators on nonhomogeneous spaces with measures which
have “continuities” in some sense when k is larger than 2. (We will state what is meant by
the word “continuities” later.) After our result, Sawano ([10]) proved a result of the same
type in the setting of a separable metric space without this continuity assumption.

In Section 3, we will prove weak-(1,1) boundedness of centered Hardy-Littlewood
maximal operators under A1-weights (the definition of which we will state later) with
better constants than are previously known (as far as we know). The weak-(1,1) norm
of the centered Hardy-Littlewood maximal operator on the real line is recently deter-
mined by Melas ([7]). Our result may be regarded as some upper bound estimates of the
weak-(1,1) norms of the centered Hardy-Littlewood maximal operator on homogeneous
spaces under general A1-weights.

In Section 4, we will prove weak-(1,1) norms of one-sided Hardy-Littlewood maximal
operators on the real line with absolutely continuous measure are less than or equal to 1.
Bernal ([1]) proved more general results under only assumptions that the measures on
the real line are Borel. We will give a different proof of special cases of A. Bernal’s result.
In fact, this kind of proof of the result is already known (cf. [8, 11, 14]). However, we
include this proof here since this kind of proof of the result may be regarded as the easiest
example of our method.

2. Modified Hardy-Littlewood maximal operators on nonhomogeneous spaces

To fix the terminology, we will include here the definition of the Hardy-Littlewood max-
imal operators on a metric measure space. We will consider Hardy-Littlewood maximal
operators on a metric measure space X possesing a nondegenerate Radon measure μ
which we will denote as (X ,μ). Here a Radon measure means a measure which is de-
fined on a σ-algebra on X including all Borel sets and which is inner regular on open
sets and outer regular on Borel sets. A nondegenerate Radon measure is a Radon measure
such that the measure of balls which have positive radius are positive. We will also assume
here that the measures of balls which have finite radius are finite.

There are two types of the Hardy-Littlewood maximal operators, namely the centered
one and the uncentered one. We will recall the definition of these here.
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Definition 2.1. Let (X ,μ) be a metric space possesing a nondegenerate Radon measure.
Let f be a locally integrable function on (X ,μ). The centered Hardy-Littlewood maximal
function Mf of f is defined as follows:

Mf(x)= sup
r>0

1
μ
(
B(x,r)

)
∫

B(x,r)

∣
∣ f (y)

∣
∣dμ(y). (2.1)

We call the operator M associating f to Mf the centered Hardy-Littlewood maximal op-
erator. Next, we define the uncentered Hardy-Littlewood maximal operator. The uncen-
tered Hardy-Littlewood maximal function Muc f of the locally integrable function f is
defined as

Muc f (x)= sup
x∈B(y,r)

1
μ
(
B(y,r)

)
∫

B(y,r)

∣
∣ f (z)

∣
∣dμ(z). (2.2)

We call the operator Muc associating f to Muc f the uncentered Hardy-Littlewood maxi-
mal operator.

Let us assume that (X ,μ) satisfies a doubling condition, and let C be their doubling
constant. Then, for any locally integrable function on (X ,μ), the inequalities Mf ≤Muc f
and Muc f ≤ C2 · Mf holds pointwise. The centered Hardy-Littlewood maximal
operator M and the uncentered one Muc are both weak type (1,1) and strong type (p, p)
(1 < p ≤ +∞). We can prove that the operators M and Muc are both strong type (p, p)
(1 < p < +∞) from the fact that they are weak type (1,1) and strong type (+∞,+∞)
by using Marcinkiewicz’s interpolation theorem. It is trivial that M and Muc are both
strong type (+∞,+∞), so the problem is to prove that they are weak type (1,1). Since
Mf(x)≤Muc f (x), it suffices to prove that Muc is weak type (1,1). We can prove that Muc

is weak type (1,1) by using the following (finite type) Vitali’s covering lemma.

Theorem 2.2. Let X be a metric space and let a finite collection of balls {B(xk,rk)}k=nk=1 be

given. Then we can find a subcollection of balls {B(xki ,rki)}i= j
i=1 which are mutually disjoint

such that
⋃k=n

k=1 B(xk,rk)⊂⋃i= j
i=1B(xki ,3rki) holds.

F. Nazarov, S. Treil and A. Volberg introduced a type of modified Hardy-Littlewood
maximal operators on nonhomogeneous spaces. We will introduce the k times modified
centered Hardy-Littlewood maximal operators and k times modified uncentered Hardy-
Littlewood maximal operators.

Definition 2.3. Let f be a locally integrable function on a metric measure space (X ,μ).
Then the k times modified centered Hardy-Littlewood maximal function Mk f of f is
defined as follows:

Mk f (x)= sup
r>0

1
μ
(
B(x,kr)

)
∫

B(x,r)

∣
∣ f (y)

∣
∣dμ(y). (2.3)

We call the operator Mk the k times modified centered Hardy-Littlewood maximal oper-
ator. The k times modified uncentered Hardy-Littlewood maximal function Mk f of f is
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defined as follows:

Mk,uc f (x)= sup
x∈B(y,r)

1
μ
(
B(y,kr)

)
∫

B(y,r)

∣
∣ f (z)

∣
∣dμ(z). (2.4)

We call the operator Mk,uc the k times modified uncentered Hardy-Littlewood maximal
operator.

As is easily seen, the pointwise inequalities Mk f ≤Mk′ f (k′ ≤ k) and Mk,uc f ≤Mk′,uc f
(k′ ≤ k) holds for any locally integrable function f on (X ,μ). Mk,uc f (x) is lower semicon-
tinuous for any locally integrable function f . We can easily prove that M3,uc is weak-(1,1)
bounded by using Vitali’s covering lemma. Note that modified Hardy-Littlewood maxi-
mal operators introduced by F. Nazarov, S. Treil and A. Volberg are M3 f in our notations
and that they proved M3 is weak-(1,1) bounded.

Let X be a metric space possesing a nondegenerate Radon measure μ such that the
measure is “continuous” in the sense that μ(B(x,r)) is continuous with the variable r > 0
when x ∈ X is fixed. Then we can show that Mk f (x)= supr>0 1/(μ(B(x,kr)))

∫
B(x,r) | f (y)|

dμ(y) is weak-(1,1) bounded with constant 1 when k is larger than 2. In the course of the
proof, we will meet subsets of X which are not necessarily measurable. So we cannot use
measures to estimate “sizes” of these sets. So, we use instead an outer measure to estimate
“sizes” of these sets.

Theorem 2.4. Let X be a metric space possesing a nondegenerate Radon measure μ such
that μ(B(x,r)) is continuous with the variable r > 0 when x ∈ X is fixed. Then Mk f (x) =
supr>0 1/(μ(B(x,kr)))

∫
B(x,r) | f (y)|dμ(y) is weak-(1,1) bounded with constant 1 when k is

larger than or equal to two.
Namely,

μ
({
x
∣
∣Mk f (x) > λ

})≤ 1
λ

∫

X

∣
∣ f (y)

∣
∣dy (2.5)

for any f ∈ L1(X ,μ) when k ≥ 2.

Proof. Let R > 0 be fixed. Let k > 0. We consider the centered Hardy-Littlewood maximal
operator with bounded radius:

Mk,R f (x) := sup
r≤R

1
μ
(
B(x,kr)

)
∫

B(x,r)

∣
∣ f (y)

∣
∣dμ(y). (2.6)

We set Aλ := {x |Mk,R f (x) > λ}. We will show that Aλ is an open set. Let us assume that
x0 ∈ {x |Mk,R f (x) > λ}. Then there exists r ≤ R such that

1
μ
(
B
(
x0,kr

))
∫

B(x0,r)

∣
∣ f (y)

∣
∣dμ(y) > λ. (2.7)

By the absolute continuity of the integral, there exists a compact set K ⊂ B(x0,r) such that

1
μ
(
B
(
x0,kr

))
∫

K

∣
∣ f (y)

∣
∣dμ(y) > λ. (2.8)
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If we take δ sufficiently small, then for any y satisfying |y − x0| < δ, it holds that K ⊂
B(y,r) and that

λ <
1

μ
(
B(y,kr)

)
∫

K

∣
∣ f (y)

∣
∣dμ(y)≤ 1

μ
(
B(y,kr)

)
∫

B(y,r)

∣
∣ f (y)

∣
∣dμ(y). (2.9)

Therefore {x ∈ X |Mk,R f (x) > λ} is an open set. Entirely similarly, we can show that
{x |Mk f (x) > λ} is an open set.

Since μ(B(x,r)) is continuous with the variable r > 0 when x ∈ X is fixed, we have
{x |M2 f (x) > λ} =⋃k>2{x |Mk f (x) > λ}. So we have only to prove the theorem in the
case k > 2. Let J ⊂Aλ be an arbitrary compact set. For each x ∈ J , we choose rx such that

1
μ
(
B
(
x,krx

))
∫

B(x,rx)

∣
∣ f (y)

∣
∣dμ(y) > λ. (2.10)

Set

Jn :=
{
x ∈ J

∣
∣rx >

1
n

}
. (2.11)

Take 0 < θ < 1 such that 1 < (k− 1)θ. Set

R1 := sup
x∈Jn

rx. (2.12)

Then there exists x1 ∈ Jn such that θR1 < rx1 , and it holds that

1
λ

∫

B(x1,rx1 )

∣
∣ f (y)

∣
∣dμ(y) > μ

(
B
(
x1,krx1

))
. (2.13)

If B(x1,krx1 )⊃ Jn, then we have μ∗(Jn)≤ 1/λ‖ f ‖1. Here, μ∗ is the outer measure associ-
ated with μ, that is,

μ∗(B)= inf
B⊆C,C:measurable

μ(C). (2.14)

If B(x1,krx1 ) 
⊃ Jn, we set

R2 := sup
x∈Jn\B(x1,krx1 )

rx. (2.15)

Then there exists x2 ∈ Jn \B(x1,krx1 ) such that θR2 < rx2 , and it holds that

1
λ

∫

B(x2,rx2 )

∣
∣ f (y)

∣
∣dy > μ

(
B
(
x2,krx2

))
. (2.16)

We should remark that

rx1 + rx2 < krx1 . (2.17)
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In fact

(k− 1)rx1 − rx2 =
1
θ

(
(k− 1)θrx1 − θrx2

)≥ 1
θ

(
(k− 1)θrx1 − rx1

)
> 0. (2.18)

Using this, we can show that B(x1,rx1 )∩ B(x2,rx2 ) = ∅. If B(x1,rx1 )∩ B(x2,rx2 ) 
= ∅,
d(x1,x2)≤ rx1 + rx2 < krx1 . This will contradict the fact that x2 ∈ Jn \B(x1,krx1 ). Therefore
B(x1,rx1 )∩ B(x2,rx2 ) =∅. If Jn ⊂ B(x1,krx1 )∪ B(x2,krx2 ), we have μ∗(Jn) ≤ 1/λ‖ f ‖1. If
Jn 
⊂ B(x1,krx1 )∪B(x2,krx2 ), we set

R3 := sup
x∈Jn\(B(x1,krx1 )∪B(x2,krx2 ))

rx. (2.19)

Then there exists x3 ∈ Jn \ (B(x1,krx1 )∪B(x2,krx2 )) such that θR3 < rx3 , and it holds that

1
λ

∫

B(x3,rx3 )

∣
∣ f (y)

∣
∣dy > μ

(
B
(
x3,krx3

))
. (2.20)

We can show that B(x1,rx1 )∩ B(x3,rx3 ) =∅ and B(x2,rx2 )∩ B(x3,rx3 ) =∅ in the same
manner as before. If Jn ⊂ B(x1,krx1 )∪B(x2,krx2 )∪B(x3,krx3 ), we have μ∗(Jn)≤ 1/λ‖ f ‖1.
We repeat this process. Then, finally, we have

Jn ⊂ B
(
x1,krx1

)∪B
(
x2,krx2

)∪···∪B
(
xl,krxl

)
. (2.21)

For, if not, we can take an infinite sequence {xm} in J which satisfies d(xm1 ,xm2 ) ≥ 1/n
(m1 
= m2). This, however, contradicts the compactness of J . Thus we have μ∗(Jn) ≤
1/λ‖ f ‖1. Letting n→ +∞, we have μ(J)≤ 1/λ‖ f ‖1. Here we use the fact that

lim
n→+∞μ

∗(Jn
)= μ∗(J). (2.22)

(For the proof of (2.22), see Lemma 2.8 at the end of this section.) Since J is an arbitrary
compact set contained in Aλ, we have μ(Aλ)≤ 1/λ‖ f ‖1 by the inner regularity of μ. Since
the right-hand side is independent of R > 0, we have

μ
({
x ∈ X

∣
∣Mk f (x) > λ

})≤ 1
λ

∫

X

∣
∣ f (y)

∣
∣dy. (2.23)

�

Remark 2.5. After our result, Sawano ([10]) proved the following theorem.

Theorem 2.6. Let X be a separable metric space with nondegenerate Radon measure. Then
the two times modified centered modified Hardy-Littlewood maximal operators M2 as is
defined above is weak-(1,1) bounded with constant 1. Namely, the following inequality holds.

μ
({
x ∈ X

∣
∣M2 f (x) > λ

})≤ 1
λ

∫

X

∣
∣ f (y)

∣
∣dy (2.24)

for any f ∈ L1(X ,μ). Furthermore, this result is sharp in the following sense. There exists a
separable metric space with nondegenerate Radon measure such that Mk is not weak-(1,1)
bounded for all positive k smaller than 2.
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He proved this theorem by some variant of Vitali’s covering lemma and Lindelöf ’s
covering lemma. He did not use outer measure which we used to prove this theorem.
He showed the sharpness of the result by using Kolmogorov’s extension law in mea-
sure theory. Furthermore, using this theorem, he proved some type of vector-valued
inequalities of singular integral operators and Fefferman-Stein’s vector-valued version
of Hardy-Littlewood maximal inequality on nonhomogeneous spaces. For details, the
reader should refer to [10].

Remark 2.7. For completeness, we will include the proof of the following lemma. The
following lemma is from [5].

Lemma 2.8. Let Y be a measure space with a measure μ. Let μ∗ is the outer measure associ-
ated to the measure μ, that is,

μ∗(B)= inf
B⊆C,C:measurable

μ(C) (2.25)

for any subset B in X . Let J be a measurable set in Y . Let Jk(k ≥ 1) be subsets (which are not
necessarily measurable) in J which are increasing in k, that is, Jk ⊂ Jk+1 for any k ≥ 1.

Proof. From the definition of μ∗, for any A ⊂ X , there exists a μ-measurable set C such
that A ⊂ C and μ∗(A) = μ(C). Therefore for each Jk, there exists a μ-measurable set Ck

such that Jk ⊂ Ck and μ∗(Jk)= μ(Ck). We set Bk =
⋂

j≥k Cj . Then Bk is μ-measurable and
Jk ⊂ Bk and μ∗(Jk)= μ(Bk). Therefore

lim
k→+∞

μ∗
(
Jk
)= lim

k→+∞
μ
(
Bk
)= μ

( ∞⋃

k=1

Bk

)

≥ μ

( ∞⋃

k=1

Jk

)

= μ(J). (2.26)

On the other hand, since μ∗(Jk)≤ μ(J), we have

lim
k→+∞

μ∗
(
Jk
)≤ μ(J). (2.27)

Thus we obtain

lim
k→+∞

μ∗
(
Jk
)= μ(J). (2.28)

�

3. Weighted weak (1,1) estimates of Hardy-Littlewood maximal operators on
homogeneous spaces

We will prove in this section the weighted weak-(1,1) inequality of the centered Hardy-
Littlewood maximal operator on a metric space possesing a doubling Radon measure. We
must emphasize that this type of inequality is well known. It is proved by Calderón ([2]).
In this paper, we will prove the weighted weak-(1,1) inequality with better constant than
previously known (as far as we know). When w ≡ 1, we have the ordinary unweighted
weak-(1,1) inequality of the centered Hardy-Littlewood maximal operator, and even in
this case, the proof of the main theorem gives a new proof the weak-(1,1) boundness
of the centered Hardy-Littlewood maximal operator. The author got some hints of this
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proof from Carlsson’s paper ([3]) and Termini and Vitanza’s paper ([12]). The reader
should also notice that the method of the proof resembles to Theorem 2.4.

Theorem 3.1. Let X be a metric space possseing a doubling Radon measure μ. Let w be an
A1-weight. Namely, there exists a positive number c > 0 such that

1
μ
(
B(x,r)

)
∫

B(x,r)
w(y)dμ(y)≤ c · essinf y∈B(x,r)w(y) (3.1)

holds for any ball B(x,r). Let d be an A1-constant of w, and set

eλ = inf
{
e |w(B(x,λr)

)≤ e ·w(B(x,r)
)
, ∀x ∈ X , ∀r > 0

}
. (3.2)

Set e = limλ→2+ eλ. Then

w
({
x |Mf(x) > λ

})≤ d · e
λ

∫

X

∣
∣ f (x)

∣
∣w(x)dμ(x) (3.3)

holds.

Proof. Let R > 0 be fixed. We will show that

w
({
x |MR f (x) > λ

})≤ d · e
λ

∫

X

∣
∣ f (x)

∣
∣w(x)dμ(x) (3.4)

holds for any f ∈ L1(X ,μ). Let o∈ X be a fixed point. Let r > 0 be a positive number. Set

J = {x | d(o,x) < r
}∩ {x |MR f (x) > λ

}
. (3.5)

We choose rx ≤ R for each x ∈ J such that

1
μ
(
B
(
x,rx

))
∫

B(x,rx)
| f |dμ > λ (3.6)

holds. Set Jn = {x ∈ K | rx > 1/n}. Let 0 < θ < 1. Set R1 = supx∈Kn
rx. Take x1 ∈ Jn such that

1
μ
(
B
(
x1,rx1

))
∫

B(x1,rx1 )
| f |dμ > λ (3.7)

holds. Then,

d · e2/θ

λ

∫

B(x1,rx1 )
| f |wdμ

≥ d · e2/θ

λ
essinfB(x1,rx1 )w

∫

B(x1,rx1 )
| f |dμ≥ d · e2/θ

λ
essinfB(x1,rx1 )w · λμ

(
B(x,r)

)

≥ e2/θ

∫

B(x1,rx1 )
wdμ≥

∫

B(x,(2/θ)rx1 )
wdμ.

(3.8)
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Set R2 = supx∈Jn\B(x1,(2/θ)rx1 ) rx. There exists x2 ∈ Jn \B(x1, (2/θ)rx1 ) such that θR2 < rx2 .
Then,

d · e2/θ

λ

∫

B(x2,rx2 )
| f |wdμ≥

∫

B
(
x,(2/θ)rx2

)wdμ. (3.9)

We will take xi in the same way. Then,

d · e2/θ

λ

∫

B(xi,rxi )
| f |wdμ≥

∫

B
(
x,(2/θ)rxi

)wdμ. (3.10)

Then, we finally have

B
(
x1,

2
θ
rx1

)
∪B

(
x2,

2
θ
rx2

)
∪···∪B

(
xn,

2
θ
rxn

)
⊃ Jn. (3.11)

Adding the previous inequalities, we have

d · e2/θ

λ

∫

X
| f |wdμ≥w∗

(
Jn
)
. (3.12)

Here, w∗ is the outer measure associated with the weighted measure w. Letting n→ +∞,
we have

w(J)≤ d · e2/θ

λ

∫

X
| f |wdμ. (3.13)

Since we can choose r > 0 arbitrary in the definition of J , we have

w
({
x |Mf(x) > λ

})≤ d · e2/θ

λ

∫

X
| f |wdμ. (3.14)

Letting θ→ 1+, we have

w
({
x |Mf(x) > λ

})≤ d · e
λ

∫

X
| f |wdμ. (3.15)

�

Remark 3.2. Carlsson’s result ([3]), combined with the result of Trinidad Menarguez and
Soria ([13]), implies that the weak-(1,1) constant of the centered Hardy-Littlewood max-
imal operator with respect to Eucledian balls on Rn with Lebeague measure is less than
or equal to 2n. The above theorem can be regarded as a generalization of this fact.

4. Weak (1,1) estimates of the one-sided Hardy-Littlewood maximal operators on
the real line with respect to an absolutely continuous measure

In [1], Bernal proved that one-sided Hardy-Littlewood maximal operator on the real line
associated with any Borel measure is weak-(1,1) bounded with constant 1. We will prove
here by a method different from A. Bernal’s that one-sided Hardy-Littlewood maximal
operator on the real line associated with absolutely continuous measure is weak-(1,1)
bounded with constant 1. After I had found this proof of the result by myself, I knew
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that this kind of proof is in fact already known. See Sierpinski ([11]), Wiener ([14]) and
Muckenhoupt-Stein ([8]). Especially, B. Muckenhoupt-E. M. Stein vaguely pointed out
this kind of proof. However, since this method of the proof of the result may be regarded
as the easiest example of our method, we will include the proof of it here for reference.
We will define the one-sided Hardy-Littlewood maximal operatorMμ,+ with respect to the
absolutely continuous measure μ on R such that any interval which has nonzero length
has nonzero μ-measure.

Definition 4.1. Let μ be an absolutely continuous measure on R such that any interval
which has nonzero length has nonzero μ-measure. We define a one-sided maximal func-
tion Mμ,+ f (x) for a locally integrable function f on R with respect to the measure μ as
follows:

Mμ,+ f (x)= sup
h>0

1
μ
(
[x,x+h)

)
∫ x+h

x
| f |dμ. (4.1)

Theorem 4.2. Let μ be an absolutely continuous measure on R such that any interval which
has nonzero length has nonzero μ-measure. Let Mμ,+ f (x) be a one-sided maximal function
of an integrable function f . Then

μ
({
x |Mμ,+ f (x) > λ

})≤ 1
λ
‖ f ‖μ,1 (4.2)

holds for any f ∈ L1(μ).

Proof. Since μ is absolutely continuous, μ is a Radon measure on R. Thus the set {x |
M+ f (x) > λ} is an open set. Let K be an arbitrary compact set contained in the set {x |
M+ f (x) > λ}. We can choose for each x ∈ K , hx > 0 such that the inequality

1/(μ([x,x+hx)))
∫ x+hx
x | f |dμ > λ holds. Set Kn = {x ∈ K | hx > 1/n}. Set inf Kn = a,

supKn = b. Set

m= [n|b− a|+ 1
]
. (4.3)

Here, [·] is a Gauss symbol. Let ε > 0 be an arbitrary positive number. Then, by the
absolute continuity of the measure μ, there exists a positive number δ > 0 such that if
|E| < δ, then μ(E) < ε. (Here, |E| denotes the Lebesgue measure of the set E.) There exists
a point x1 ∈ Kn such that x1 < inf Kn + δ/(m+ 1). By the definition of Kn, the inequality

1
μ
([
x1,x1 +hx1

))
∫ x1+hx1

x1

| f |dμ > λ, (4.4)

holds. If Kn ⊂ (−∞,x1 + hx1 ), we stop here. If not, there exists a point x2 such that x2 <
inf(Kn \ (−∞,x1 +hx1 )) + δ/(m+ 1), and the inequality

1
μ
([
x2,x2 +hx2

))
∫ x2+hx2

x2

| f |dμ > λ, (4.5)
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holds. If Kn ⊂ (−∞,x2 + hx2 ), we stop here. If not, there exists a point x3 such that x3 <
inf(Kn \ (−∞,x2 +hx2 )) + δ/(m+ 1), and the inequality

1
μ
([
x3,x3 +hx3

))
∫ x3+hx3

x3

| f |dμ > λ, (4.6)

holds. We will proceed in the same way. Then finally, for xk ∈ Kn we have Kn ⊂ (−∞,xk +
hxk ), and we have the inequality

1
μ
([
xk,xk +hxk

))
∫ xk+hxk

xk
| f |dμ > λ. (4.7)

Adding the inequalities about the integral, we have

μ∗
(
Kn
)− ε < 1

λ

∫

R
| f |dμ. (4.8)

Here, μ∗ is the outer measure associated with measure μ. Thus

μ∗
(
Kn
)≤ 1

λ

∫

R
| f |dμ. (4.9)

Letting n→ +∞, we have

μ(K)≤ 1
λ

∫

R
| f |dμ. (4.10)

Since K is an arbitrary compact set contained in the set {x |Mμ,+ f (x) > λ} and since μ is
a Radon measure, we have

μ
({
x |Mμ,+ f (x) > λ

})≤ 1
λ
‖ f ‖μ,1. (4.11)

�
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