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1. Introduction

We are interested in the finite element approximation in the L∞ norm of the following
system of quasivariational inequalities (QVIs): find U = (u1, . . . ,uJ)∈ (H1

0 (Ω))J satisfying

ai
(
ui,v−ui

)
�
(
f i,v−ui

) ∀v ∈H1
0 (Ω),

ui ≤ (MU)i, ui ≥ 0, v ≤ (MU)i.
(1.1)

Here, Ω is a bounded smooth domain of RN , N ≥ 1, with boundary ∂Ω, (·,·) is the
inner product in L2(Ω), for i= 1, . . . , J , ai(u,v) is a continuous bilinear form on H1(Ω)×
H1(Ω), and f i is a regular function.

Problem (1.1) arises in the management of energy production problems where J power
generation machines are involved (see [2] and the references therein). In the case studied
here, (MU)i represents a “cost function” and the prototype encountered is

(MU)i = k+ inf
μ �=i

uμ, i= 1, . . . , J. (1.2)

In (1.2), k represents the switching cost. It is positive when the unit is “turn on” and
equal to zero when the unit is “turn off.” Note also that operator M provides the coupling
between the unknowns u1, . . . ,uJ .

In the present paper we are interested in the noncoercive problem. To handle such a
situation, one can transform problem (1.1) into the following auxiliary system of QVIs:
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find U = (u1, . . . ,uJ)∈ (H1
0 (Ω))J such that

bi
(
ui,v−ui

)
�
(
f i + λui,v−ui

) ∀v ∈H1
0 (Ω),

ui ≤ (MU)i, ui ≥ 0, v ≤ (MU)i,
(1.3)

where, for λ > 0 large enough,

bi(u,v)= ai(u,v) + λ(v,v) (1.4)

is a strongly coercive bilinear form, that is,

bi(v,v)≥ γ‖v‖2
H1(Ω), γ > 0, ∀v ∈H1(Ω). (1.5)

Naturally, the structure of problem (1.1) is analogous to that of the classical obstacle
problem where the obstacle is replaced by an implicit one depending on the solution
sought. The term quasivariational inequality being chosen is a result of this remark.

In [5], a quasi-optimal L∞-error estimate was established for the coercive problem.
This result was then extended to the noncoercive case (cf. [3, 4]).

In this paper two new approaches are proposed to prove the L∞ convergence order for
the noncoercive problem. The first approach consists of characterizing both the continu-
ous and the finite element solutions as fixed points of contractions in L∞.

The second one which is of algorithmic type stands on an algorithm generated by solv-
ing a sequence of coercive systems of QVIs. This algorithm is shown to converge geomet-
rically to the solution of system (1.1).

It is worth mentioning that the second approach may be very useful for computational
purposes.

It should also be mentioned that none of [3, 4] provides a computational scheme, even
though they both contain the same approximation order as the one derived by the first
approach presented in this paper.

The paper is organized as follows. In Section 2, we lay down some necessary prelim-
inaries. In Section 3, we state the continuous problem, recall existence, uniqueness, and
regularity of a solution, and characterize the solution as the unique fixed point of a con-
traction. In Section 4, we give analogous qualitative properties for the discrete problem,
and characterize its solution as the unique fixed point of a contraction. In Section 5,
we develop, separately, the two approaches and show that they both converge quasi-
optimally in the L∞ norm.

2. Preliminaries

2.1. Assumptions and notations. We are given functions aijk(x), aik(x), ai0(x), 1≤ i≤ J ,
sufficiently smooth functions such that

∑

1≤ j,k≤N
aijk(x)ξjξk � α|ζ|2, ζ ∈RN , α > 0,

ai0(x) � β > 0, (x ∈Ω).
(2.1)
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We define the bilinear forms: for all u,v ∈H1
0 (Ω),

ai(u,v)=
∫

Ω

(
∑

1≤ j,k≤N
aijk(x)

∂u

∂xj

∂v

∂xk
+

N∑

k=1

aik(x)
∂u

∂xk
v+ ai0(x)uv

)

dx. (2.2)

We are also given right-hand sides f i such that f i ∈ L∞(Ω) and f i ≥ f0 > 0 for i =
1, . . . , J .

2.2. Elliptic quasivariational inequalities. Let f ∈ L∞(Ω) such that f > f0 > 0,M a non-
decreasing operator from L∞(Ω) into itself, and b(u,v) a bilinear form of the same form
as those defined in (1.4). The following problem is called an elliptic quasivariational in-
equality (QVI): find u∈K(u) such that

b(u,v−u) � ( f ,v−u) ∀v ∈ K(u), (2.3)

where K(u)= {v ∈H1
0 (Ω) such that v ≤Mu a.e.}.

Thanks to [2], the QVI (2.3) has a unique solution. Moreover, this solution enjoys
some important qualitative properties.

2.2.1. A Monotonicity property. Let f , f̃ in L∞(Ω) and u = σ( f ,MU), ũ = σ( f̃ ,Mũ) be
the corresponding solutions of (2.3). Then we have the following comparison principle.

Proposition 2.1. If f ≥ f̃ then u≥ ũ.

Proof. Let u0 and ũ0 be the respective solutions to equations

b
(
u0,v

)= ( f ,v) ∀v ∈H1
0 (Ω),

b
(
ũ0,v

)=
(
f̃ ,v
)

∀v ∈H1
0 (Ω).

(2.4)

Now let us associate with u and ũ the respective decreasing sequences

un+1 = σ
(
f ,Mun

)
, ũn+1 = σ

(
f̃ ,Mũn

)
. (2.5)

Then the following assertion holds:

if f ≥ f̃ then un ≥ ũn. (2.6)

Indeed, since f ≥ f̃ and M is nondecreasing, we have u0 ≥ ũ0. So, MU0 ≥Mũ0, and thus
applying standard comparison results in elliptic variational inequalities, we get

u1 ≥ ũ1. (2.7)

Now assume that un−1 ≥ ũn−1. Then, as f ≥ f̃ , applying the same comparison argument
as before, we get

un ≥ ũn. (2.8)

Finally, passing to the limit (n→∞) as in [2, pages 342–358], we get u≥ ũ. �
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The solution of QVI (2.3) is Lipschitz continuous with respect to the right-hand side.

2.2.2. A Lipschitz dependence property

Proposition 2.2. Let Proposition 2.1 hold. Then,

‖u− ũ‖L∞(Ω) ≤ 1
λ+β

‖ f − f̃ ‖L∞(Ω). (2.9)

Proof. Let us set

Φ= 1
λ+β

‖ f − f̃ ‖L∞(Ω). (2.10)

Then, since ai0(x) � β > 0, we get

f ≤ f̃ +‖ f − f̃ ‖L∞(Ω)

≤ f̃ +
a0(x) + λ

λ+β
‖ f − f̃ ‖L∞(Ω)

≤ f̃ +
(
a0(x) + λ

)
Φ.

(2.11)

So, due to Proposition 2.1, we obtain

u≤ ũ+Φ. (2.12)

Likewise, interchanging the roles of f and f̃ , we similarly get

ũ≤ u+Φ (2.13)

which completes the proof. �

Remark 2.3. The above monotonicity and Lipschitz continuity results stay true in the
discrete case provided a discrete maximum principle is satisfied (see Section 3).

3. The continuous problem

3.1. The continuous system of QVIs. The existence of a unique solution to system (1.1)
can be proved as in [2, pages 342–358]. Indeed, let L∞+ (Ω) denote the positive cone of
L∞(Ω) and considerH+ = (L∞+ (Ω))J equipped with the norm

‖V‖∞ = max
1≤i≤J

∥
∥vi
∥
∥
L∞(Ω). (3.1)

Consider the mapping

T :H+ −→H+,

W −→ TW = ζ = (ζ1, . . . ,ζJ
)
,

(3.2)
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where ζi = σ( f i + λwi, (MW)i)∈H1
0 (Ω) solves the following variational inequality (VI):

bi
(
ζi,v− ζi

)
�
(
f i + λwi,v− ζi

) ∀v ∈H1
0 (Ω),

ζi ≤ (MW)i, ζi ≥ 0, v ≤ (MW)i.
(3.3)

Problem (3.3), being a coercive VI, thanks to [1], has one and only one solution.
Consider now Ū0 = (ū1,0, . . . , ūJ ,0), where ūi,0 is solution to the following variational

equation:

ai
(
ūi,0,v

)= ( f i,v) ∀v ∈H1
0 (Ω). (3.4)

Thanks to [2], problem (3.4) has a unique solution. Moreover, ui,0 ∈W2,p(Ω); 2≤ p <
∞.

The mapping T possesses the following properties.

Proposition 3.1 (cf.[2]). T is increasing, and concave and satisfies TW ≤ Ū0 such that
W ≤ Ū0.

Algorithm 3.2. Starting from Ū0 defined in (3.4) (resp., U0 = (0, . . . ,0)), we define a de-
creasing sequence

Ūn+1 = TŪn, n= 0,1, . . . , (3.5)

(resp., an increasing sequence)

Un+1 = TUn, n= 0,1, . . . . (3.6)

It is clear that in view of (3.2), (3.3), the components of the vectors Ūn and Un are
solutions of VIs.

Theorem 3.3. Let Proposition 3.1 hold; then, the sequences (Ūn) and (Un) remain in the
sector 〈0,Ū0〉. Moreover, they converge monotonically to the unique solution of system (1.1).

Proof. See [2, pages 342–358]. �

3.1.1. Regularity of the solution of system (1.1).

Theorem 3.4 [2, page 453]. Assume aijk(x) in C1,α(Ω̄), ai(x), ai0(x), and f i in C0,α(Ω̄),

α > 0. Then (u1, . . . ,uJ)∈ (W2,p(Ω))J ; 2≤ p <∞.

3.2. Characterization of the solution of system (1.1) as a fixed point of a contraction.
Consider the following mapping:

T :H+ −→H+,

W −→ TW = Z,
(3.7)
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where Z = (z1, . . . ,zJ) is solution to the coercive system of QVIs below:

bi
(
zi,v− zi

)
�
(
f i + λwi,v− zi

) ∀v ∈H1
0 (Ω),

zi ≤ (MZ)i, zi ≥ 0, v ≤ (MZ)i.
(3.8)

Thanks to [2], problem (3.8) has one and only one solution.

Theorem 3.5. Under conditions of Proposition 2.2, the mapping T is a contraction on H+,
that is,

‖TW −TW̃‖∞ ≤ λ

λ+β
‖W − W̃‖∞. (3.9)

Therefore, T admits a unique fixed point which coincides with the solution U of the system
of QVIs (1.1).

Proof. Let W ,W̃ ∈H+, and let Z = TW , Z̃ = TW̃ be the corresponding solutions to sys-
tem of QVIs (3.8) with right-hand sides Fi = f i + λwi and F̃i = f i + λw̃i, respectively.

Let us also denote

zi = σ
(
Fi, (MZ)i

)
, z̃i = σ

(
F̃i,
(
MZ̃

)i)
. (3.10)

Then, making use of Proposition 2.2, we immediately get

∥
∥zi− z̃i

∥
∥
L∞(Ω) ≤

λ

λ+β

∥
∥wi− w̃i

∥
∥
L∞(Ω) (3.11)

and, consequently,

‖TW −TW̃‖∞ = ‖Z− Z̃‖∞
= max

1≤i≤J
∥
∥zi− z̃i

∥
∥
L∞(Ω)

≤max
1≤i≤J

(
λ

λ+β

)∥
∥zi− z̃i

∥
∥
L∞(Ω)

≤
(

λ

λ+β

)
max
1≤i≤J

∥
∥zi− z̃i

∥
∥
L∞(Ω)

≤ λ

λ+β
‖W − W̃‖∞,

(3.12)

which completes the proof. �

3.3. Another iterative scheme for system (1.1). In view of the above result, it is natural
to associate with the solution of system of QVIs (1.1) the following algorithm.

Let Û0 = (û0
1, . . . , û0

J ) such that û0
i solves the equation

b
(
û0
i ,v
)= ( f ,v) ∀v ∈H1

0 (Ω). (3.13)
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Algorithm 3.6. Starting from Û0 (resp., Ǔ0 = 0), we define a decreasing sequence

Ûn = TÛn−1, n= 1,2, . . . , (3.14)

(resp., an increasing sequence)

Ǔn = TǓn−1, n= 1,2, . . . . (3.15)

Note that unlike sequences (3.5), (3.6), the components of Ûn = (ûn1, . . . , ûnJ ) and Ǔn =
(ǔn1, . . . , ǔnJ ) solve coercive QVIs

bi
(
ûni ,v− ûni

)
�
(
f i + λûn−1

i ,v− ûni
) ∀v ∈H1

0 (Ω),

ûni ≤
(
MÛn

)i
, ûni ≥ 0, v ≤ (MÛn

)i
;

bi
(
ǔni ,v− ǔni

)
�
(
f i + λǔni ,v− ǔni

) ∀v ∈H1
0 (Ω),

ǔni ≤
(
MǓn

)i
, ǔni ≥ 0, v ≤ (MǓn

)i
.

(3.16)

Theorem 3.7. Let ρ = λ/(λ+β). Then, under conditions of Theorem 3.5, the sequences (Ûn)
and (Ǔn) remain in the sector 〈0,Û0〉 and converge geometrically to the unique solution U
of (1.1), that is,

∥
∥Ûn−U

∥
∥∞ ≤ ρn

∥
∥Û0−U

∥
∥∞, (3.17)

∥
∥Ǔn−U

∥
∥∞ ≤ ρn

∥
∥Û0−U

∥
∥∞. (3.18)

Proof. Let us prove (3.17). The proof of (3.18) is similar.
For n= 1, we have

∥
∥Û1−U

∥
∥∞ =

∥
∥TÛ0−U

∥
∥∞ =

∥
∥TÛ0−TU∥∥∞ ≤ ρn

∥
∥Û0−U

∥
∥∞. (3.19)

Assume

∥
∥Ûn−1−U

∥
∥∞ ≤ ρn−1

∥
∥Û0−U

∥
∥∞. (3.20)

Then,

∥
∥Ûn−U

∥
∥∞ =

∥
∥TÛn−1−TU∥∥∞ ≤ ρ

∥
∥Ûn−1−U

∥
∥∞. (3.21)

Thus

∥
∥Ûn−U

∥
∥∞ ≤ ρρn−1

∥
∥Û0−U

∥
∥∞ ≤ ρn

∥
∥Û0−U

∥
∥∞. (3.22)

�

4. The discrete problem

Let Ω be decomposed into triangles and let τh denote the set of all those elements; h > 0
is the mesh size. We assume that the family τh is regular and quasi-uniform.
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Let Vh denote the standard piecewise linear finite element space, and let Bi, 1≤ i≤ J ,
be the matrices with generic coefficients bi(ϕl,ϕs), where ϕs, s= 1,2, . . . , and m(h) are the
nodal basis functions. Let also rh be the usual interpolation operator.

Definition 4.1. A real n×n matrix B = [bi j] with bi j ≤ 0 for all i �= j is an M-matrix if B
is nonsingular and B−1 ≥ 0.

The discrete maximum principle assumption (d.m.p.). We assume that the matrices Bi are
M-matrices (cf. [6]).

4.1. Discrete elliptic quasivariational inequalities. The discrete counterpart of QVI
(2.3) reads as follows: find uh ∈Kh(uh) such that

b
(
uh,v−uh

)
�
(
f ,v−uh

) ∀v ∈Kh
(
uh
)
, (4.1)

where Kh(uh)= {v ∈Vh such that v ≤ rhMUh}.
Next we will state properties for the solution of (4.1) which are the direct discrete

counterparts of those given in Propositions 2.1 and 2.2. We will omit their respective
proofs as these are very similar to those of the continuous case.

4.1.1. A discrete monotonicity property. Let f , f̃ be in L∞(Ω) and uh = σh( f ,MUh), ũh =
σh( f̃ ,Mũh) the corresponding solutions to (4.1). Then, under the d.m.p., we have the
following discrete comparison result.

Proposition 4.2. If f ≥ f̃ , then σh( f ,MUh)≥ σh( f̃ ,Mũh).

4.1.2. A discrete Lipschitz dependence property.

Proposition 4.3. Let Proposition 4.2 hold. Then,

∥
∥uh− ũh

∥
∥
L∞(Ω) ≤

1
λ+β

‖ f − f̃ ‖L∞(Ω). (4.2)

4.2. The discrete system of QVIs. We define the discrete system of QVIs as follows: find
Uh = (u1

h, . . . ,uJh)∈ (Vh)J such that

ai
(
uih,v−uih

)
�
(
f i,v−uih

) ∀v ∈Vh,

uih ≤ rh
(
MUh

)i
, uih ≥ 0, v ≤ rh

(
MUh

)i
.

(4.3)

Similarly to the continuous problem, the above problem can be transformed into the
following: find Uh = (u1

h, . . . ,uJh)∈ (Vh)J solution to the equivalent system

bi
(
uih,v−uih

)
�
(
f i + λuih,v−uih

) ∀v ∈Vh,

uih ≤ rh
(
MUh

)i
, uih ≥ 0, v ≤ rh

(
MUh

)i
.

(4.4)

The existence of a unique solution to system (4.3) can be shown very similarly to that
of the continuous case provided the discrete maximum principle (d.m.p.) is satisfied. The
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key idea consists of associating with the above system the following fixed point mapping:

Th :H+ −→ (Vh
)J

,

W −→ ThW = ζh =
(
ζ1
h , . . . ,ζJh

)
,

(4.5)

where ζih = σh( f i + λwi, (MW)i) is the solution of the following discrete VI:

bi
(
ζih,v− ζih

)
�
(
f i + λwi,v− ζih

) ∀v ∈Vh,

ζih ≤ rh(MW)i, ζih ≥ 0, v ≤ rh(MW)i.
(4.6)

Let Ū0
h = (ū1,0

h , . . . , ūJ ,0h ) be the discrete analogue of Ū0 defined in (3.4):

ai
(
ūi,0h ,v

)= ( f i,v) ∀v ∈Vh. (4.7)

Then, Th possesses analogous properties to those enjoyed by mapping T (see Proposition
3.1).

Proposition 4.4. Th is increasing, concave onH+ and satisfies ThW ≤ Ū0 for all W ≤ Ū0
h .

Algorithm 4.5. Starting from Ū0
h solution of (4.7), (resp., U0

h = (0, . . . ,0)), we define a
discrete decreasing sequence

Ūn+1
h = ThŪ

n
h , n= 0,1, . . . , (4.8)

(resp., a discrete increasing sequence)

Un+1
h = ThU

n
h, n= 0,1, . . . . (4.9)

Theorem 4.6. Let Proposition 4.4 hold, then, the sequences (Ūn
h ) and (Un

h) remain in the
sector 〈0,Ū0

h〉. Moreover, they converge monotonically to the unique solution Uh of system of
QVIs (4.3).

4.3. Characterization of the solution of system (4.3) as a fixed point of a contraction.
Similarly to the continuous problem, the solution of system (4.3) can be characterized as
the unique fixed point of a contraction.

Indeed, consider the following mapping:

Th :H+ −→ (Vh
)J

,

W −→ ThW = Zh =
(
z1
h, . . . ,zJh

)
,

(4.10)

where Zh = (z1
h, . . . ,z J

h ) is solution to the discrete coercive system of QVIs:

bi
(
zih,v− zih

)
�
(
f + λwi,v− zih

) ∀v ∈Vh,

zih ≤ rh(MZ)i, zih ≥ 0, v ≤ rh(MZ)i.
(4.11)

Then, making use of Proposition 4.3, we get the following.
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Theorem 4.7. The mapping Th is a contraction onH+. That is,

∥
∥ThW −ThW̃

∥
∥∞ ≤

λ

λ+β
‖W − W̃‖∞. (4.12)

Therefore, there exists a unique fixed point which coincides with the solution Uh of the system
of QVI (4.3).

Proof. It is very similar to that of the continuous case. �

4.4. Another iterative scheme for system (4.3). In view of the above result, it is natural
to associate with the solution of system of QVIs (1.1) the following algorithm.

First, let Û0
h = (û1,0

h , . . . , ûJ ,0h ) such that ûi,0h solves the equation

bi
(
ûi,0h ,v

)= ( f ,v) ∀v ∈Vh. (4.13)

Algorithm 4.8. Starting from Û0
h (resp., Ǔ0h = 0), we define a decreasing sequence

Ûn
h = ThÛ

n−1
h , n= 1,2, . . . , (4.14)

(resp., an increasing sequence)

Ǔn
h = ThǓ

n−1, n= 1,2, . . . . (4.15)

Note that unlike sequences (4.8), (4.9), the components of both Ûn
h = (û1,n

h , . . . , ûJ ,n
h )

and Ǔn
h = (ǔ1,n

h , . . . , ǔJ ,nh ) solve discrete coercive QVIs, which are

bi
(
ûi,nh ,v− ûi,nh

)
�
(
f i + λûi,n−1

h ,v− ûi,nh
) ∀v ∈Vh,

ûi,nh ≤ rh
(
MÛn

h

)i
, ûi,nh ≥ 0, v ≤ rh

(
MÛn

h

)i
;

bi
(
ǔi,nh ,v− ǔi,nh

)
�
(
f i + λǔi,nh ,v− ǔi,nh

) ∀v ∈Vh,

ǔi,nh ≤ rh
(
MǓn

h

)i
, ǔi,nh ≥ 0, v ≤ rh

(
MǓn

h

)i
.

(4.16)

Theorem 4.9. Let ρ = λ/(λ+β). Then, under conditions of Theorem 4.7, the sequences (Ûn
h )

and (Ǔn
h ) remain in the sector 〈0,Û0

h〉 and converge geometrically to the unique solution Uh

of (4.3), that is,

∥
∥Ûn

h −Uh

∥
∥∞ ≤ ρn

∥
∥Û0

h −Uh

∥
∥∞,

∥
∥Ǔn

h −Uh

∥
∥∞ ≤ ρn

∥
∥Û0

h −Uh

∥
∥∞.

(4.17)

Proof. The proof is similar to that of the continuous case. �

5. L∞-error analysis

We now turn to the L∞-error analysis. For that purpose, we will give two different ap-
proaches.
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5.1. The contraction approach. It stands on the characterization of the solutions of both
the continuous and discrete systems (1.1) and (4.3) as fixed points of contractions.

First, let us introduce the following intermediate discrete coercive system of QVIs: find
Zh = (z̄1

h, . . . , z̄Jh) solution to

b
(
z̄ih,v− z̄ih

)
�
(
f + λui,v− z̄ih

) ∀v ∈Vh,

z̄ih ≤ rh
(
MZ̄h

)i
, z̄ih ≥ 0, v ≤ rh

(
MZ̄h

)i
.

(5.1)

Clearly, (5.1) is a coercive system whose right-hand side depends on U = (u1, . . . ,uJ), the
solution of system (1.1). So, in view of (4.10), (4.11), we readily have

Z̄h = ThU. (5.2)

Therefore, using the result of [5], we get the following error estimate:

∥
∥Z̄h−U

∥
∥∞ ≤ Ch2|Logh |3. (5.3)

Theorem 5.1. Let U and Uh be the solutions of systems (1.1) and (4.3), respectively. Then,

∥
∥U −Uh

∥
∥∞ ≤ Ch2|Logh |3. (5.4)

Proof. In view of (5.2) and Theorems 3.5 and 4.7, we clearly have

U = TU ; Uh = ThUh; Z̄h = ThU. (5.5)

Then, using estimation (5.3), we get

∥
∥ThU −TU

∥
∥∞ =

∥
∥Z̄h−U

∥
∥∞ ≤ Ch2|Logh |3. (5.6)

Therefore

∥
∥Uh−U

∥
∥∞ ≤

∥
∥Uh−ThU

∥
∥∞ +

∥
∥ThU −TU

∥
∥∞

≤ ∥∥ThUh−ThU
∥
∥∞ +

∥
∥ThU −TU

∥
∥∞

≤ ρ
∥
∥U −Uh

∥
∥∞ +Ch2|Logh |3.

(5.7)

Thus

∥
∥U −Uh

∥
∥∞ ≤

Ch2|Logh |3
(1− ρ)

. (5.8)
�

5.2. The algorithmic approach. It combines the error estimate between the nth iterate
of (3.14) and its discrete counterpart (4.15), and the geometrical convergence of those
algorithms.
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Let us first introduce the following sequence of discrete coercive systems of QVIs: find
Ũn

h = (ũ1,n
h , . . . , ũJ ,nh ) such that

bi
(
ũi,nh ,v− ũi,nh

)
�
(
f i + λûi,n−1,v− ũi,nh

) ∀v ∈Vh,

ũi,nh ≤ rh
(
MŨn

h

)i
, ũi,nh ≥ 0, v ≤ rh

(
MŨn

h

)i
,

(5.9)

where Ûn
h = (û1,n

h , . . . , ûJ ,nh ) is the continuous sequence defined in (3.14), and Ũ0
h = Û0

h .
The following lemma plays a crucial role in the present approach.

Lemma 5.2.

∥
∥Ûn− Ûn

h

∥
∥∞ ≤

(
1− ρn+1

1− ρ

) n∑

p=0

∥
∥Û p− Ũ

p
h

∥
∥∞. (5.10)

Proof. Th being a contraction, we have

∥
∥Û1− Û1

h

∥
∥∞ ≤

∥
∥Û1− Ũ1

h

∥
∥∞ +

∥
∥Ũ1

h − Û1
h

∥
∥∞

≤ ∥∥Û1− Ũ1
h

∥
∥∞ +

∥
∥ThŨ

0
h −ThÛ

0
h

∥
∥∞

≤ ∥∥Û1− Ũ1
h

∥
∥∞ + ρ

∥
∥Ũ0

h − Û0
h

∥
∥∞

≤ (1 + ρ)
(∥
∥Û1− Ũ1

h

∥
∥∞ +

∥
∥Ũ0

h − Û0
h

∥
∥∞
)
.

(5.11)

Now assume that

∥
∥Ûn−1− Ûn−1

h

∥
∥∞ ≤

(
1− ρn

1− ρ

) n−1∑

p=0

∥
∥Û p− Ũ

p
h

∥
∥. (5.12)

Then, using, again, the fact that Th is a contraction, we get

∥
∥Ûn− Ûn

h

∥
∥∞ ≤

∥
∥Ûn− Ũn

h

∥
∥∞ +

∥
∥Ũn

h − Ûn
h

∥
∥∞

≤ ∥∥Ûn− Ũn
h

∥
∥∞ +

∥
∥ThÛ

n−1−ThÛ
n−1
h

∥
∥∞

≤ ∥∥Ûn− Ũn
h

∥
∥∞ + ρ

∥
∥Ûn−1− Ûn−1

h

∥
∥∞

≤ ∥∥Ûn− Ũn
h

∥
∥∞ + ρ

(
1 + ρ+ ···+ ρn−1)

n∑

p=0

∥
∥Û p− Ũ

p
h

∥
∥

≤ ∥∥Ûn− Ũn
h

∥
∥∞ +

(
1 + ρ+ ···+ ρn

) n∑

p=0

∥
∥Û p− Ũ

p
h

∥
∥

≤
(

1− ρn+1

1− ρ

) n∑

p=0

∥
∥Û p− Ũ

p
h

∥
∥

(5.13)

which completes the proof. �

Theorem 5.3. Let U and Uh be the solutions of systems (1.1) and (4.3), respectively. Then,
∥
∥U −Uh

∥
∥∞ ≤ Ch2|Logh |4. (5.14)
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Proof. We have

∥
∥U −Uh

∥
∥∞ ≤

∥
∥U − Ûn

∥
∥∞ +

∥
∥Ûn− Ûn

h

∥
∥∞ +

∥
∥Ûn

h −Uh

∥
∥∞

≤ ρn
∥
∥Û0−U

∥
∥∞ +

(
1− ρn+1

1− ρ

) n∑

p=0

∥
∥Û p− Ũ

p
h

∥
∥∞ + ρn

∥
∥Û0

h −Uh

∥
∥∞.

(5.15)

Now, taking

ρn ≤ h2, (5.16)

we get

∥
∥U −Uh

∥
∥∞ ≤ Ch2|Logh |4. (5.17)

�

Remark 5.4. Clearly, the first approach provides a better approximation as the second one
leads to a convergence order with an extra logarithmic factor.
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